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Durumwheat, a staple crop in Italy, faces substantial challenges due to increasing

droughts and rising temperatures. This study examines the grain yield, agronomic

traits, and quality of 41 durum wheat varieties over ten growing seasons in

Southern Italy, utilizing a randomized complete block design. Notably, most

varieties were not repeated between trials and 45% of the data was missing. The

results indicate that the interaction between genotype and environment (GEI)

significantly impacted all traits. High temperatures, elevated vapor pressure

deficit (VPD), and water deficits severely affected yield and quality during warm

years, while cooler years with favorable water availability promoted better growth

and higher yields. Broad-sense heritability (H²) was generally low, suggesting that

environmental factors played a major role in the observed traits. However, some

traits, such as grain yield, ears per square meter, plant height, bleached wheat,

thousand-grain weight, and hectoliter weight exhibited moderate to high

heritability of the mean genotype (h²mg), indicating their potential for effective

selection in breeding programs. Correlation analyses revealed strong

connections between certain traits, such as protein content, and gluten index

as well as between grain yield, and spike per square meter. Using the Multi-Trait

Mean Performance Selection (MTMPS) index, the study identified six top-

performing varieties. Among these, Antalis (G4) and Core (G18) consistently

demonstrated strong adaptability and stability across different environments,

particularly in hotter, drier conditions. Furio Camillo (G31) also exhibited valuable

traits. This study highlights the challenges and complexities of breeding durum

wheat for improved yield and quality in the face of climate change.
KEYWORDS

durum wheat, genotype by environment interaction, mixed model, MTMPS,
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1 Introduction
Durum wheat (Triticum turgidum L.subsp. durum (Desf.)

Husn.) is one of the most vital cereal crops globally, serving as a

staple food that provides essential nutrients to a significant portion

of the world’s population. In the 2022/23 season, global durum

wheat production was projected to rise by 10% to 33.9 million

metric tons (MMT), driven by significant contributions from North

American countries such as the United States, Canada, and Mexico

(Euronext, 2023). However, this increase was not uniform across all

regions. While North America experienced favorable production

levels, Europe – especially Spain and France – and North Africa

faced declines due to adverse weather conditions, with the European

Union’s production forecasted to drop to historically low levels

(Euronext, 2023). Italy, the largest producer of durum wheat in

Europe, has averaged around 4.26 million tons annually over the

past decade. Despite this strong production history, Italy’s durum

wheat output was estimated to decrease by 8% to 3.5 MMT in 2023/

24 due to severe drought conditions (Italianfood, 2024). This

shortfall has necessitated increased imports, particularly from the

United States, to meet domestic demand. Durum wheat holds a

prominent place in Italian agriculture due to its economic

importance and cultural value. It is a key ingredient in traditional

Italian cuisine, particularly as the exclusive raw material for pasta

production – a main component of the Mediterranean diet, which

has gained increasing global appreciation (Viggiani, 2009; Bux et al.,

2022). The growing consumption of pasta has transformed it into a

significant export product and a major symbol of the “Made in

Italy” brand (Nicola and Scaccia, 2021; Boncinelli et al., 2023).

The Mediterranean climate of Southern Italy, characterized by

hot, dry summers and mild, wet winters, is conducive to durum

wheat cultivation. However, this climate is also highly variable, with

recent trends indicating rising temperatures and shifting

precipitation patterns, posing challenges to wheat yields and

quality (Tataw et al., 2016; Carucci et al., 2023; Bonfil et al., 2023).

Climate change has various effects on wheat plant breeding by

inducing heat stress, drought, and elevated CO2 levels. These factors

lead to reduced grain quality, altered phenology, and decreased

yield potential. Heat stress during the reproductive phase causes

morphophysiological alterations, biochemical disruptions, and a

reduction in the genetic potential of wheat (Kumar et al., 2017;

Bishwas et al., 2021; Farhad et al., 2023). Moreover, drought and

heat stress increase phytate contents, limiting essential mineral

bioavailability, while elevated CO2 concentrations and other

climatic events alter grain quality components and composition

(Zahra et al., 2022). Rising temperatures and increased aridity also

affect wheat phenological development by shortening the life cycle

and impacting gluten accumulation, ultimately influencing grain

quality (Elahi et al., 2022).

It is crucial to develop heat-tolerant wheat varieties and

improve crop management practices to mitigate these adverse

effects (Khalid et al., 2022). Achieving this requires a

comprehensive understanding of GEI and the application of

advanced breeding techniques that incorporate climate resilience

traits. Scholars such as Mehmet et al. (2011); Karaman et al. (2023)
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and Ninou et al. (2024) have documented significant GEI for grain

yield in wheat, highlighting the importance of understanding these

interactions to optimize wheat breeding strategies and enhance

yield stability and adaptability across diverse environments.

