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Understanding the development
of Th2 cell-driven allergic airway
disease in early life
Beatriz León*

Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States

Allergic diseases, including atopic dermatitis, allergic rhinitis, asthma, and food
allergy, are caused by abnormal responses to relatively harmless foreign
proteins called allergens found in pollen, fungal spores, house dust mites
(HDM), animal dander, or certain foods. In particular, the activation of
allergen-specific helper T cells towards a type 2 (Th2) phenotype during the
first encounters with the allergen, also known as the sensitization phase, is
the leading cause of the subsequent development of allergic disease. Infants
and children are especially prone to developing Th2 cell responses after
initial contact with allergens. But in addition, the rates of allergic sensitization
and the development of allergic diseases among children are increasing in
the industrialized world and have been associated with living in urban
settings. Particularly for respiratory allergies, greater susceptibility to
developing allergic Th2 cell responses has been shown in children living in
urban environments containing low levels of microbial contaminants,
principally bacterial endotoxins [lipopolysaccharide (LPS)], in the causative
aeroallergens. This review highlights the current understanding of the factors
that balance Th2 cell immunity to environmental allergens, with a particular
focus on the determinants that program conventional dendritic cells (cDCs)
toward or away from a Th2 stimulatory function. In this context, it discusses
transcription factor-guided functional specialization of type-2 cDCs (cDC2s)
and how the integration of signals derived from the environment drives this
process. In addition, it analyzes observational and mechanistic studies
supporting an essential role for innate sensing of microbial-derived products
contained in aeroallergens in modulating allergic Th2 cell immune
responses. Finally, this review examines whether hyporesponsiveness to
microbial stimulation, particularly to LPS, is a risk factor for the induction of
Th2 cell responses and allergic sensitization during infancy and early
childhood and the potential factors that may affect early-age response to
LPS and other environmental microbial components.
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Introduction

Allergic diseases are chronic inflammatory disorders caused by aberrant immune

reactions to harmless foreign proteins called allergens. Allergic diseases can affect the

respiratory tract, skin, and digestive system, causing airway allergy, atopic dermatitis,

and food allergy. This review focuses on respiratory allergies, which are induced by
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exposure to airborne allergens. The most common aeroallergens

are pollen, fungal spores, house dust mites (HDMs), and animal

allergens. Respiratory allergies include allergic rhinitis and

asthma, which affect the upper and lower airways,

respectively. Inflammation triggered by exposure to allergens

in the upper respiratory tract causes sneezing, congestion, and

itchy nose, mouth, and eyes. Inflammation in the lower

respiratory tract in patients with asthma can cause breathing

problems and obstruct airflow when the airways swell and

narrow and produce excess mucus.

Allergic respiratory disorders are increasingly prevalent in the

developed world and are the most common chronic

immunological diseases affecting children (1, 2). Approximately

7% of the population of the United States suffers from

respiratory allergies. Among children, the frequency is higher,

with around 10% of children affected by allergic disorders of

the respiratory tract, of which approximately 6% have asthma

(3–6). In particular, allergic airway disorders often have an

early onset and usually develop before the age of 5 years and

then persist throughout life (7–9). Current trends predict that

pediatric respiratory allergy incidence rates will continue to

rise, particularly in developed countries (4, 5, 10), providing

further evidence that lifestyle change associated with

urbanization and industrialization is contributing to this

increase in allergic airway disease in children.

The characteristic pattern of inflammation in the airways of

children with allergy is mediated by type 2 immune responses

mainly regulated by T helper 2 (Th2) and type 2 T follicular

helper (Tfh2) cells. Tfh2 cells secrete the cytokines interleukin

(IL)-4, IL-21, and IL-13 in B cell follicles, which promotes the

production of immunoglobulin E (IgE) and IgG1 by B cells

(11, 12), leading to the activation of mast cells and basophils

(13). Th2 effector cells secrete IL-4, IL-13, IL-5, and IL-9

upon allergen stimulation (14, 15), promoting inflammation

and tissue remodeling by inducing the infiltration and

activation of eosinophils (16) and excessive secretion of

mucus (17). A fundamental characteristic of the development

of airway inflammation upon allergen contact is that it

requires an initial exposure to allergen or “sensitization” that

does not necessarily cause symptoms or pathology. However,

once a person becomes “sensitized” to an allergen, they will

develop pathology following secondary or subsequent allergen

exposures or “challenges.” During this initial sensitization

phase, allergens trigger an immune reaction that ultimately

activates conventional dendritic cells (cDCs) to prime

allergen-specific CD4+ T cells with a Th2-like cytokine profile.

The presence and persistence of these allergen-specific T cells

after initial priming marks the predisposition to develop

allergic responses, as these T cells can be subsequently

reactivated upon re-exposure to the same inhaled allergen,

causing their migration to the airways, where they locally

produce Th2 cytokines (15, 18). Accumulation of Th2 effector

cells in the lungs ultimately stimulates the hallmarks features
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of allergic inflammation, such as tissue swelling, mucus

hypersecretion, and bronchial hyperresponsiveness (14).

An accumulating piece of evidence has shown that during

early childhood, there is a predisposition to prime Th2-biased

immune responses compared to later in life (19–21). These

data suggest that environmental factors specifically impacting

during a time window in early life would instigate the initial

priming of aeroallergen-specific T cells toward a Th2-like

cytokine profile, thus promoting allergic sensitization.

Furthermore, lifestyle changes in developed countries are

contributing to this trend (5, 10). Living in developed

countries is associated with industrialization, urbanization,

and changes in hygiene habits. The most hygienic

environment and practices apply particularly to infants and

young children. These changes lead to a restriction in

exposure to inhalant dust-related microbial products during

the first years of life. In particular, a number of epidemiologic

studies have drawn attention to decreased exposure to

inhalant house-dust bacterial endotoxins (lipopolysaccharides,

LPS) and endotoxin-contaminated aeroallergens in childhood

and the risk of developing Th2-driven, allergen-induced

airway inflammation (22–30). This review discusses the

mechanisms that promote and prevent Th2 cell immunity—

especially highlighting the diverse signals elicited by the

environmental allergens that lead to the activation of different

cells in the exposed tissue, including epithelial/stromal cells,

monocyte subsets, and innate lymphoid cell group 2 (ILC2).

It further analyzes how signals derived from these cells are

ultimately integrated by cDCs, particularly type 2 cDCs

(cDC2s), to program their function to induce or prevent Th2

cell responses. Moreover, this review examines the

fundamental role of endotoxin/LPS contained in airborne

allergens in preventing allergen-specific T cell priming toward

a Th2 cell phenotype and, thus, in preventing new allergen

sensitizations. Finally, it analyzes the mechanisms that

promote a state of hyporesponsiveness to endotoxins/LPS

during early childhood, favoring Th2 cell sensitization to

aeroallergens with low endotoxin contamination and

ultimately contributing to increased susceptibility to

developing respiratory allergic diseases in early life.
Mechanisms that promote Th2 cell
priming by dendritic cells

cDCs are the principal antigen-presenting cells (APCs) to

initiate CD4+ T cell activation and proliferation by presenting

protein-derived peptides on major histocompatibility complex

(MHC) molecules (also known as “signal 1”) and by

providing potent co-stimulatory signals through the

engagement of CD28 expressed by the T cells (also known as

“signal 2”). In addition, cDCs provide polarizing cytokines

that determine the differentiation of naïve CD4+ T cells into
frontiersin.org
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the various effector T helper (Th) subsets (also known as “signal

3”). For example, cDC-derived IL-12 induces Th1 cell

differentiation by promoting interferon-γ (IFNγ) production

and expression of the Th1 cell-associated transcription factor

T-bet (also known as TBX21) (31–34). Transforming grow

factor-β (TGFβ) induces the transcription factor forkhead box

P3 (FOXP3) and thus drives T regulatory T (Treg) cell

differentiation (35). But, the presence of TGFβ along with

IL-6 during T cell priming promotes the expression of the

retinoic acid receptor-related orphan receptor-γt (RORγt; also

known as RORC) that drives Th17 cell differentiation, thus

subverting differentiation of Treg cells (36, 37). IL-23 then

maintains the Th17 phenotype by stabilizing RORγt, thereby

allowing Th17 cells to release their effector cytokines (38).

