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Biologics as novel therapeutics
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Over the last 4 decades there has been a significant global increase in the
incidence and prevalence of IgE-mediated allergy. Although much progress
has been made in the management of allergy via patient education,
pharmacotherapy and immunomodulatory treatment regimens, significant
unmet need remains. Advancements in our knowledge base surrounding the
type 2 immune response, production of IgE and maintenance of
immunological memory has led the field to explore targeted intervention of
allergic pathways using monoclonal antibodies (mAbs). Intervention at
various stages of the allergic cascade offers the opportunity to prevent
initiation and/or maintenance of the type 2 immune response and effectively
provide therapeutic benefit to patients. Furthermore, a better understanding
of the protective mechanisms involved in allergen specific immunotherapy
(AIT) has led us to appreciate the interplay of immunoglobulins in the allergic
response, specifically the benefit in shifting the IgG:IgE ratio in favor of
functionally relevant blocking IgG. Thus, treatments that lower IgE or boost
IgG with the ability to outcompete IgE binding to allergen also present a
favorable approach in the treatment of allergy. In this short review we
discuss and highlight recent advances in the use of biologics to treat severe
allergy, highlighting the key challenges but also the significant opportunities
and advances to date.
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Introduction

Over the last 4 decades there has been a significant increase in the incidence and

prevalence of allergy across the globe creating a significant burden on patients,

healthcare providers and society. It was recently estimated that allergic rhinitis (AR)

alone affects 10%–30% of the population worldwide, with rates as high as 50% in

some countries (1, 2). Although first described in ancient Greece by Hippocrates (3)

our modern understanding of allergy began in the late 18th and early 19th century.

Seminal work by Prausnitz and Kustner in 1921 showed that transfer of a blood

borne protein, later discovered to be immunoglobulin E (IgE) (4, 5) from a fish

allergic individual to the skin of a non-allergic subject resulted in a hypersensitivity

response upon exposure to fish extract at the site of transfer (6). Due to observations

such as this and the discovery of cell types like mast cells and basophils (7) we now
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have built a good, but not complete, understanding of the key

mechanisms, cellular players and inflammatory mediators that

promote the allergic response.

The type 2 immune response plays a role in barrier

immunity on mucosal surfaces and provides protection

against large extracellular parasites. Type 2 immunity involves

cooperation of the innate and adaptive immune system and is

driven by a complex cytokine network. The response is

characterized by production of epithelial cell-derived cytokines

interleukin (IL)-25, thymic stromal lymphopoietin (TSLP),

and IL-33 that are released at sites of initial allergen exposure

as well as downstream production of IL-4, IL-13, IL-5 and IL-

9. Subsequent differentiation of CD4+ T helper type 2 cells

(Th2) results in recruitment of inflammatory effector cells

(e.g., eosinophils, mast cell and basophils), goblet cell

hyperplasia, mucus secretion and antibody class switch in

favor of IgE production (8, 9). Acute hypersensitivity is an

allergic reaction caused by allergen-induced crosslinking of

IgE molecules bound to Fc-epsilon receptors (FcεR) on the

surface of mast cells and basophils. In a process termed

“sensitization,” specific IgE is produced in response to allergen

and binds FcεRI on the surface of allergic effector cells. In a

sensitized individual, subsequent exposure to the offending

allergen may result in allergen binding to IgE and crosslinking

of the IgE:FcεRI complex, triggering degranulation and release

of inflammatory mediators. This so-called early phase

response occurs immediately after exposure and correlates

with symptoms ranging from mild congestion, sneezing, and

itching to more severe systemic reactions including urticaria,

bronchoconstriction and potentially life-threatening

anaphylaxis. Allergen uptake by antigen presenting cells

further promotes activation of allergen-specific T cells and

continued production of IgE. Together with infiltration of the

mucosa by eosinophils, neutrophils, basophils and T cells,

these events comprise the late phase response collectively

resulting in sustained inflammation (10, 11).