Evaluating GEI is particularly critical on a smaller scale, where

the goal is to select varieties that not only perform consistently

across multiple years but are also uniquely adapted to their specific

local environments (Hanif et al., 2021; Kunze et al., 2024). A

significant challenge in utilizing multiyear data is the inherent

imbalance, as underperforming varieties are often excluded from

further evaluation while promising ones continue to be assessed

(Yan, 2015; Lado et al., 2016; Bernardo, 2020). This imbalance

complicates analysis, necessitating the use of robust statistical

methods to accurately interpret data and make informed

breeding decisions.

Several statistical models have been developed to estimate

genotype-environment interactions (GEI) in multi-environment

trials (METs), with the additive main effects and multiplicative

interaction (AMMI) model and the genotype main effects +

genotype × environment interaction effects (GGE) model being

particularly prominent (Scavo et al., 2023). The AMMI model

combines additive main effects for genotypes and environments

with multiplicative terms for G×E interaction, allowing for a

comprehensive analysis of both main effects and interactions

(Bishwas et al., 2021; Etana and Merga, 2021). The GGE model,

on the other hand, focuses on genotype and G×E effects together,

removing the environment main effects to emphasize genotype

performance and stability across environments (Olanrewaju et al.,

2021). Both models utilize biplot visualization techniques to aid in

the interpretation of complex GEI patterns. Additionally, mixed

model approaches using restricted maximum likelihood/best linear

unbiased prediction (REML/BLUP) have gained traction for their

ability to handle unbalanced data and incorporate pedigree

information (Rout et al., 2022; Sugasawa and Kubokawa, 2023).

These powerful methodologies are widely employed in plant

breeding programs to estimate genetic parameters, predict

genotypic values, and select superior genotypes for further

cultivation (Lanna et al., 2022; Tajalifar and Rasooli, 2022; Costa

et al., 2023). The choice between these models often depends on the

specific research objectives and the nature of the data, with some

researchers opting to use multiple approaches complementarily to

gain a more comprehensive understanding of GEI patterns.

Traditional breeding programs often focused on single traits,

primarily yield. However, this approach can led to unexpected

problems such as increased susceptibility to diseases or reduced

quality traits. Multi-trait selection, which considers a suite of

desirable traits, offers a more holistic approach. This method aims

to balance yield with other critical traits such as disease resistance,

drought tolerance, and grain quality (Arnold, 2023). Integrating

multi-trait selection into breeding programs can lead to the

development of more resilient and high-performing wheat varieties.

The multi-trait mean performance and stability index

(MTMPS) proposed by Olivoto et al. (2021) is a valuable tool

in plant breeding for identifying genotypes with consistent

performance across multiple environments. This index uses

factor analysis to assess each ideotype’s scores, considering
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https://doi.org/10.3389/fagro.2024.1466040
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Sellami et al. 10.3389/fagro.2024.1466040
both desirable and undesirable traits. By computing the

Euclidean distance between accessions and the ideotype, a

spatial probability is derived, facilitating accession ranking.

Varieties with the lowest MTMPS values are closer to the

ideotype, indicating superior mean performance and stability

across all analyzed variables (Olivoto et al., 2019).

Optimizing multi-trait selection indices allows breeders to

address trade-offs between traits like grain yield and protein

content, as well as combine traits of interest like yield and weed

competitive ability. This approach can lead to continued genetic

gain while maintaining genetic diversity in wheat populations (Silva

et al., 2023). Additionally, including drought-tolerance indices in

multi-trait selection strategies has been shown to provide superior

gains in grain yield under stress conditions, emphasizing the

importance of considering multiple traits in wheat breeding to

enhance resilience to environmental challenges.

Therefore, this study aims to: (i) evaluate the GEI in wheat

varieties across multiple traits, and (ii) identify superior varieties

that demonstrate high performance and genotypic stability in

Southern Italy under diverse environmental conditions, utilizing

the MTMPS index.

This study adds significant value to the existing body of

knowledge by employing advanced statistical techniques,

addressing the complexities of long-term and unbalanced

datasets, and providing a comprehensive multi-trait evaluation of

durum wheat performance under Mediterranean climatic

conditions. These contributions highlight the importance of

multi-environment trials and advanced selection indices in

breeding programs, offering practical insights for enhancing

durum wheat resilience and productivity.
2 Materials and methods

2.1 Experimental site

A field screening experiment was conducted over ten years

(2013–2022) at the experimental research station of the Department

of Agriculture, University of Naples Federico II, located in

Sant’Angelo dei Lombardi (40°55’12.0”N, 15°07’12.0”E, 667 m

above sea level). This rural site, situated in the foothills of the

Apennine Mountain range in the province of Avellino, southern

Italy, experiences a warm-summer Mediterranean climate (Csb) as

per the Köppen-Geiger classification (Beck et al., 2018). Utilizing 43

years of daily climatic data from the NASA-Power project (https://

power.larc.nasa.gov/) covering the period from 1981 to 2023, this

region displays an average daily temperature of 14.02°C (± 0.60°C)

and an average annual precipitation of 572.36 mm (± 119.38 mm).