Since IL-12, TGFβ, IL-6, and IL-23 are cytokines produced by

cDCs in response to pathogen or danger recognition (39–42),

it is believed that cDCs provide all three signals for the

differentiation of Th1, Th17, and induced Treg responses.

Although many studies have made clear that cDCs are

required for the induction of Th2 cell responses (15, 18,

43–53), an equivalent cDC-derived cytokine or “signal 3” that

induces Th2 cell differentiation has not been found. Instead,

early studies proposed that Th2 cell differentiation may be

controlled by the strength of the “signal 1” delivered through

the T cell receptor (TCR). This includes the affinity of the

interactions between MHC and TCR molecules and the

amount of antigen. This hypothesis was initially based on in

vitro studies showing that weak TCR signaling as a result of

stimulation with low doses of antigen or low-affinity peptides

favored IL-4 over IFNγ production (54–58). And although in

vivo studies using adoptive transfer of DCs loaded with a

range of peptide concentrations have likewise suggested that

low TCR signal strength favors Th2 cell induction (59), in

vivo models of infection or immunization have not

reproduced these findings, as many studies have shown that

high doses of antigen enhance the generation of Th2 cells

(60–68) and that TCR affinity does not affect IL-4 production

by activated T cells (69). Therefore, current evidence does not

clearly indicate whether TCR signal intensity controls the

induction of Th2 cell responses upon in vivo exposure to

Th2-inducing stimuli. Other studies have tested whether

specific costimulatory signals influence Th2 cell

differentiation. Particularly, some studies have provided

evidence that in vitro generated DCs expressing membrane-

bound Notch ligands, particularly Jagged 1 and Jagged 2, gain

the capacity to instruct Th2 cell polarization (70, 71).

However, other studies have shown that Jagged expression by

DCs is insufficient or not required for Th2 cell differentiation

(72, 73). Furthermore, in vivo studies have shown that

expression of Jagged Notch ligands on cDCs is dispensable for

induction of Th2 cell responses to natural allergens and

subsequent allergic airway inflammation (74). Thus, current

evidence does not support a role for Jagged expression on
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cDCs in directing Th2 cell differentiation to allergens. Instead,

Notch has been found to orchestrate multiple Th cell

programs, including Th1, Th2, Th17, Treg, and Tfh, and has

been suggested to be a general and unbiased amplifier of Th

cell responses (75).

Importantly, however, initial Th2 cell lineage commitment

has been shown to require IL-2 signaling and IL-2-induced

activation of signal transducer and activation of transcription

5 (STAT5) (76, 77). Specifically, IL-2-STAT5 signaling is

needed to promote transcription of the Il4ra gene, leading to

increased cell surface expression of IL-4Rα (also known as

CD124) and subsequently increased responsiveness to IL-4

(77). In addition, IL-2 stabilizes the accessibility of the Il4

locus, allowing for early IL-4 production (76–78). Thus, IL-2-

induced signaling during early Th2 cell differentiation is

required to support increased IL-4 production and increased

IL-4 responsiveness, allowing for an IL-4-positive feedback

amplification loop that preserves the Th2 cell phenotype.

cDCs are not a critical source of IL-2. And although group 3

ILCs are a dominant source of IL-2 in peripheral tissues

(79, 80), in the secondary lymphoid organs, where T cell

priming occurs, IL-2 is thought to be produced primarily by

CD4+ T cells shortly after their activation by cDCs. IL-2

signaling is first required for the initial clonal T-cell

expansion (81, 82). However, IL-2-deficient T cells also show

defective Th2 cell differentiation in vitro (76, 77), supporting

that IL-2 produced by activated T cells is necessary and

sufficient to initiate the Th2 cell differentiation program.

Remarkably, in vitro IL-2 production and responsiveness are

favored by weaker TCR signaling (55, 83), which may be one

mechanism to explain how TCR signal intensity can control

in vitro Th2 cell differentiation. However, IL-2 is not

exclusively produced during Th2 cell differentiation.

Therefore, Th2 cell commitment must be regulated in vivo by

additional mechanisms. One possibility is that CD4+ T cells

default into the Th2 cell pathway in the presence of strong

IL-2 signaling but the absence of positive signals (or

cytokines) that drive differentiation into other Th lineages,

particularly into Th1 cells (31–33, 84, 85). The regulatory

roles of Th1-inducing signals in inhibiting Th2 cell

differentiation will be discussed in detail below.

Accumulating evidence has shown that interactions between

naïve CD4 T cells and antigen-presenting cDCs can occur

within distinct sub-anatomic regions of secondary lymphoid

tissues, leading to the differentiation of specific Th subsets

(86, 87). These data suggest that T-cell lineage commitment

and the acquisition of district cytokine profile may be

controlled by particular localization within secondary

lymphoid organs. In particular, Th1-directing stimulations

induce cDCs to localize into the deep T cell area of the lymph

node via a CC-chemokine receptor 7 (CCR7)-dependent

mechanism (88–90). This positioning of cDC allows for

efficient initial priming of Th1 cell responses (88). On the
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contrary, during Th2-directing stimulations, antigen-bearing

cDCs are preferentially attracted to the border of B cell

follicles and T cell zone (T-B border) and to the area between

B cell follicles (perifollicular region) rather than to the T cell

zone (18, 86, 89, 91, 92). The encounter of cDCs and

responding CD4+ T cells, specifically within the

T-B/perifollicular zone of the lymph node, was found

necessary for the establishment of Th2 cell responses, as

repositioning of cDCs or T cells to the T cell area

compromised Th2 cell priming (86, 89). Thus, this evidence

suggests that the T cell area of the lymph node is a

specialized microenvironment that contributes to the effective

priming of Th1 cells but also is an unfavorable environment

for the priming of Th2 cell responses. In contrast, Th2 cell

responses are efficiently primed in the T-B/perifollicular

region of the lymph nodes. Since the signals that induce Th1

and Th2 cells have antagonistic effects on each other, it is

understandable that the differentiation of these two subsets

occurs in anatomically separate settings. However, it is more

than possible that these particular lymph node

microenvironments optimize the differentiation of individual

T cell responses. As an example, chemokine signals expressed

in the T area that induce the positioning of cDCs within this

location also enhance the ability of the cDCs to produce IL-12

and differentiate Th1 cells (93). Besides, T cell priming in the

T cell area allows for interaction with blood-recruited

monocytes and monocyte-derived DCs (moDCs) (94–96),

providing an additional source of IL-12 for optimal Th1 cell

differentiation (88, 97–99). On the other hand, Th2 cell

differentiation requires strong and sustained IL-2 signaling,

which is perhaps best achieved in the T-B/perifollicular

region. For example, IL-2 could be more available in the T-B/

perifollicular area due to the low presence of Treg cells that

consume IL-2 (100). However, questions remain as to how the

cDCs integrate signals provided in the environment after

Th2-directing stimulations to migrate and be specifically

retained in the T-B/perifollicular areas of secondary lymphoid

tissues, to provide signals that efficiently support autocrine

IL-2 production and signaling in T cells, without providing

cytokines that inhibit the Th2 cell differentiation program.