Although progress has been made in the management of

allergy via pharmacotherapeutics targeting symptom control

(2), and the use of immunotherapy to potentially tolerize

individuals to allergens (12, 13), significant unmet need

remains. In this short review we discuss recent advances in

the use of monoclonal antibody-based therapies to treat severe

allergy (summarized in Table 1), and highlight the key

challenges as well as significant opportunities.
Allergen specific immunotherapy

AIT is a treatment option for type 1 hypersensitivity when

first-line pharmacotherapies prove insufficient. AIT involves

administration of increasing doses of allergen over months to

years with the goal of inducing tolerance. Efficacy has been

established for aeroallergens, bee venom and most recently,
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peanut allergy (35, 36). While AIT has the potential to be

disease modifying, the use of heterogeneous allergen mixtures

can lead to variable results and high rates of reactions ranging

from mild to severe and life-threatening anaphylaxis. Mild side

effects include rhinitis or <20% reduction in peak expiratory

flow (PEF) with reactions such as urticaria, angio-oedema or

>20% reduction in PEF classified as severe. Although rare,

anaphylactic shock is also reported and risk factors for any

such adverse events are largely unknown (37). Furthermore,

treatment length may require 3–5 years to achieve clinical

benefit but poor patient compliance and often waning

responses following completion of therapy means the benefits

are variable and limiting. Collectively there is great interest in

developing approaches that decrease risk, reduce treatment

length, and sustain desensitization (promote tolerization). The

use of biologics that mimic protective mechanisms of AIT or

target major drivers of the allergic response administered alone

or in conjunction with AIT presents such opportunity for safer

and more effective approaches.

Multiple hypotheses exist to explain the protective

mechanisms of AIT, as it is thought to modify both the cellular

(reduced Th2 phenotype and induction of T-regulatory cells)

and humoral response (12). In a series of classical experiments,

a “transferable protecting substance” later referred to as

“blocking IgG” was identified in the serum of patients

undergoing AIT (38–40). Further studies confirmed induction

of allergen-specific IgG and IgA antibody titers after AIT

initiation (41–43), but revealed this quantitative measurement

alone is not a good surrogate of clinical efficacy. Rather

functional blocking activity of these antibodies, namely their

ability to compete with IgE for allergen binding, was shown to

correlate with clinical symptoms (44, 45). Such data supports

the notion that just a few, high-quality, functionally important

anti-allergen antibodies can be effective in allergic disease and

the diverse antibody response that occurs in most patients

likely explains the unpredictable and variable clinical response

seen with AIT. Overall, these observations laid the framework

for the concept that identifying potent allergen specific

blocking antibodies could provide protection from allergen

induced hypersensitivity reactions (46, 47).
Passive administration of allergen
blocking IgG

Passive immunotherapy with antibodies against antigens is a

treatment approach that has long been utilized in various settings.

Its utility has extended to targeted treatment and prevention of

viral infection using purified monoclonal antibodies (mAbs)

with the advent of Palivizumab, a single mAb treatment for

respiratory syncytial virus (48) and, more recently the use of

mAb cocktails in the fight against deadly viral outbreaks of

Ebola and SARS-CoV-2 (49–52). Although a well-established
frontiersin.org

https://doi.org/10.3389/falgy.2022.1019255
https://www.frontiersin.org/journals/allergy
https://www.frontiersin.org/


TABLE 1 Biologics evaluated for the treatment of allergy.

Class of
Therapy

Target Therapeutic Primary Mode of Action Associated Studies

Allergen Specific
Monoclonal
IgG

Fel d 1 (major
cat allergen)

REGN1908-1909 Binds allergen to prevent allergen engagement
with IgE bound to FcR1 or CD23 thus
inhibiting allergic effector cell activation and
facilitated allergen presentation

Phase I: Single dose prevented acute allergic symptoms
following NAC and reduced cat allergen SPT
response (14–16)

Phase II: Single dose prevented cat allergen induced
reduction in FEV1 in cat allergic patients with mild
asthma at d8 and up to d85 days after dose (17)

Phase III: Field study ongoing in cat allergic
participants (NCT04981717)

Bet v 1 (major
birch
allergen)

REGN5713-5714-5715 Phase I: Single dose prevented acute allergic symptoms
following NAC and reduced birch and alder SPT
response; suppression of basophil responsiveness to
birch, alder, hazel and apple also reported (18)