The soil in this area is predominantly clay loam in texture (clay,

sand, and silt: 38.8%, 36.9%, and 24.3%, respectively). The chemical

and physical characteristics of the soil at the beginning of the

experiment at 0.20 m of soil depth were as follows: pH 8.07,

Kjeldahl total nitrogen 0.97 g kg−1, phosphorus pentoxide (P2O5:

Olsen method) 14.4 mg kg−1, and soil organic matter (SOM)

content of 1.16%.
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2.2 Climate influence assessment

The daily key weather parameters for each wheat growing season at

the Sant’Angelo dei Lombardi location, including, precipitation,

relative humidity, air temperature, and solar radiation, along with 11

additional climatic variables (Table 1), were obtained from the NASA-

Power project (https://power.larc.nasa.gov/). The weather regime,

including monthly precipitation (P) and minimum and maximum

temperatures (Tmin and Tmax) for the ten growing seasons, is

detailed in Supplementary Table S1. These data are compared

against the historical means from 1981 to 2023. To precisely

reflect the temporal dynamics of environmental conditions

throughout crop development, the crop cycles were segmented

into five main phenological stages based on days after sowing

(DAS): 0 to 21 days (Emergence), 22 to 110 days (Tillering), 111

to 140 days (Jointing), 141 to 184 days (Heading), and 185 to 217

days (Maturity). These intervals were determined through field

observations of various wheat varieties grown in Sant’Angelo dei

Lombardi over ten growing seasons. This approach resulted in the

generation of 900 combinations of environmental covariates (18

weather parameters) across growing seasons (10 years) and main

phenological stages (5 time periods), providing a comprehensive

dataset for analyzing climate impacts on wheat development.
TABLE 1 Weather variables analyzed in this study.

Weather parameter Abbreviation Unit Method

Daylight hours N hour

Estimated (1)

Actual duration of sunshine n hour

Thermal infrared
(longwave) radiative flux

DTIRF MJ m−2 day−1

All sky insolation incident
on a horizontal surface

SIHS MJ m−2 day−1

Wind speed_2 m WS m s−1

Maximum air
temperature_2 m

Tmax °C day−1

Minimum air
temperature_2 m

Tmin °C day−1

Mean temperature Tmed °C day−1

Relative air humidity_2 m RH %

Precipitation PRECTOT mm day−1

Dew−point
temperature_2 m

T2MDew °C day−1

Deficit by precipitation PETP mm day−1

Computed (2)

Effect of temperature on
radiation use efficiency

FRUE (from 0 to 1)

Growing degree day GDD °C day−1

Global solar radiation based
on latitude and Julian day

RTA MJ m−2 day−1

Vapor pressure deficit VPD kPa day−1

Evapotranspiration ETP mm day−1
(1) The data was estimated fromNASA orbital sensors, as described in Sparks (2018). (2) The data was
processed using methods building on the work of Allen et al. (1998) and Soltani and Sinclair (2012).
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2.3 Agronomic management and
experimental design

Eight-nine varieties were investigated. These varieties were

certified by ENSE (Ente Nazionale Sementi Elette) and registered

in either the national or community variety registry. Forty-eight

varieties tested for less than three years were excluded from the

analysis, leaving 41 varieties for genotype-by-environment

interaction assessment. Not all varieties were evaluated every year,

just 5 varieties were shared between all years (Figure 1).