Innate sensing of microbial pathogens or derived products

is principally mediated by pattern recognition receptors

(PRRs), which recognize molecules frequently found in

pathogens (the so-called pathogen associated molecular

patterns or PAMPs). PRRs include Toll-like receptors (TLRs),

RIG-I-like receptors (RLRs), NOD-like receptors (NLRs), C-

type lectin receptors (CLRs), and cytosolic DNA sensors

(101). Upon ligand engagement, PRRs trigger intracellular

signal transduction pathways, which ultimately result in the

expression of a variety of pro-inflammatory and polarizing

cytokines and up-regulation of co-stimulatory molecules.

These gene products orchestrate the early host response to

infection and also are a prerequisite for the subsequent
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activation and shaping of adaptive immunity. Particularly,

pathogen recognition by PRRs and subsequent expression of

polarizing cytokines is essential for initiating Th1 and Th17

responses. In contrast, Th2 cell responses can develop or even

get enhanced in the absence of PRR-mediated signaling

(102–108). Indeed, as it will be discussed in below sections,

the trigger of PRR-mediated signaling and subsequent

induction of pro-inflammatory cytokine response usually

suppresses Th2 cell priming. This is in line with the idea that

no positive signal (or cytokine) controls Th2 polarization;

instead, it is the absence of one that causes Th2 cell responses

to develop. However, the activation of certain PRR in specific

cell types or by certain PAMPs can elicit attenuated rather

than promote inflammatory cytokine responses and

consequently have been shown to act as adjuvants that favor

or enhance biased type 2-immunity. For example, TLR2

stimulation promotes weak IL-12 production (109–113), and

thus TLR2-mediated signals preferentially stimulate Th2 cell

polarization (111, 113, 114). Likewise, polysaccharides

commonly found in allergens can bind CLRs such as Dectin-

1/CLEC7A and Dectin-2 (115–117). Dectin-1 and Dectin-2

ligands usually prompt attenuated IL-12 responses (118–120),

but still can act as adjuvants that promote cDC activation and

migration for the subsequent priming of allergen-specific Th2

cells (121–125). But among all PRRs, TLR4 is probably the

most ambiguous regulator in the context of type 2-immunity,

as its activation can lead to suppression of Th2 cell

differentiation or, conversely, be a driving force of Th2 bias.

How TLR4 activation can cause these two opposite outcomes

in the context of type 2-immunity is still a topic of research.

In general, strong stimulation of the TLR4-driven pro-

inflammatory response is associated with IL-12 release and

suppression of Th2 cell priming (103, 126–128). However,

several factors can influence TLR4-mediated signaling and

cause an attenuated pro-inflammatory cytokine response that

promotes type 2-inflammation. LPS is the best-known and

most potent TLR4 agonist and is, therefore, a powerful

inducer of pro-inflammatory cytokines (129). But it should be

noted that in this context, host sensitivity to LPS is critical

when it comes to eliciting a robust pro-inflammatory cytokine

response leading to IL-12-producing cDCs and suppression of

Th2 cell responses, particularly in response to low amounts of

LPS. And therefore, suboptimal responses to low amounts of

LPS may promote rather than prevent Th2 responses, thereby

favoring allergic airway inflammation (103, 130–132). As will

be discussed below, moDCs are the primary sensor cells for

low-dose LPS and a key source of pro-inflammatory

cytokines. Thus, factors influencing moDC differentiation and

activation can switch LPS activity from protective to

pro-pathogenic in the context of Th2 cell allergic responses.

In this regard, activation of TLR4 in the absence of moDCs

initiates, rather than prevents, Th2 allergic inflammation in

the lungs (103). When moDCs are absent, LPS primarily drives
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https://doi.org/10.3389/falgy.2022.1080153
https://www.frontiersin.org/journals/allergy
https://www.frontiersin.org/


León 10.3389/falgy.2022.1080153
TLR4 activation in the stroma/epithelium (103, 130, 131, 133).

And this context favor Th2 cell development since the TLR4-

driven response in structural cells has a low pro-inflammatory

component but induces cytokines or “alarmins” that condition

cDCs to initiate Th2 cell responses (134). On the other hand,

although TLR4 primarily recognizes and is activated by LPS,

alternative agonists for TLR4 have also been described (135).

Importantly, TLR4 signaling induced by some of these

alternative agonists has been shown to promote, rather than

suppress, type 2-driven inflammation (136–139). A common

feature of these TLR4 agonist ligands is that they induce

alternative activation of TLR4, resulting in weakened

inflammatory response. Canonical activation of TLR4 by LPS is

absolutely dependent on the presence of myeloid differentiation

factor-2 (MD-2), which binds LPS and initiates TLR4 pro-

inflammatory cytokine signaling (140–142). However,

alternative TLR4 ligands that elicit type 2-immunity activate

TLR4 in the absence of MD-2 (137–139). The proposed

mechanism for this alternative/non-canonical TLR4 activation

is that these ligands are proteins with structural and functional

homology to MD-2 that can reconstruct TLR4 signaling in the

absence of MD-2 (137). Future studies will be required to

understand precisely how canonical and non-canonical TLR4

activation pathways can elicit different cytokine profiles and

thus enable distinct TLR4 functions.

In addition to their ability to activate PRRs, allergens with

strong ability to elicit Th2 cell responses, such as HDM, pollen,

fungi, or cockroaches, share the common feature of containing

proteases (143). Moreover, proteolytic enzymes extracted from

these allergens have the ability to trigger potent Th2 cell

responses (116, 144–146). Thus, the presence of protease

activity in allergens is thought to play an important role in

initiating Th2 cell responses. Additionally, several cell

populations and mediators have been shown to support cDC

activation and migration and, thus, have been found to be

central regulators of Th2 cell immunity. Principally, activation

of epithelial cells by microbial products, cytokines, or allergens

with proteolytic activity and the consequent release of the

“alarmin” cytokines thymic stromal lymphopoietin (TSLP), IL-

33, and IL-25 is thought to be the initial step for the

subsequent activation of cDCs and priming of allergen-specific

Th2 cells (134, 147, 148). In support, alarmin cytokines and

their receptors are major susceptibility loci for human asthma

(149–151). Importantly, TSLP, IL-33 and IL-25 are potent

activators of ILC2, which produce IL-13 in response to these

stimulations (53, 152–158). IL-13 production by ILC2 has been

shown to be important for the initiation of Th2 cell responses

after allergic sensitization or immunization through the skin or

the respiratory tract (53, 152). Mechanistically, IL-13 produced

by ILC2 has been shown to promote the migration of cDCs

into the draining lymph node and their functional

specialization to stimulate naïve T cells to differentiate into Th2

cells (53, 152). cDCs can be divided into two ontogenically
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distinct subsets, the type-1 cDCs (cDC1s) and type-2 cDCs

(cDC2s) (159). In the context of induction of allergen-specific

CD4+ T-cell responses, cDC2s are especially adept at capturing

and transporting allergen-derived proteins from the tissue into

the draining lymph node and presenting them to CD4+ T-cell

to induce their activation and polarization (18, 46, 103, 128).

The integration of the signals in the environment defines the

functional specialization of cDC2s and ultimately determines

their ability to either promote (18, 46–51, 53) or prevent

(103, 128) Th2 cell responses to allergens. The specific signals

driving cDC2 diversification are gradually being characterized.