Phase II/III: Studies ongoing in birch allergic
participants (NCT05430919, NCT04709575)

Type 2 Cytokines IL4Ra Dupilumab Binds to the IL4Ra receptor and inhibits signaling
of both IL-4 and IL-13

Post-hoc and observational studies report reduction in
AR-associated nasal and ocular symptoms in
patients treated with dupilumab for atopic
dermatitis and/or asthma (19–22)

Phase II: Addition of dupilumab to 16 weeks of TG
SCIT improved tolerability of SCIT up-titration but
did not reduce acute allergic symptoms following
NAC as compared to SCIT alone (23, 24)

Phase II: Monotherapy study and adjunct to peanut
OIT study in peanut allergic participants ongoing
(NCT03793608, NCT03682770)

Epithelial Derived
Cytokines

TSLP Tezepelumab Binds TSLP preventing receptor interaction and
signaling

Phase I/II: Addition of tezepelumab to 52 weeks of cat
SCIT decreased allergic symptoms following NAC as
compared to cat SCITaloneduring treatment; effect not
sustained one year after completion of therapy (25)

IL-33 Etokimab Binds IL-33 preventing receptor interaction and
signaling

Phase II: Single dose increased the tolerated threshold
allergen amount in comparison to placebo in peanut
allergic adults at d15 and d45 (26)

Anti-IgE IgE Omalizumab Binds to the Fc region of IgE to prevent/disrupt
IgE engagement with FcR1 and CD23

Post-hoc and observational studies report reduction in
AR-associated nasal and ocular symptoms and food
allergic symptoms in patients treated with
omalizumab for allergic asthma (27–29)

Phase I/II: Addition of omalizumab to SCIT for
various aeroallergens reduced AR and asthma
symptoms as compared to SCIT alone (30, 31)

Phase I/II: Addition of omalizumab to OIT for peanut
or multi-food allergy facilitated desensitization and
improved efficacy and safety as compared to OIT
alone (31–33)

Phase III: Omalizumab as a monotherapy and as
adjunct therapy to multi-allergen OIT in food
allergic participants (NCT03881696)

IgE Ligelizumab Binds to the Fc region of IgE to prevent/disrupt
IgE engagement with FcR1 and CD23

Phase III: Efficacy of ligelizumab monotherapy in peanut
allergic participants ongoing (NCT04984876)

Membrane IgE Quilizumab Binds to the extracellular membrane-proximal
domain of IgE bound to B cells to induce
apoptosis; promotes ADCC via interaction with
FcRa on NK cells

Phase I/II: Quilizumab for the treatment of AR or
allergic asthma demonstrated reduced total and
allergen specific IgE but only modest improvement
in allergen-induced asthmatic airway response that
did not repeat in additional studies (34)

FEV1, forced expiratory volume in one second; ADCC, antibody dependent cell-mediated cytotoxicity; NK, natural killer.
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approach, passive administration of allergen-specific mAbs

presents a novel application of passive immunotherapy with

the potential to provide a rapid and reliable treatment option

for specific allergy (Figure 1A).
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The concept of passive administration of allergen specific

blocking mAbs for the treatment of allergy was first validated

in a small proof of mechanism study in cat allergic individuals

and extended to a study in birch allergic individuals shortly
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FIGURE 1

Targeted interventions for the treatment of IgE-mediated allergy (A). Passive administration of blocking IgG that binds allergen and inhibits allergen:
IgE engagement on the surface of allergic effector cells prevents initiation of the allergic response and facilitated allergen presentation (B). Blockade
of the epithelial-derived cytokines, TSLP and IL-33 and type 2 cytokines IL-4 and IL-13, present opportunities to inhibit initiation and maintenance of
the allergic response (C). Directly targeting IgE and IgE-producing cells lowers the levels of IgE in circulation and decreases expression of FcεR1, the
high affinity IgE receptor, on allergic effector cells thus blunting the allergic response (Made with Biorender.com); DC, dendritic cell; NK, natural killer;
ADCC, antibody dependent cell-mediated cytotoxicity.
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thereafter (14, 18). Specifically, REGN1908-1909, a mAb cocktail