Consequently, the dataset is highly unbalanced, with 45% of the

data missing. Comprehensive genealogy records, crop cycles, and

breeding institutions for all 41 durum wheat varieties are detailed in

Supplementary Table S2. Each year, a set of 23 ± 3 varieties was

evaluated, ensuring that at least five varieties were common across

all years (Figure 1). The trials were implemented using an

experimental block design (RCBD), wherein varieties were

randomized across the plots and replicated three times. The size

of the plots was 5 m × 2 m. Sowing density was standardized at 400

grains per square meter for each variety. All varieties were grown

under rainfed conditions. Each year, broad beans served as the

preceding crop for wheat. Prior to sowing, phosphorus (P) and

potassium (K) were applied in the form of superphosphate and

potassium sulfate, respectively, at a rate of 100 kg ha−1. The specific

amounts of nitrogen applied as urea, as well as the sowing and

harvest dates, are detailed in Table 2.
2.4 Phenotypic and quality traits

At harvest, a 1 square meter subplot in the center of each plot

was hand-harvested to determine nine phenotypic and quality

traits: 1) grain yield (GY), adjusting the moisture to 13% and

converting the unit to tons per hectare (t ha−1), 2) plant height

(Alt), measured using a graduated scale from ground level to the tip

of the tallest spikelet and is expressed in meters (m), 3) Thousand-

gain weight (TGW), is expressed in gram (g), 4) number of ears per

square meter (Sp, num m−2), 5) hectoliter weight (Pe) was

determined according to the AACC method 55-10.01 (Cereals
Frontiers in Agronomy 04
and Grains Association, 2024) and reported in kilograms per

hectoliter (kg/hL), 6) crude protein concentration (Pro),

determined using the Kjeldahl method according to AACC 46-

10.01 (Cereals and Grains Association, 2024). The Jones factor was

used to convert it to protein (6.25) (Mariotti et al., 2008) and

expressed in percentage (%), 7) gluten index value (Glu), analyzed

according to AACC 38-12.02 (Cereals and Grains Association,

2024), and expressed in percentage (%), 8) shriveled wheat grain

(Cs), referring to grain that is underdeveloped, small, and often

misshapen expressed in percentage (%), and 9) bleached wheat

grain (Cb), referring to wheat grain that has been exposed to

environmental conditions causing them to lose their natural

color, resulting in a paler, often whitish appearance, expressed in

percentage (%).
2.5 Statistical analysis

2.5.1 Climatic impact on crop development
Principal component analysis (PCA) using the correlation

matrix was employed to elucidate the characteristics of each of

the ten consecutive growing seasons in relation to their associated

environmental variables. These variables were collected using the

`get_weather()` function from the R package EnvRtype (Costa-

Neto et al., 2021). The PCA was conducted with the software

packages FactoMineR (Husson et al., 2014) and psych (Revelle,

2024) within the RStudio environment (R Core Team, 2013).

Hierarchical cluster analysis (HCA) was also performed using the

`pheatmap` package (Kolde, 2019) in RStudio. This analysis utilized

a single linkage approach and Euclidean distances to determine the

similarities between the ten growing seasons. For a more detailed

analysis of the climate data throughout the study duration, we

utilized the env_typing() function from the EnvRtype package

(Costa-Neto et al., 2021) to establish environmental patterns

using quantile thresholds of 18 environmental covariates collected

from sowing to harvest each growing season. Frequency

distributions for each year and main phenological stage

combination were computed using the 0.25, 0.50, and 0.75

quantiles. This approach facilitated the identification of extreme

values for each environmental variable.
FIGURE 1

Connectivity of wheat varieties, measured by the number of shared varieties between years (below diagonal) and the total number of varieties per
year (diagonal).
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2.5.2 Variance estimation with random
effects model

A comprehensive evaluation was conducted on 41 durum wheat

varieties to estimate variance components and predict genotypic

values along with genotype-by-environment interactions (GEI).

The random model applied in this analysis was as follows:

yijk = m + Gi + Yj + GYij + bjk + eijk (1)

where yijk is the response variable (e.g., grain yield) observed in

the kth block of the ith genotype in the jth year (i = 1, 2,…, g; j = 1, 2,

…, e; k = 1, 2,…, b); m is the general mean; Giis the random effect of

the ith genotype; Yj is the random effect of the jth year; GYij is the

random interaction effect of the ith genotype with the jth year; bjk} is
the random effect of the kth replicate within the jth environment;

and eijk is the random error.

The Restricted Maximum Likelihood (REML) method (Dempster

et al., 1977) was employed for variance component analysis. The

significance of the random effects was evaluated using the likelihood

ratio test (LRT). This test compares −2 times the residual log-likelihood

(−2(REG)log) of twomodels: onemodel contains all the random effects,

whereas the other model omits a single random effect. Additionally,

four heritability estimates were obtained to assess the genetic

contribution to observed phenotypic variance. These estimates include:

Broad-sense heritability (H2), which is the ratio of genetic

variance to total phenotypic variance, indicates the proportion of

observed variation in a trait that is due to genetic factors:

H2=
s2
G

s2
p

where: s 2
G is the genetic variance, representing the portion of

phenotypic variance attributed to genetic differences among

individuals. s 2
p is the total phenotypic variance, which includes

both genetic and environmental variance (s 2
E ).

Heritability of mean genotype (h2gm), also known as the broad-

sense heritability for the mean genotype, can be calculated using the

formula:
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h2mg = s 2
g = s 2

g + s 2
gxe=e + s 2

e =(eb)
� �

where e and b are the numbers of environments and

blocks, respectively.