The expression of the transcription factors Interferon regulatory

factor 4 (IRF4) (48, 50), Krüppel-like factor 4 (KLF4) (51), and

STAT6 (53) promote the functional specialization of cDC2s to

favor Th2 cell differentiation. In contrast, and as will be

discussed below, the induced expression of the transcription

factor T-bet is intrinsically necessary for the ability of cDC2s to

produce sustained IL-12 and suppress Th2 cell priming

(103, 128). Thus, these data suggest transcription factor-guided

functional specialization of cDC2s and the influence of

environment-derived signals in driving this process. Indeed,

IRF4 controls unresponsiveness to TLR4 stimulation in cDC2s

and, therefore, imprints a low capacity to produce IL-12 in

response to LPS (48, 160–162). Additionally, KLF4 and STAT6

enable cDC2s to respond to IL-13, thus guiding the function of

cDC2s to promote Th2 cell differentiation, most likely by

similarly reducing the cDC2 ability to produce IL-12 in

response to PAMPs, while preserving their CD4+ T cell

stimulatory capacity (53, 163, 164). Overall, the data suggest

that the ability of cDC2 to suppress IL-12 production and the

prevention of naïve CD4+ T cells from receiving IL-12

signaling are decisive for inducing Th2 cell responses.

Furthermore, the data suggest that this can be controlled by the

transcriptional programming of cDC2s and by particular

location of DC-T cell interactions away from the T cell areas of

secondary lymphoid tissues (Figure 1).
Generation of effector Th2 cell
responses in the lung

Experimental mouse models of allergic response to inhaled

allergens have been instrumental in investigating the

mechanisms underlying the initiation and maintenance of

allergen-specific Th2 cell responses. Using these models, it has

been shown that the development of allergic Th2 cell responses

through the intranasal (i.n.) route usually occurs in two steps.

The first step is called “sensitization” and is initiated after the

primary i.n. exposure to an allergen. During the initial

sensitization lung-migratory cDC2s traffic into the lung-draining

lymph nodes to prime allergen-specific CD4+ T cells with a

type 2/Th2-biased cytokine profile (15, 18, 46, 47, 50, 51).

Importantly, however, this initial exposure does not typically
frontiersin.org
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FIGURE 1

Mechanisms that promote and prevent Th2 cell responses to allergens. Promotion of Th2 cell responses: allergens with proteolytic activity, cytokines,
and microbial products, such as LPS, can activate epithelial cells for subsequent release of the cytokines GM-CSF, TSLP, IL-33, and IL-25. This leads to
the activation of ILC2s and the release of IL-13. GM-CSF and IL-13 stimulate the migration and expression of the transcription factors IRF4, KLF4, and
STAT6 in cDC2s, ultimately promoting the functional specialization of the cDC2s to support Th2 cell differentiation by reducing the ability of the
cDC2s to produce IL-12, while retaining their co-stimulatory ability to foster strong IL-2 responses in CD4+ T cells. Strong and sustained IL-2
signaling in the absence of IL-12 promotes Th2 cell lineage commitment by promoting the expression of IL-4Rα and IL-4, allowing for an IL-4-
positive feedback loop that initiates and preserves the Th2 cell phenotype. Prevention of Th2 cell responses: allergens with cysteine protease
activity stimulate GM-CSF release from perivascular Ly6Clo non-classical monocytes, guiding the differentiation of Ly6Chi classical monocytes
into moDCs. GM-CSF licenses an inflammatory signature in moDCs by increasing the expression of TLR4, CD14, and intracellular signaling
members involved in the MyD88/NF-kB/AP-1-dependent pathway. Functional programming of moDCs by GM-CSF allows these cells to increase
their sensitivity to LPS and stimulate the production of the pro-inflammatory cytokine TNFα, which guides cDC2 activation for Th2 cell
suppression rather than promotion. In particular, TNFα induces the expression of the transcription factor T-bet in cDC2s, which is intrinsically
necessary for the ability of cDC2s to produce sustained IL-12 and suppress Th2 cell priming by inducing T-bet and inhibiting GATA3 in CD4+

T cells. cDC2s can also produce IL-6, upregulating SOCS3 in CD4+ T cells and ultimately suppressing IL-2 signaling and early Th2 cell
commitment. cDC1s and moDCs are additional sources of IL-12 that contribute to the suppression of Th2 cell responses.
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result in the accumulation of effector allergen-specific Th2 cells in

the airways (15, 18) and therefore does not necessarily cause

clinical manifestations. Instead, allergen sensitization triggers a

strongly biased Tfh2 cell response that is restricted to the

lung-draining lymph nodes (15, 18, 165). The second step is

characterized by the development of pathology and clinical

features following secondary or subsequent allergen exposures

or “challenges.” This phase is characterized by the accumulation

of effector allergen-specific Th2 cells in the airways and Th2

cytokine production (15, 18).

Tfh2 cells can produce large amounts of Th2 cytokines,

including IL-4 and IL-13, in response to allergens and

helminths (12, 18, 89, 166–170) and, in fact, are the primary

sources of IL-4 and IL-13 during the sensitization phase (12,
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18). IL-4/IL-13-producing Tfh2 cells are critical for the

sustained production of IgG1 and IgE class switching (166,

167, 169) and high-affinity IgE (12). A division of labor

between IL-4-producing Tfh2 and IL-13-producing Tfh2

[also known as Tfh13 (12)] has been proposed, where IL-4-

producing Tfh2 instruct the production of IgG1 and

low-affinity IgE, but IL-13 production drives high-affinity IgE

secretion and anaphylaxis (12). In animal models, IL-

13-producing Tfh2 are not induced after infection by

helminths (12, 170), but they can be generated to

aeroallergens, including HDM and fungal allergens in some

studies (12), but not in others (171). But, besides controlling

B cell isotype switching, Tfh2 cells generated during the

sensitization phase can survive in the lymph nodes as
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memory cells and have the unique ability to give rise to effector

Th2 cells upon allergen rechallenge (18). These data suggest

lineage flexibility of Tfh2 cells in allergic disease and identify

these cells as a crucial reservoir of Th2 cell progenitors. Tfh

cell development depends on the expression of the

transcription factor B cell lymphoma 6 (Bcl6), which

functions as a transcriptional repressor that prevents the

acquisition of T effector programs (172). In contrast, the

generation of effector Th2 cells in the lung requires

expression of the transcription factor B-lymphocyte-induced

maturation protein 1 (Blimp1), encoded by the Prdm1 gene

(173). Bcl6 and Blimp1 are reciprocally antagonistic

transcription factors (174, 175). Thus, the balance between

Blimp1 and Bcl6 expression likely controls the relative

commitment of CD4 T cells to the effector Th2 or Tfh2 cell

pathways. Taken together, the two-step model for the

development of allergic Th2 cell responses predicts that

induced expression of Bcl6 in T cells (favored during

sensitization to inhalant allergens) drives Tfh2 cell

differentiation and central memory. In contrast, induced

expression of Blimp1 during allergen re-exposure promotes

effector Th2 cells that migrate to the lungs (Figure 2).

Consistent with this model, upregulation of Bcl6 expression

upon allergen exposure inhibits effector Th2 cell fate choice

(171), whereas the up-regulation of Blimp1 favors the

differentiation of effector Th2 cells at the expense of Tfh cells

(173). Understanding what signals control Bcl6 and Blimp
FIGURE 2

Steps toward generating effector Th2 cell responses to allergens. During the
in the draining lymph node. Through interactions with B cells, Tfh2 cells
differentiate into effector Th2 cells that subsequently migrate to the lung
depends on the expression of the transcription factor Bcl6, which function
the acquisition of the Th2 effector program. The cytokines IL-2, TSLP, IL-33
of Th2 effectors from tfh2 cells.
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expression in allergen-specific T cells will be essential for

understanding Tfh vs. effector fate choice. Like in other

immune responses (172), the acquisition of Bcl6 by allergen-

specific T cells is initiated by cDC priming but then

maintained by cognate interactions with B cells (15, 18).