targeting two non-overlapping epitopes on the major cat allergen,

Fel d 1, and REGN5713-5714-5715, consisting of three mAbs

targeting distinct epitopes of Bet v 1, the major birch allergen,

were developed using the Velocimmune antibody platform (14,

53–55). Antibodies were selected based on binding affinity and

IgE blocking potency in a series of preclinical assays. In each

clinical study, a single subcutaneous administration of the

allergen specific neutralizing antibody cocktails prevented acute

allergic symptoms following nasal allergen challenge (NAC) as

measured by a significant reduction in total nasal symptom score

(TNSS) relative to baseline as compared to placebo control.

Furthermore, significant reductions in allergen-specific skin prick

test (SPT) were observed which is consistent with the proposed

mechanism of action of the approach: antibody-allergen

engagement to prevent interaction with allergen specific IgE on

the surface of effector cells. In addition, allergen neutralizing

capacity was observed in the peripheral blood (18) as well as the

local target organ (nasal fluid) (15). The cocktail of Fel d 1 mAbs

further demonstrated a rapid and durable reduction in cat

allergen induced bronchoconstriction in cat allergic patients with

mild asthma, preventing early asthma reactions (defined as

a≥20% decline in forced expiratory volume over one second) as

early as one week after treatment and up to three months, in

addition to improved lung function and increased amount of cat

allergen that patients could tolerate (17). Given these promising

early results, the Fel d 1 mAb cocktail and the Bet v 1 mAb

cocktail are currently being investigated in larger phase III studies

(NCT04981717, NCT04709575).

Notably, vaccines for the treatment of allergy also rely largely

on the induction of blocking IgG, as do emerging AIT approaches

aiming to achieve protective effects whilst limiting the risk of IgE-

mediated side effects through the use of allergen components or

allergoids modified to reduce allergenicity yet maintain an

ability to mount humoral responses towards functional blocking

IgG (56–60). Although passive administration of anti-allergen

blocking antibodies is not expected to result in immunological

memory as AIT or vaccinology have been reported to achieve, it

presents an efficient approach to obtaining high titers of quality

allergen-specific blocking IgG with rapid onset of action. It

further avoids the need for repeated administrations of allergen

or allergen derivatives that can induce unwanted allergic

symptoms, thus broadening the potential patient population to

include asthmatics contraindicated to receive AIT and is not

reliant on the patient’s immune system to achieve high antibody

titers of functional blocking IgG.

Fundamental to this is approach is a robust understanding of

the structural basis of allergens and allergen antibody

interactions. Multiple epitopes of an allergen likely need to be

blocked to achieve robust inhibition of allergic effector cell

activation. Although it has been shown that maximal coverage

of an allergen is not necessary to achieve blockade of the IgE

mediated response (14, 55) defined, immunodominant allergens
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with a finite number of epitopes are favorable as more complex

allergen components/epitopes may prove difficult to target.

Polyallergy is an additional challenge to overcome, as

individuals with a single allergy are rare. However, it is not

unreasonable to speculate that targeting a patient’s major driver

of allergy may lower their overall allergic threshold, thereby

providing symptomatic relief (61, 62). Finally, although PK/PD

studies demonstrate that efficacious mean target concentrations

of anti-allergen mAbs are maintained for 8–12 weeks

suggesting potential for infrequent dosing (16), treatment

regimen and length for this approach remains to be determined.
Targeting type 2 cytokines

Other approaches target cytokines involved in the

development and/or maintenance of allergy. Of particular

interest are type 2 cytokines, such as IL-4, IL-13 and IL-5 and

the epithelial cell-derived cytokines IL-25, TSLP, and IL-33

that are released at sites of initial allergen exposure (Figure 1B).