Heritability of Cullis et al. (2006) is a robust methodology for

estimating heritability in the presence of unbalanced data and can

be calculated using the formula:

H2
cullis = 1 −

△BLUP
2s 2

g

where △BLUPis the mean standard error of the genotype

BLUPs and Heritability of Piepho and Möhring (2007) is a robust

methodology for estimating heritability in the presence of

unbalanced data and can be calculated using the formula:

H2
Piepho  =

s 2
g

s 2
g + �v=2

where �v  is the mean variance of a difference of two best linear

unbiased estimators (BLUE).

The REML/BLUP methodology was conducted using the metan

package in RStudio (R Core Team, 2013), employing the functions

gamem_met() (Olivoto and Lúcio, 2020). Heritability estimates

were determined using the H2cal() function from the inti package

(Lozano-Isla, 2021).

2.5.3 Mean performance and stability analyses
Durum wheat varieties were ranked using the Mean

Performance and Stability (MPS) method for an individual trait

across varying environments, which incorporates a linear mixed-

effects model (LMM) structure to offer innovative graphical insights

for concurrent selection. In this investigation, this method evaluates

genotype-by-environment interactions (GEI) employing the

stability approach proposed by Eberhart and Russell (1966),

which is particularly effective for analyzing unbalanced data

(Pour-Aboughadareh et al., 2022). According to Sampaio Filho

et al. (2023), performance and stability were assessed using the
TABLE 2 Sowing date, harvesting, crop cycle and number of varieties, as well as amounts of nitrogen at the experimental site.

Cropping
season

Code Sowing Harvesting
Crop
cycle

No.
Varieties

Nitrogen fertilization

Sowing I coverage II coverage

2013–2014 Y_13 31/10/2013 08/07/2014 250 20 30 kg (10/2013) 40 kg (02/2014) 40 kg (04/2014)

2014–2015 Y_14 14/11/2014 06/07/2015 234 20 80 kg (04/2015) 40 kg (05/2015)

2015–2016 Y_15 10/11/2015 10/07/2016 243 24 80 kg (04/2016) 40 kg (06/2016)

2016–2017 Y_16 22/11/2016 10/07/2017 230 22 80 kg (04/2017) 40 kg (05/2017)

2017–2018 Y_17 03/11/2017 18/07/2018 257 22 80 kg (04/2018) 40 kg (05/2018)

2018–2019 Y_18 23/11/2018 22/07/2019 241 25 80 kg (03/2019) 40 kg (04/2019)

2019–2020 Y_19 04/12/2019 14/07/2020 223 26 80 kg (03/2020)

2020–2021 Y_20 10/11/2020 09/07/2021 241 26 80 kg (03/2021)

2021–2022 Y_21 22/12/2021 22/07/2022 212 23 80 kg (03/2022) 40 kg (05/2022)

2022–2023 Y_22 23/12/2022 14/07/2023 203 19 80 kg (03/2023) 40 kg (04/2023)
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Weighted Average Absolute Scores of BLUPs (WAASB) method,

with stability adjustments considering genotypic stability of

deviations from regression (S2di), the root mean square error of

the regression (RMSE), and the coefficient of determination (R2).

The main goal here is to rank different genotypes based on their

stability and performance in terms of one specific trait, such as

yield, protein content, or any other trait of interest, which limits its

application when multiple traits need to be considered

simultaneously. Before calculating the MPS index, we adjusted

(rescaled) the agronomic performance and stability matrix so they

could be easily compared using the following model:

For agronomic performance:

rYi =
nmax − nmin
Ymax − Ymin

� (Yi − Ymax) + nmax

For the stability index:

rERi =
nmax − nmin

ERmax − ERmin
� (ERi − ERmax) + nmax

where nmax and nmin are the new maximum and minimum

values of the variables and the MPS index (S2di, RMSE, and R2) after

rescaling; Yiand ERiare the original values for the response variable

and MPS index of the genotype i, respectively.

For the S2di and RMSE indices, genotypes with values of zero for

both were ranked as the most stable. To adjust the environmental

index, ERmax was set to 0 and ERmin to 100. On the other hand, for

the R2 parameter, genotypes with R2 values close to 1 were

considered well-adapted, so the values were set to Ymax =   ERma

x = 100 and Ymin =   ERmin = 0. As a result, a genotype with the

highest average and highest R2 would receive rYi= rERi=100. An

exception applies to the “Alt,” “Cb,” and “Cs” traits, where smaller

values are better, so Ymax=0 and Ymin=100 for these traits.