Cognate B cells preserve the pool of allergen-specific Tfh2 and

provide a niche for memory development and maintenance

(18). In contrast, the loss of B cell interactions favors the

effector Th2 cell pathway (171). Thus, the crosstalk between T

cells and B cells likely regulates the balance between Tfh and

effector Th2 cell differentiation. On the other hand, Blimp1

expression increases in response to IL-2 acting through

STAT5 (176, 177), which has been shown to be a potent

inhibitory mechanism of Bcl6 and Tfh cell responses

(178, 179); but it enhances the generation of effector Th2 cells

migrating to the lung (171). Similarly, TSLP activates STAT5,

which represses Bcl6 and stimulates effector pathogenic Th2

cell responses (180). IL-10 can also upregulate Blimp1 via

STAT3 (181) and has been shown to promote effector Th2

responses and the development of allergic lung disease by

repressing Bcl6 expression (173). Finally, IL-33 can likewise

promote Blimp1 expression in T cells and exacerbate allergic

airway inflammation (182) (Figure 2). Future studies will

need to determine the factors that control the production of

these cytokines, their source, and their relative contribution to

the effector Th2 and Tfh2 cell pathways. Notably, the

antagonism between Bcl6 and Blimp1 has been shown to
sensitization phase, cDC2s prime allergen-specific Tfh2 cell responses
promote IgE secretion. Following allergen re-exposure, Tfh2 cells
and promote allergic airway inflammation. Tfh2 cell development
s as a transcriptional repressor that prevents Blimp1 expression and
, and IL-10 promote Blimp1 expression and thus drive differentiation

frontiersin.org

https://doi.org/10.3389/falgy.2022.1080153
https://www.frontiersin.org/journals/allergy
https://www.frontiersin.org/


León 10.3389/falgy.2022.1080153
control the balance of Tfh2 vs. effector Th2 pathways during

respiratory but not cutaneous allergen sensitization (173, 183).

Moreover, the nature of the allergen can also affect the

differential development of Tfh2 and effector Th2 cells (166).

Thus, it will also be necessary to address how different

mechanisms govern during sensitization with diverse natural

allergens and different routes.
Mechanisms that suppress Th2 cell
priming by dendritic cells

T-bet is a critical transcription factor for Th1 cell

differentiation. T cells lacking T-bet fail to develop into Th1

cells (85). But, loss of T-bet also results in the activation of

the Th2 cell differentiation program (33, 85, 184, 185).

Moreover, overexpression of T-bet in Th2 cells results in the

loss of the Th2 cell phenotype (85, 185). Thus, T-bet plays a

crucial role in suppressing the Th2 cell-associated program.

GATA Binding Protein 3 (GATA3) is the critical transcription

factor for Th2 cell differentiation (186–190). IL-4-mediated

STAT6 activation is the main inducing signal for GATA3

upregulation and maintenance (188, 191). Mechanistically,

T-bet suppresses the Th2 cell differentiation program by

directly inhibiting GATA3 expression through epigenetic

repression at the Gata3 locus (33, 185) and inhibiting GATA3

function through protein-protein interactions (192).

In vitro and in vivo animal models have essentially

contributed to the understanding of the role of T-bet in

preventing Th2 cell development. However, an important

question is to demonstrate whether T-bet plays a significant

role in actively preventing allergen-specific Th2 cell

development in healthy non-atopic individuals. Recently, the

first patient with autosomal recessive complete T-bet

deficiency has been reported (193–195). This human T-bet

deficiency causes disrupting development of IFNγ-producing

cells (193). But importantly, the patient also developed upper

airway inflammation, peripheral eosinophilia, and increased

production of the Th2 cytokines IL-4, IL-5, and IL-13 due to

Th2 skewing of T-bet-deficient CD4+ T cells (194).

Additionally, a B cell class switching to IgG1, IgG4, and IgE

has been observed in this patient (195), possibly due to the

favored induction of Tfh2 and Th2 cell cytokine production

(194). Thus, T-bet contributes to preventing Th2-biased

differentiation in humans. Interestingly, T-bet protein is

downregulated in T cells from the airways of human patients

with Th2-driven asthma (184). More recent human studies

have further found that activated allergen-specific T cells exist

in both healthy and allergic/asthmatic subjects (196).

However, the polarization profile of the reactive T cells was

different. Allergic/asthmatic had allergen-specific T cells with

a Th2 cell profile, whereas allergen-responsive T cells in

healthy/non-allergic subjects were characterized by a Th1/IFN
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signature (196). Overall, these data suggest that T-bet plays an

essential role in preventing Th2 cell priming and Th2

cell-driven allergic airway disease in humans.

Allergens contain endogenous PRR agonists or can be

contaminated with exogenous environmental PRR ligands.

Several studies have indicated that exposure to allergens with

high content of microbial products, particularly bacterial

endotoxins or LPS, inversely correlates with the development

of allergen-induced, Th2-driven diseases such as allergic

asthma and atopy (22–30). This data suggests that LPS

detection is linked to the suppression of Th2 cell immune

responses to allergens. As a note, among all the pro-

inflammatory PRR ligands that can be found in allergens, it is

not surprising that LPS shows the most robust correlations

due to its extreme potency. But, since TLRs have redundant

functions, various TLR ligands could likely suppress th2

responses through similar mechanisms. Using animal models,

we have demonstrated that sensitization with HDM allergens

containing low amounts of LPS can very efficiently prevent

Th2 cell-driven allergic inflammation, particularly in adult

mice (128). LPS prevents Th2-dependent allergic responses by

enabling IL-12 production by lung-migratory cDC2s.

Consequently, allergen-specific T cells interacting with IL-12-

expressing cDC2s can upregulate T-bet (128), which precludes

the Th2 cell differentiation program and subsequent

pathogenic allergic response to HDM allergens. T-bet can be

redundantly upregulated by IL-12 and IFNγ (33, 197–199).

IFNγ produced by T cells induces T-bet expression, which

serves as a positive feedback loop that allows complete Th1

cell differentiation (198, 200). But during initial priming, it is

widely accepted that IL-12, produced primarily by cDCs,

initiates Th1 cell differentiation by promoting the early

upregulation of T-bet. T-bet then stimulates IFNγ production,

allowing for the positive feedback loop that maximizes Th1

immunity when IL-12 becomes limited (31, 33, 201, 202).

Besides controlling Th1 cell differentiation, T-bet suppresses

the Th2 cell differentiation program to aeroallergens, where

IL-12 produced by cDC2s plays a crucial role in the process

(128). Importantly, sensitization with allergens containing low

amounts of LPS induces moderate levels of T-bet in allergen-

responsive T cells. Although these moderate levels of T-bet

expression are sufficient to inhibit Th2 cell differentiation,

they do not cause substantial IFNγ production or Th1 cell

differentiation (128). Thus, different levels of T-bet expression

may differentially control Th2 cell suppression, Th1 cell

generation, and the acquisition of effector functions (203).