The cytokines IL-4 and IL-13 play prominent roles in both

the induction and effector phases of the type 2 immune

response driving Th2 polarization, eosinophil and T-cell

trafficking to tissue, activation of B cells and induction of B

cell class switching to IgE, all of which are fundamental

features of allergic disease (8, 63). Dupilumab, a fully human

monoclonal antibody that binds to IL-4 receptor alpha (IL-

4Rα) inhibits signaling of both IL-4 and IL-13 and is approved

for the treatment of atopic dermatitis, asthma, chronic sinusitis

with nasal polyps and eosinophilic esophagitis (64). Across

multiple atopic diseases, dupilumab has been shown to

suppress type 2 inflammatory biomarkers, including total and

allergen specific IgE (19), and reduce AR symptoms in

patients with perennial AR and comorbid asthma or AD (20–

22). To this end, dupilumab was evaluated in a 16-week

treatment course as a monotherapy or as an adjunct to

subcutaneous immunotherapy (SCIT) for the treatment of

timothy grass (TG) pollen allergy. While dupilumab plus TG

SCIT did not reduce TNSS following TG NAC compared with

SCIT alone, the combination did improve tolerability of SCIT

up-titration as evidenced by fewer treatment discontinuations

due to adverse events, reduced need for epinephrine as rescue

medication and a higher proportion of patients achieving the

target SCIT maintenance dose compared to SCIT alone (23,

24). Biomarker evaluation revealed that dupilumab in

combination with SCIT significantly reduced sIgE levels and

increased the log sIgG4/sIgE and sIgG/sIgE ratios compared

with SCIT alone presenting a possible mechanism by which

dupilumab may improve the tolerability of SCIT. These key

exploratory and biomarker findings suggest further study may

be warranted. It is possible that a longer treatment course may

better address the utility of IL-4/IL-13 blockade in this setting,

as the reduction in total IgE is believed to be gradual post
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dupilumab treatment, with 70%–75% reduction achieved at

52 weeks (19). It is also possible that evaluation of efficacy

using an AR-induced NAC model, which primarily evokes

early allergic responses in sensitized individuals, further limits

the findings. Perhaps evaluating the approach over a pollen

season as done in previous studies reporting positive outcomes

of dupilumab in AR (20–22) may better address its utility

for allergy.

Tezepelumab, a TSLP neutralizing monoclonal antibody

approved for the treatment of asthma, was tested in a similar

setting with a focus on tolerance induction as an add on to

cat immunotherapy. In this randomized, double blind, placebo

controlled 4 arm study (cat-SCIT alone, cat-SCIT with

tezepelumab, tezepelumab alone or placebo), patients received

52 weeks of treatment followed by 52 weeks of observation off

therapy. As tolerance induction was the goal, the primary

endpoint of the study was defined as a significant reduction

in TNSS in response to NAC in the cat-SCIT with

tezepelumab group as compared to cat-SCIT alone at week

104 following completion of 52 weeks on therapy and

52 weeks with no treatment. Although those who received cat

SCIT with tezepelumab did achieve a significant reduction in

TNSS in response to NAC as compared to cat SCIT alone

during treatment (week 25 and 52), the effect was not

sustained following completion of therapy (week 104) and

thus the study did not meet its primary endpoint (25).

The epithelial cytokine IL-33 is another emerging

therapeutic target for allergic disease. In an exploratory Ph2a

clinical trial for peanut allergy, treatment with a single dose of

etokimab, a humanized monoclonal antibody specific for

IL-33, increased the tolerated threshold allergen dose (73% at

day 15% and 57% at day 45) in comparison to placebo (0% at

day 15 and 45). Reported differences in select biomarkers

further suggest etokimab may interfere with downstream

allergic pathways (IgE production, T cell activation) (26).

While promising, the small sample size (n = 15 active, n = 5

placebo), short study duration, high dropout rate and an

imbalance in baseline characteristics warrants a more

comprehensive interrogation to determine a role for IL-33 in

food allergy. Itepekimab is an additional fully human IL-33

neutralizing monoclonal antibody under clinical development.

Although not yet evaluated for the treatment of allergy, it was

shown to affect a lower incidence of loss of asthma control vs.

placebo and improved lung function in a ph2 study for

moderate to severe asthma (65, 66) as well as potential benefit

for COPD (67) patients with ph3 studies ongoing.