After adjusting the values for mean performance Yi  and

stability (ERi), the best-performing genotype was given a score of

100, while the worst-performing one received a score of 0. Likewise,

the genotype with the most stability was also scored 100, and the

least stable genotype received a score of 0. This created a two-way

table with scores ranging from 0 to 100 across the columns,

matching the direction of the selection process. After that, the

MPS was computed using this formula:

MPSi =
(rYi � qY ) + (rERi � qs)

qY + qs

whereMPSi refers to the superiority index for genotype I, which

weights between mean performance and stability; the values qY and

qs represent the weights for mean performance and stability,

respectively; the terms rYi and rERi are the rescaled values for

mean performance Yi  and stability (ERi), respectively of the

genotype i. In this context, we used qY=70 and qs=30 to give

more importance to mean performance at the MTMPS index.

Next, the MTMPS index was used to calculate the mean

performance and stability of multiple traits. The MTMPS index

extends the MPS approach by integrating multiple traits into the

stability analysis. This index provides a more holistic evaluation of

genotypes compared to the single-trait MPS approach. This

approach is based on factor analysis and ideotype design, where
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the factorial scores of each ideotype are designed according to the

desirable and undesirable factors. Then, a spatial probability is

estimated based on genotype-ideotype distance, enabling genotype

ranking. The results allowed for conducting a single and

straightforward selection process of durum wheat varieties. The

MTMPS index was computed using this model:

MTMPSi = o
f

j=1
(Fij − Fj)

2

" #0:5

The  MTMPS i refers to the multi-trait stability index for each

genotype, while Fij is the j-th score for the i-th genotype, with i

ranging from 1 to g (the total number of genotypes) and j ranging

from 1 to f (the number of factors). Fj represents the j-th score of the

ideal genotype. This approach aimed to identify varieties with

superior values (positive gains) for grain yield (GY), thousand-

grain weight (TGW), spike number (Sp), plant height (Pe), protein

content (Pro), and gluten content (Glu). Consequently, the variety

with the lowest MTMPS score is considered closest to the ideotype,

demonstrating high performance and stability in all measured traits.

Additionally, the study calculated the selection differential (DS%) for
the chosen varieties, assuming a selection intensity of 15%. The

calculation used the formula:

DS% =  (XS − X0)=X0 � 100

where XS is the value of the selected genotypes and X0is the

average value of the population. We employed the mps() and

mtmps() functions from the metan package (Olivoto and Lúcio,

2020) in RStudio (R Core Team, 2013) to perform this analysis.
3 Results

3.1 Climatic impact on crop development

Figure 2 provides a comprehensive multivariate analysis of

weather parameters and wheat traits over several years. The first

two principal components (Dims), which have eigenvalues greater

than one, account for 88.58% of the total variance after varimax

rotation. Dim1 explains 59.24% of the variance, while Dim2

accounts for 29.34% (Figure 2A). Dim1 is positively correlated

(>0.5) with most major weather parameters except for precipitation

(PRECTOT), wind speed (WS), and dew-point temperature

(T2MDEW), which are positively correlated with Dim2

(Supplementary Table S3). This analysis highlights significant

climatic variability between growing seasons. A positive

correlation was identified among minimum temperature (Tmin),

fraction of radiation use efficiency (FRUE), vapor pressure deficit

(VPD), maximum temperature (Tmax), mean temperature (Tmed),

growing degree days (GDD), evapotranspiration (ETP), sunshine

duration (N), and radiation at the top of the atmosphere (RTA).

Conversely, these climate parameters showed a negative correlation

with total precipitation (PRECTOT), precipitation deficit (PETP),

and relative humidity (RH) (Supplementary Table S4).

Based on the hierarchical cluster analysis of 17 weather parameters,

four distinct groups of growing seasons were identified, each
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characterized by specific climatic conditions (Figure 2B). Group 1

(Y_2021) is marked by high values for most weather parameters,

including maximum and minimum temperatures (Tmax, Tmin),

average temperature (Tmed), vapor pressure deficit (VPD),

evapotranspiration (ETP), fractional radiation use efficiency (FRUE),

radiation absorption (RTA), growing degree days (GDD), daylight

hours (N), actual duration of sunshine (n), and insolation incident

(SIHS), further signifying very warm and dry conditions. Group 2,

comprising the seasons Y_2014, Y_2020, Y_2017, Y_2013, and

Y_2015, shows lower temperatures and higher precipitation

(PRECTOT), relative humidity (RH), and a precipitation deficit

(PETP), suggesting a cooler environment with favourable water

availability. Group 3 (Y_2022) is distinguished by high values for

dew-point temperature (T2MDew), the effect of temperature on

radiation use efficiency (FRUE), sunshine duration (N), radiation at

the top of the atmosphere (RTA), Growing Degree Day (GDD),

minimum and mean temperatures (Tmin, Tmed), and thermal

infrared (longwave) radiative flux (DTIRF). These high values

indicate a warm environment during this growing season. Finally,

Group 4 (Y_2018, Y_2019, Y_2016) is characterized by higher wind

speed (WS), evapotranspiration (ETP), sunshine duration (N), and

insolation incident (SIHS), along with moderate temperatures,

precipitation, and humidity, delineating an intermediate environment.