Migratory cDC2s can either promote (18, 46–51, 53) or

suppress (103, 128) Th2 cell responses to allergens, and in

this regard, the activation state of cDC2s is crucial to define

their role. As previously discussed, the transcription factors

IRF4, KLF4, and STAT6 program cDC2s to support Th2 cell

differentiation, most likely by reducing the ability of cDC2s to

produce IL-12 (48, 50, 51, 53, 160–162). We have found,
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otherwise, that the transcription factor T-bet promotes the

functional specialization of cDC2s to suppress Th2 cell

differentiation by promoting the ability of cDC2s to produce

sustained IL-12 after sensitization with allergens containing

low amounts of LPS (103, 128). Therefore, the ability of

cDC2s to promote or prevent Th2 cell responses is highly

dependent on their acquired ability to express T-bet and

produce IL-12 (Figure 1). Although the ability of cDC2s to

produce IL-12 appears to be tightly regulated and correlates

with its functional ability, cDC1s constitutively express high

levels of IL-12 (128, 204, 205). As such, cDC1s are commonly

associated with the Th1-inducing cDC subset (159).

Additionally, cDC1s have been shown to contribute to

ameliorating Th2 cell responses to allergens (206, 207).

However, cDC2s can also produce large amounts of IL-12

when properly stimulated (97, 208–210). Furthermore, IL-12-

producing DC2s are the main contributors to the prevention

of Th2 cell responses upon host detection of low levels of LPS

in aeroallergens (103, 128). As such, cDC2s can normally

prevent Th2 cell differentiation in mice deficient in Basic

leucine zipper ATF-like transcription factor 3 (BATF3) despite

the absence of cDC1s; but they fail to suppress allergic Th2

cell responses when they cannot express T-bet and produce

IL-12 (128). In conclusion, cDC2s can activate either a pro-

or anti-Th2 cell phenotype (Figure 1). Future studies should

determine the full picture by integrating the heterogeneity of

transcriptional programs that underlie functional specification

in cDC2s.

As mentioned, host recognition of LPS and robust induction

of pro-inflammatory cytokine responses are linked to the

suppression of Th2 cell immune responses to allergens. Thus,

in this context, factors that influence or modify LPS

responsiveness have the potential to alter Th2-driven allergen

sensitization. LPS can be detected by multiple cells expressing

TLR4. Predominantly, myeloid cells such as neutrophils,

macrophages, cDCs, and inflammatory monocytes can very

efficiently respond to LPS since they express optimal levels of

TLR4 and the co-receptors CD14 and MD-2. Among myeloid

cells, classical monocytes express the highest levels of these

proteins (211). CD14 binds LPS and transfers the bound LPS

to the TLR4-MD-2 complex (212). This transfer cascade is

essential for the efficient triggering of the TLR4-induced

inflammatory cytokine response involving activation of the

TIRAP-MyD88 and TRAM-TRIF signaling pathways

(141, 213, 214). Non-hematopoietic cells such as vascular

(215), epithelial (216), and adipose cells (217) can also express

TLR4. However, unlike myeloid innate immune cells, these

structural cells express low levels of CD14 and MD-2 and

have been shown to be poorly responsive to LPS under

normal conditions (218–221). Given the diversity of cells that

can respond to LPS, this can lead to highly variable

sensitivities to LPS and qualitatively and quantitatively very

different cytokine responses depending on the cell type(s)
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involved. In this regard, as discussed previously, it has been

shown that LPS-driven TLR4 signaling in stromal cells, most

likely in airway epithelial cells, may favor the initiation of

airway Th2 cell responses to proteins that would otherwise

behave as inert antigens (103, 130–132, 222). Stromal or

epithelial cell-guided LPS responses have a low inflammatory

component; however, they could still stimulate the production

of proallergic cytokines or “alarmins” and the consequent

activation and migration of antigen-containing cDCs (15).

Conversely, LPS-induced TLR4 activation in hematopoietic

cells is needed to suppress Th2 cell sensitization to natural

allergens (103). However, the inhibitory functions of cDC2s

on Th2 cell allergic responses do not require direct

recognition of LPS (103). Instead, this function in cDC2s is

controlled by inflammatory mediators produced by classical

Ly6Chi monocytes that activate the differentiation program

into moDCs (103). Granulocyte-macrophage colony-

stimulating factor (GM-CSF) is critical for moDC

differentiation (103, 223, 224), and GM-CSF-driven functional

programming of moDCs allows these cells to increase their

sensitivity to LPS and their ability to elicit a pro-inflammatory

cytokine response (103, 225–228). In particular, GM-CSF

licenses the inflammatory signature in moDC by increasing

the expression of TLR4, CD14, and intracellular signaling

members involved in the TIRAP-MyD88-dependent pathway

(103, 229). In contrast, the TRIF-TRAM-dependent pathway

appears to be downregulated by GM-CSF signaling in classical

monocytes (103). The TIRAP-MyD88-dependent pathway

induces rapid activation of nuclear factor κB (NF-kB) and

activator protein 1 (AP-1), ultimately leading to the

production of inflammatory cytokines such as tumor necrosis

factor-α (TNFα) (230, 231). The TRIF-TRAM-dependent

pathway is otherwise responsible for mediating type-1 IFN

production and signaling (232, 233). Thus, GM-CSF

preferentially licenses for the production of TNFα and other

pro-inflammatory cytokines in classical Ly6Chi monocytes

while inhibiting their type 1 IFN response. Overall, the

functional programming of moDCs by GM-CSF allows these

cells to increase their sensitivity to LPS and stimulate the

production of pro-inflammatory cytokines that allow indirect

activation of lung-migratory cDC2s for Th2 cell suppression

rather than promotion (Figure 1). Therefore, GM-CSF-driven

moDCs have an essential role as amplifiers and modifiers of

LPS functions in allergic inflammation.

GM-CSF can be produced by multiple cells types, including

hematopoietic (e.g., T cells, macrophages, monocytes, mast

cells) and non-hematopoietic (e.g., vascular endothelial cells,

epithelial cells, and fibroblasts) cells (234). GM-CSF is

produced locally, where it regulates cell function in close

proximity. Homeostatic GM-CSF production is required for

the differentiation of alveolar macrophages (235, 236). But, in

general, GM-CSF production is usually linked to infection,

inflammation, or pathological conditions. As such, a number
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of pro-inflammatory mediators can induce the expression of

GM-CSF (237, 238). Allergens can also induce GM-CSF

production by different cell types (103, 133, 239). Allergens

with cysteine protease activity have a strong capacity to

trigger robust GM-CSF response and promote moDC

differentiation. In particular, cysteine protease activity on

allergens prompts GM-CSF production by perivascular non-

classical Ly6Clo monocytes, thereby guiding the differentiation

of classical Ly6Chi monocyte into moDCs (103). Conversely,

trypsin-like serine protease activity or the presence of

endogenous TLR4 ligands on allergens activate lung epithelial

cells to induce GM-CSF production (133, 240). Importantly,

the production of GM-CSF by these two different cellular

compartments, which release GM-CSF at different locations

and in different amounts, appears to have completely opposite

results in allergen sensitization. Epithelial-derived GM-CSF

has been shown to play a critical role in allergic sensitization,

as this source of GM-CSF promotes the activation and

migration of cDCs from the lung to the lymph node, where

they prime Th2 cell responses (103, 133, 240–243). In

contrast, production of GM-CSF in perivascular areas by non-

classical monocytes regulates the de novo generation of

moDCs from newly-recruited classical monocytes, which

ultimately instigates cDC2s for Th2 cell suppression to

LPS-contaminated allergens (103) (Figure 1). Although

classical Ly6Chi monocytes are critical mediators of

inflammatory responses, non-classical Ly6Clo monocytes have

been widely viewed as anti-inflammatory, as they maintain

vascular homeostasis and promote reparative processes

(244–248). However, non-classical monocytes are also a first

line in the recognition of immunological insults and can

contribute to inflammation (249–254). Future research should

determine whether nonclassical monocytes could control the

inflammatory functions of classical monocytes in settings

other than allergen exposure and cysteine protease-mediated

activation. Overall, the published mechanistic data suggest the

interplay between the GM-CSF response elicited after allergen

exposure by different cellular sources and the amount of

endotoxin/microbial products contained in those inhaled

allergens can oppositely balance the activation of mDC2s and,

in the end, establish whether the stimulated allergen-specific

T cell response will be protective or pathogenic. In view of

this, an altered response to TLR ligands or GM-CSF

conditioned by polymorphisms that affect the function of

these signaling pathways might be associated with altered

susceptibility to allergen sensitization. Many studies have

tested this hypothesis and have found an association between

TLR or GM-CSF polymorphisms and sensitization to airborne

environmental allergens and allergy development. For

example, single nucleotide polymorphisms (SNPs) in CD14,

TLR4, and TLR2 genes have been correlated with the

development of allergy sensitization and symptoms of allergy

in children (255–264). Likewise, variants in the gene for
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GM-CSF have been associated with the development of atopic