We have more to learn about the role of type 2 and epithelial

cytokines as the drivers of established disease especially in the

context of AIT. These studies have only begun to scratch the

surface of our understanding with several additional clinical

trials actively ongoing, evaluating various treatment regimens as

well as interventions at the point of prevention in high-risk

individuals (AD patients/genetic risk factors).
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Anti-IgE therapy

IgE is the immunoglobulin subclass that plays the central

role in acute allergic hypersensitivity therefore presenting as

an overt target for the treatment of allergy (Figure 1C).

Omalizumab is a first in class humanized monoclonal

antibody specific for IgE, approved for the treatment of

allergic asthma in 2003 and subsequently for the treatment of

chronic spontaneous urticaria (CSU) and nasal polyps.

Omalizumab binds to the Fc-domain of IgE and prevents IgE

binding to the high affinity IgE receptor, FcεRI, as well as the

low affinity IgE receptor FcεRII (CD23) (68). Free IgE levels

drop rapidly within 1hr of a patient being dosed with

omalizumab, with up to 99% reduction observed thus

reducing the availability of free IgE to bind FcεRI. Expression

of FcεR1 is also decreased on the surface of basophils, mast

cells and dendritic cells which combined with the drop in free

IgE results in decreased allergic effector cell activation and

sensitivity (69). Early trials demonstrated that omalizumab

could significantly reduce nasal and ocular symptoms of

seasonal AR, prevent the need for rescue medications such as

antihistamines (27) and reduce food allergic symptoms in

patients with allergic asthma (28). Similarly, omalizumab also

reduced asthma symptoms in cat allergen sensitized subjects

(29). Whilst these studies were positive, the level of clinical

benefit was overall modest. Although capable of reducing free

IgE in circulation, omalizumab’s ability to displace pre-bound

cell surface IgE on mast cells is limited due to the slow

dissociation rate and higher affinity interaction of IgE and

FcεRI (70, 71) than omalizumab for the Fc domain of IgE.

Interestingly new molecules are currently being developed to

better displace IgE from its receptors (72–74) but it is not

clear whether these will be taken forward in allergy or the

more traditional route of severe asthma.

More recently, studies have focused on using omalizumab in

combination with immunotherapy to enhance efficacy and

safety of such tolerizing approaches. AIT in combination with

omalizumab for the treatment of AR was first evaluated in

2002 in a randomized double blind placebo controlled

(DBPC) study of 221 children with birch and/or grass pollen

allergy. Omalizumab in combination with SCIT reduced

symptoms by 48% over 2 pollen seasons when compared with

SCIT alone (30). Additional observations in the omalizumab

+ SCIT group included reduced symptom severity, reduced

need for rescue medication and fewer days with allergy

symptoms as compared to SCIT alone. The combination

effect in this study was irrespective of allergen; birch or grass,

highlighting omalizumab as an antigen independent approach

with potential to broadly benefit subjects with polyallergy.

Additional clinical trials and case studies have explored

aeroallergen AIT in various settings such as pretreatment to

AIT followed by rush updosing, as well as in high-risk

asthmatic populations contraindicated to undergo AIT (31).
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Results from these studies are largely positive however

omalizumab is yet to seek approval for such indications.

Clinical trials evaluating Omalizumab as an add on to oral

immunotherapy (OIT) for food allergy have also been

conducted with a primary focus on milk, peanut and more

recently multifood OIT (31). Early studies in individuals with

milk allergy demonstrated improved tolerability during rapid

dose escalation OIT with the addition of omalizumab;

however final effectiveness as determined by oral food

challenge (OFC) was not significantly different between OIT

and OIT + omalizumab treatment groups (32). The first

DBPC randomized study investigating the efficacy of

omalizumab in conjunction with peanut OIT showed that

omalizumab facilitated oral desensitization in peanut allergic

subjects (33). In this study, omalizumab was dosed 12 weeks

before initiating rapid oral desensitization. At the start of the

rapid desensitization protocol, 23/27 subjects in the

omalizumab pre-treatment group completed 250 mg of

desensitization in contrast to the placebo group where only 1/

8 tolerated that amount. Likewise, 21 of those omalizumab

treated subjects were able to tolerate a weekly increase of

peanut up to 2000 mg over 20 weeks, with only a single

subject in placebo achieving this level of desensitization. Upon

withdrawal of omalizumab 75% of subjects in the treatment

population could tolerate 2000 mg of peanut 6 weeks after the

last dose, whereas only 12.5% of placebo subjects could.