During the warm years (2021 and 2022), higher vapor pressure

deficit (VPD) values were frequently observed, particularly during

the heading and maturity stages, with the maximum VPD reaching

2.83 kPa day−1 (Figure 3A). High values of maximum temperature

(Tmax) ranging from 22.4°C to 35.9°C were evident during almost

the entire heading and maturity stages (Figure 3C). Both high VPD

and Tmax values, causing heat and drought stress, can impair

photosynthesis, reduce pollen viability, decrease grain setting, and

ultimately impact yield. The precipitation deficit (PETP) data

during these years show notable deficits, with values ranging from

−13.9 to −9.35 mm day−1 observed on approximately more than

80% of the days during the heading and maturity stages (Figure 3B).
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This exacerbates the effect of both heat and drought stress, and

consequently reducing grain yield.

In contrast, cooler years (2013, 2014, 2015, 2017, and 2020)

exhibited lower VPD and Tmax values during almost 80% of the

heading stage, with values ranging from 0.38 to 0.82 kPa day−1 and

15.5 to 22.4°C, respectively (Figures 3A, C). This suggests reduced

stress from high temperatures and dry air. These conditions are

more conducive to optimal plant development and grain filling.

Additionally, in these years, PETP values ranging from −1.83 to 13.4

mm day−¹ were displayed on 13% of days during the heading and

maturity stages, indicating a certain availability of water in these

two critical phenological stages (Figure 3B). Higher relative

humidity (RH) observed during the cooler years, particularly at

the emergence and tillering stages, showed maximum frequency

distributions between 78.7% and 95.8% (Figure 3D), which can

foster better early growth and establishment.
3.2 Variance estimation with random
effects model

The likelihood-ratio test (LRT) revealed that only six durum

wheat traits (GY, Sp, TGW, Alt, Pe, and Cb) had significant effects

of environment, genotype, and genotype by environment

interaction effects (Table 3). Additionally, all traits, except gluten,

grain protein, and shriveled wheat grain, showed significant

genotypic effects (Table 3). The genotype × environment

interaction was significant for all traits, demonstrating the varying

responses of different varieties to distinct growing seasons (Table 3).

In the analysis of durum wheat traits, it was observed that, with

the exception of gluten index, grain protein content, and shriveled

wheat grain, the environmental variance (se
2) contributed

substantially more to the total phenotypic variance (s2P) than any

other traits examined (Figure 4). The genotype-by-environment

interaction (GEI) variance was stronger on shriveled wheat grain
FIGURE 2

(A) Principal component analysis (PCA) biplot of weather parameters as a function of cropping seasons. Principal variables are indicated by blue
arrows, while supplementary variables (morphologic and quality traits) are represented by dotted red arrows. For weather parameter abbreviations,
refer to Table 1. Key traits include: GY, grain yield; Alt, plant height; TGW, 1000-gain weight; Sp, number of ears per square meter; Pe, hectoliter
weight; Pro, crude protein concentration; Glu, gluten index value; Cs, shriveled wheat grain; and Cb, bleached wheat grain. (B) Heat map showing
the similarity between ten consecutive cropping seasons (2013–2014 to 2022–2023) based on 17 environmental covariates.
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traits, accounting for 50% of the overall phenotypic variation. For

gluten content and grain protein, the residual variance (sr2) was
more substantial than the other variance components (Figure 4).

The distribution of grain yield for each variety is illustrated in

Figure 5. Wheat grain yield varied significantly across years and

varieties, with an average yield of 3.42 ± 1.66 t ha−1 among the 41

tested varieties. The lowest yield was recorded in 2021 at 1.66 t ha⁻¹,
while the highest yield was observed in 2014 at 6.09 t ha⁻¹
(Supplementary Figure S1). Grain yield (GY) ranged from 1.09 t

ha⁻¹ (variety G75 in 2018) to 7.22 t ha⁻¹ (variety G65 in 2014), with

a coefficient of variation (CV) of 48.61%. The coefficient of variation

for durum wheat traits between varieties over the ten growing

seasons showed maximum variability for traits such as bleached

wheat grain (113.07%), shriveled wheat grain (97.8%), gluten

content (32.72%), spikes per m2 (31.43%), and grain protein

(26.15%). Minimum variability was observed for hectoliter weight

(6.1%), thousand-grain weight (13.45%), and plant height (14.53%).