diseases in children (265–267). In contrast, other studies have

shown no association between CD14, TLR2, TLR4, or GM-

CSF polymorphisms and allergy (268–272). Thus, although

polymorphism in genes encoding GM-CSF and TLR signaling

members is associated in many cases with allergic phenotypes,

results are variable. In general, stronger associations have been

found in children living in environments that expose them to

high levels or a different diversity of microbial agents,

suggesting that genetic variants on allergy susceptibility

appear to be modified by quantitative factors (levels of

exposure) and qualitative components (the type of microbial

products/TLR ligands present in the environment) (255, 258,

260, 261, 263). Therefore, gene-by-environment interactions

between functional gene polymorphisms and environmental

exposures should be considered together to better understand

susceptibility to allergic sensitization [reviewed in (273)].

Although, as discussed in this section, IL-12 and T-bet play

essential roles in the suppression of Th2 cell differentiation, we

have recently discovered that IL-6 also plays a crucial and T-bet-

independent role in inhibiting the Th2 cell differentiation

program [preprint (274)]. Loss-of-function mutations that

affect IL-6 signaling, including IL6 receptor (IL-6R) (275),

Glycoprotein 130 (GP130) (276, 277), and STAT3 (278–281),

lead to increased Th2 bias and manifestations of allergy (282).

Moreover, the IL6R locus has been associated with allergy

(283, 284). Although these studies with patients suggest a

significant role for IL-6 in controlling Th2 bias, the specific

contribution of IL-6 and the underlying mechanism remain

largely undefined. As discussed, Th2 cell lineage commitment

requires strong and sustained IL-2 signaling (76, 77). Our

data found that IL-6 suppresses IL-2 signaling during early

T cell activation, thereby inhibiting Th2 priming [preprint

(274)]. IL-6-driven inhibition of IL-2 signaling in allergen-

responding T cells is mediated by the upregulation of the

suppressor of cytokine signaling 3 (SOCS3). Thus, the IL-12-

T-bet and IL-6-SOCS3 axes cooperate to inhibit the Th2 cell

differentiation program by inhibiting GATA-3 and IL-2

signaling in allergen-responsive T cells, respectively (Figure 1).
Mechanisms that favor Th2 biased
immune responses at an early age

It is well known that infants and children are at a higher risk

of developing Th2 cell allergic responses than adults. Therefore,

they suffer from a high prevalence of respiratory allergic

diseases (19, 285). Indeed, observational studies have shown

that primary sensitizations to airborne allergens develop

gradually and peak in children one to three years of age (7),

and are associated with the later development of allergic

diseases and asthma, usually before the age of five (5, 6, 8).

Importantly, the incidence of childhood allergic rhinitis and
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asthma has dramatically increased over the past decades in the

U.S. and other industrialized nations (6, 10, 286). As such,

pediatric asthma is considered the leading chronic disease of

childhood. However, the immunological mechanisms

underlying the high susceptibility to allergic airway disease in

infants and children and the sharply increased burden of

allergies and asthma in children in the developed world remain

poorly understood. Urbanization is thought to play a major

role, as allergic lung diseases are becoming more common in

children in urban areas, although the prevalence remains low

in rural areas (287–289). Rural/traditional farming settings are

associated with close contact with livestock and increased

exposure to endotoxin-contaminated aeroallergens in dust

(290). Furthermore, epidemiological studies indicate that early

exposure to endotoxin-contaminated aeroallergens in those

traditional rural/farming settings protects against asthma/

allergic reactions in school-age children, whereas infants

sensitized to common circulating allergens in low-LPS

environments are at increased risk of becoming atopic and

developing symptoms of allergic disease later in life (22–30,

291). As discussed previously, laboratory mechanistic studies

have established that exposure to airborne allergens containing

endotoxin protects against allergic inflammation by preventing

the Th2 cell differentiation program in allergen-specific T cells

(103, 107, 128). These mechanistic studies have further shown

that while low-LPS exposure during allergen sensitization is

sufficient to protect adult mice from developing Th2-driven

allergic inflammation in the lungs, infant mice require higher

doses of LPS (128). These data indicate that LPS prevents

Th2-dependent allergic responses with different thresholds in

adults and infants, thus providing a plausible mechanism

underlying the higher susceptibility to allergic disease and

asthma, particularly observed in children living in urban areas

and exposed to low-LPS contaminated aeroallergens. As

mentioned, mouse studies have further demonstrated that

suppression of Th2-driven immune responses to allergens

depends on the production of pro-inflammatory cytokines by

classical monocytes, particularly TNFα, upon TLR4

engagement (103, 128). However, during infancy, LPS

hyporesponsiveness has been observed. In particular, human

studies have shown that monocytes from newborns and infants

produce significantly fewer pro-inflammatory cytokines, with

markedly impaired TNFα release, after stimulation with low

concentrations of LPS (292–295), which has been associated

with decreased expression of TLR4, CD14, and MyD88 in

neonatal monocytes in some studies (293), but not all (296).

Corresponding with this, we have also observed that classical

monocytes from infant mice produce less TNFα in the lungs

after low-LPS sensitization. Furthermore, we have observed that

impaired production of TNFα at low doses of LPS is

particularly evident in mice during a time window from day 7

to day 20 after birth, after which LPS-driven TNFα production

rapidly reaches adult levels (128). Since TNFα released by
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monocyte-derived cells tunes cDC2 activation to produce IL-12

for subsequent inhibition of Th2 cell sensitization to inhaled

allergens (103, 128), it is easy to infer that the inability of

infant monocytes to respond to LPS and produce optimal

amounts of TNFα is a major cause underlying the increased

risk of developing Th2 responses to allergens during infancy

(Figure 3). However, how age modulates the ability of classical

monocytes to respond to LPS is a topic of further investigation.

GM-CSF is a critical factor controlling the expression of CD14,

TLR4, and TLR signal transduction proteins in monocytes and,

thus, their LPS sensitivity and responsiveness (103). Reduced

GM-CSF production and GM-CSF mRNA expression have

been observed in blood mononuclear cells from human

newborns compared to adults (297–300). Furthermore, studies

in mice have shown that innate myeloid cells in the lung

respond poorly to GM-CSF (301). These studies suggest that

the GM-CSF axis as an amplifier of LPS responses may be

functioning poorly at early ages. The cause of these changes

during early life is unknown. The microbiome plays an

essential role in the maturation of the infant immune response,

and indeed, the establishment and development of the gut,

lung, and skin microbiota in early life occurs in parallel with

the acquisition of immune functions (302–312). Therefore, it is

possible that early infant intestinal, lung, and skin exposure to

commensal bacteria and fungi may modulate the GM-CSF-

TLR4 axis and, thus, LPS responsiveness. Some evidence

detailed below supports this hypothesis. Farming-related

exposures, which, as discussed above, decrease the risk for

allergic outcomes, have been associated with early upregulation

of CD14 and TLR expression in the first year of life (313–316).