Despite promising efficacy, it’s worth noting that OIT

associated side effects were still reported in such studies,

namely development of eosinophilic esophagitis, suggesting

that strategies targeting IgE may not fully shut down the

allergic response. Nonetheless, Phase III clinical trials are

underway to further evaluate the utility of omalizumab as an

adjunct therapy to OIT as well as to revisit efficacy as a

monotherapy in food allergy.

The next generation anti-IgE molecule, ligelizumab, a

humanized monoclonal IgG1 mAb recognizing an IgE-epitope

distinct from that of omalizumab, is also in clinical

development for the treatment of allergic disease (Figure 1C).

Ligelizumab also binds the Fc portion of IgE but shares

significantly more overlap with the binding epitope of FcεR1

on IgE than omalizumab, suggestive of a potential therapeutic

advantage in FcεRI-driven allergic disease. An additional

distinction is ligelizumab is less potent at interrupting IgE:

FcεRIIb (CD23) interactions than omalizumab (34, 75). Of

note, ligelizumab initially showed significantly better symptom

control over omalizumab in a phase2b clinical study for CSU

however these results were not replicated in a larger Phase 3

setting. In addition, while omalizumab is approved for the

treatment of asthma, ligelizumab did not significantly improve

asthma control or exacerbation rates compared to

omalizumab or placebo (76). Together findings from these

two studies suggest that these mechanistic/binding differences

are important in different disease settings. Ligelizumab is
Frontiers in Allergy 07
currently under evaluation in a Ph3 multicenter study as a

monotherapy for peanut allergy. Although presenting a

similar protective mechanism as omalizumab it is of interest

to know if ligelizumab will provide benefit.
Targeting the source of serological
memory

While anti-IgE therapy shows promise as a potential

treatment option for patients with severe food allergies,

identifying and targeting the source of IgE also offers

promise. Clinical observations support the concept that such a

source exists that maintains levels of circulating allergen

specific IgE. For example, allergy can be transferred during a

bone marrow transplant and persists long term (77, 78). It is

also known that serum IgE is maintained in atopic patients in

the absence of allergen (79). Lastly, serum IgE is reduced, but

not abolished in patients treated with the above-mentioned

approaches that target IgE class switching or IgE switched

cells (80). For example, quilizumab, a monoclonal antibody

that targets membrane IgE and depletes IgE switched cells

(Figure 1C) has shown only a modest percent reduction in

serum IgE (81). Likewise, dupilumab, a monoclonal antibody

that binds to IL-4Rα, inhibits IL-4 and IL-13 signalling and

inhibits class switching to IgE shows approximately a 70

percent reduction in IgE after one year (19). These findings

further support the notion that the source of IgE is not

impacted by these approaches. A recent study demonstrated

that IgE bone marrow plasma cells can maintain IgE

serological memory, are long lived, and are driven from

sequential class switching of IgG1 B-cells (82). This finding

provides evidence that there are two sources of memory with

respect to IgE: a cellular source, the IgG1 memory B-cell and

a serological source, the IgE + PC and ultimately suggests that

interventions to completely wipe out IgE from circulation

could require a two-pronged approach.
Conclusion

Targeted intervention in the prevention, initiation, or

maintenance of the type 2 immune response holds the

potential to effectively provide therapeutic benefit to patients.

Understanding the interplay of immunoglobulins in the

allergic response and effectively shifting the IgG:IgE ratio in

favor of functionally relevant blocking IgG with the ability to

outcompete IgE binding to allergen presents one favorable

approach to provide protection. To treat allergy more broadly,

directly targeting IgE or allergic pathways and cytokines

involved in its production and maintenance offers promise.

Overall, these studies highlight key mechanistic similarities
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and differences driving the allergic response and collectively

emphasize the need for more studies in this space.
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