These data suggest that although newborns naturally develop

dampened TLR responses, specific environmental exposures

during the first year of life contribute to the upregulation of

innate immune receptors. Early upregulation of TLR and CD14

expression likely leads to an increased ability to generate

inhibitory signals for Th2 cell development and ultimately to

reduced risk of allergic diseases. Many recent studies have

attempted to identify early life exposures associated with

protection against allergies. Children living on farms are

exposed to a wider range of environmental bacteria and fungi.

The greater diversity of environmental microbial exposure is

correlated with protection from allergic airway disease (317). In

addition, consumption of raw farm milk (313, 316, 318, 319)

and dairy products (320–322) have been identified as exposures

that contribute to the protective effect of farm life on

childhood allergies. Furthermore, the diversity of the foods

introduced in the first two years of life has also been associated

with protection from allergic diseases (320, 321, 323). All of

these exposures are suggested to play a pivotal role in the

evolution and establishment of the microbiome from infancy

toward the acquisition of adult-like communities (324–326).

Mouse studies have evaluated how specific changes in the

composition of the gut and lung microbiota with age, diet, or
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FIGURE 3

Mechanisms that favor Th2-biased immune responses at early ages. Infants and young children are at higher risk of developing Th2 cell allergic
responses than adults. The lack of inhibitory signals and the intensification of triggering factors contribute to the increase in Th2-biased
immunity and sensitization to allergens during early childhood. A malfunctioning GM-CSF-moDC axis conditions for LPS hyporesponsiveness
during infancy, hindering the induction of T-bet expression on cDC2s and thus driving deficient IL-12 responses. Early dietary practices and
exposure to environmental microorganism may shape the maturation of the infant microbiome into compositions that enhance the GM-CSF-
moDC axis and protect against sensitization to airborne allergens. On the other hand, a hyperactive IL-33 axis operating in the lung during the
early postnatal period increases IL-13 production by ILC2, which activates the migration and pro-Th2 function of cDC2s. Additionally, exposure
to inhalable particulate pollutants can intensify this tendency.
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exposure to environmental microorganisms are associated with

protection against allergic diseases (310, 312, 325). In

particular, the increase in bacteria from the phylum

Bacteroidetes and their ability to ferment fiber in short-chain

fatty acids (SCFA) have been shown to modulate the cDC2 and

moDC compartments, leading them to a maturation profile

that is ineffective in driving Th2 cell responses (310, 325).

Thus, metabolites produced by the microbiota can influence

the functional specialization of cDC2s and moDCs to prevent

Th2 cell responses to allergens. Interestingly, early-life dietary

practices associated with protection from allergic disease have

also been correlated with the maturation of the gut microbiome

and elevated SCFA levels (325, 327, 328). Overall, dietary and

environmental microbial exposures shape the maturation of the

infant microbiome toward an adult-like structure. The data

indicate that early maturation of the infant microbiome helps

prevent the development of Th2 cell responses, thus protecting

against allergic airway diseases. One of the plausible

mechanisms by which the maturation of the infant gut

microbiota would protect against allergic diseases could be by

promoting the upregulation of innate immune receptors,

including TLR4 and CD14, which would help to acquire
Frontiers in Allergy 12
greater sensitivity and response to microbial products,

particularly to LPS.

In addition to the low ability to counteract Th2 cell

responses, infant environments have been shown to produce

pro-Th2 factors that contribute to the propensity to develop

allergic sensitization during infancy. A hyperactive IL-33 axis

has been shown to operate in the lung during the early

postnatal period, increasing cytokine production by ILC2s,

which in turn activates the migration and pro-Th2 function of

cDC2 (152, 329, 330). This augmented IL-33 activity has been

associated with the postnatal phase of lung alveolarization,

suggesting that normal postnatal lung development can

predispose to Th2 cell immunity. On the other hand,

urbanization is linked to increased exposure to airborne

particle pollution (also called particulate matter or PM).

Recent studies have shown that early-life exposure to PM is

associated, in many cases, with increased susceptibility to

allergic sensitization, airway allergy, and asthma [reviewed in

(331, 332)]. Although the exact mechanism by which PM may

influence the onset of allergic disease is not yet fully

understood, the airway epithelium has been shown to be the

primary site for PM deposition, and it is believed that PM-
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driven activation of airway epithelium is central in the effects

derived from PM exposure (333). The key mechanism by

which PM is thought to exert its effects is the generation of

reactive oxygen species (ROS), which induce antioxidant and

inflammatory responses in exposed epithelial cells (334, 335).

Moreover, PM can affect the integrity of the airway epithelial

barrier (334). Therefore, the increased susceptibility to

develop allergic disease in the presence of PM may arise from

impaired barrier function of the epithelium, leading to

increased permeability of the airway mucosa to allergens, and

increased PM-stimulated release of alarmin cytokines that

promote type-2 immunity to allergens (333). Still, more

studies are needed to identify the exact mechanisms by which

PM may be a risk factor for allergic diseases, particularly

during childhood. Furthermore, the critical age window for

exposure has yet to be established. In conclusion, both the

lack of inhibitory signals and the increase in triggering factors

contribute to augmented type 2 immunity and allergen

sensitization during infancy (Figure 3). The onset of allergic

sensitization coincides with the early establishment and

evolution of the gut, lung, and skin microbiome and the

structural development of the lungs in early childhood.

Additionally, it is influenced by dietary behaviors and

environmental exposures, including biological and chemical

contaminants. How these factors may contribute to the risk of

developing Th2 responses early in life and the underlying

mechanisms remain to be fully explored. Obtaining this

knowledge would help establish interventions and

recommendations that seek to prevent sensitization to

airborne allergens in the first years of life.

Finally, it is important to note that although exposure to

highly LPS-contaminated inhalant allergens protects from the

development of allergic Th2 cell responses during infancy and

childhood, high endotoxin exposure can be a respiratory

hazard in adulthood (336). The airway response in adults

exposed to dust containing high levels of LPS is generally

characterized by increased production of the pro-

inflammatory cytokines IL-1, IL-6, and TFNα, the

development of Th1 and Th17 responses, and infiltration of

neutrophils (337–343). Overall, although hyporesponsiveness

to LPS during infancy makes high LPS exposure necessary to

prevent Th2 allergic responses, increased sensitivity to LPS

with age implies that same high exposure to LPS may be

detrimental by inducing an excessive pro-inflammatory

response. Thus, hygienic perspectives should be different in

childhood and adulthood and according to the degree of

sensitivity to endotoxin.
Concluding remarks

The early window of life is particularly predisposed to

developing Th2 cell responses after initial contact with
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aeroallergens. This appears to be due to an imbalance

between signals that counteract and promote Th2 cell

development. cDCs elicit Th2 cell responses after a complex

interaction with epithelial cells, monocytes, ILC2, and

probably other immune cells that occur in the context of

exposure to allergens harboring protease activity and PRR

ligands. Additionally, it is now recognized that the succession

of microbiota in early life and the exposure to chemical and

biological contaminants make essential contributions to the

infant response to allergens by altering intercellular

communications. In the future, it will be crucial to

understand how the infant microenvironment controls the

specific signals delivered upon encountering an allergen and

how these are influenced by diet and different environmental

exposures, ultimately allowing us to understand better how all

these signals shape the functionality of the cDCs and the

specific T cell responses elicited.
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