The broad-sense heritability (H²) values for all traits were

generally low, ranging from 0 for shriveled wheat grain to 0.19

for thousand-grain weight, indicating that most of the variation in

these traits is likely due to environmental or other non-genetic

factors. Conversely, the estimate heritability of the mean genotype

(h²mg) varied, being low for gluten index, grain protein, and

shriveled wheat grain (ranging from 0 to 0.32), moderate for

grain yield, ears per square meter, height, and bleached wheat

grain (ranging from 0.48 to 0.66), and high for thousand-grain

weight and hectoliter weight (ranging from 0.80 to 0.86).

Regarding Piepho heritability (H² Piepho), only thousand-grain

weight and ears per square meter showed moderate heritability

(ranging from 0.54 to 0.57), while bleached wheat grain exhibited

high heritability (0.76), with the remaining traits showing low

heritability. For Cullis heritability (H² Cullis), five traits – gluten

index, grain protein, height, ears per square meter, and bleached
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wheat grain – had moderate heritability (ranging from 0.41 to 0.64),

with thousand-grain weight showing high heritability (0.72), and

the remaining traits displaying low heritability. These differing

heritability estimates highlight the complex nature of heritability

and the importance of considering multiple perspectives when

evaluating genetic contributions to trait variation.

The selection accuracy (AS) exceeded 0.70 for all traits except

gluten index, protein content, and shriveled wheat grain. This high

selection accuracy indicates reliable identification and selection of

superior genotypes for breeding, ensuring effective genetic

improvement in these traits.

The correlation of genotype–environment interaction effects

(rge) varied in magnitude, being low for gluten index, grain

protein, and thousand-grain weight (ranging from 0.08 to 0.39),

moderate for grain yield, spikes per square meter, height, and ears per

square meter (ranging from 0.42 to 0.53), and high for shriveled

wheat grain and bleached wheat grain (ranging from 0.75 to 0.84).

The genotypic coefficient of variation (CVg) exhibited a wide range,

from 0% for Cs to 22.7% for Cb, demonstrating significant genetic

diversity among the varieties. Conversely, the residual coefficient of

variation (CVr) ranged from 1.91% for ears per square meter (Pe) to

31.2% for shriveled wheat grain (Cs). Additionally, the ratio between

the genotypic and residual coefficients of variation (CVratio) was

below 1 for all traits except for bleached wheat grain (Cb).
3.3 Factor analysis of durum wheat traits

Due to the data being unbalanced, Sampaio Filho et al. (2023)

recommend evaluating performance and genotypic stability using

factorial analysis, and they suggest focusing on the deviations from

regression (S2di), the coefficient of determination (R²), and the root

mean square error of the regression (RMSE). This approach is
FIGURE 3

Framework for envirotyping analysis of: (A) vapor pressure deficit (kPa day−1), (B) deficit by precipitation (mm day−1), (C) maximum air temperature
(Tmax, °C day−1), and (D) relative humidity (%) impact on durum wheat across 10 growing seasons and 5 growth stages (emergency, tillering, jointing,
heading and maturity).
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TABLE 3 Likelihood ratio test, estimated variance components and genetic parameters for nine traits of 41 wheat varieties. evaluated in 10 growing seasons.

Protein
content (%)

Height (cm)

Hectoliter
weight
(kg hl−1)

Shriveled
wheat

grain (%)

Bleached
wheat

grain (%)

27.3 **** 51.6 **** 55.7 **** 49.1 **** 55.8 ****

0.96 ns 10.1 ** 26.7 **** −5.83 10−08 ns 9.64 **

3.63 * 164 **** 146 **** 558 **** 618 ****

26.15 14.53 6.1 97.8 113.07

11.5 121 26.9 22.6 475

0.0116 0.0337 0.0399 0.00 0.0396

0.289 0.658 0.802 0.00 0.598

0.331 0.29 0.536 0 0.764

0.473 0.474 0.641 0.00 0.412

0.538 0.81 0.879 0.00 0.786

0.079 0.478 0.418 0.837 0.753

0.080 0.542 0.514 0.837 0.863

2.84 2.75 1.31 0.00 22.7

21.7 5.11 1.91 31.2 21.9

0.131 0.538 0.687 0.00 1.04

, Phenotypic variance; H2, broad sense heritability; h2mg, Heritability of mean genotype; H2 Piepho and H2 Cullis, Piepho and Cullis heritability;
ic coefficient of variation (%); CVr, residual coefficient of variation (%); and CV ratio, ratio between the coefficient of genotypic and residual
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Source
of variation

Grain yield
(t ha−1) Ears per m²

Thousands
grain

weight (g)

Gluten
index (%)

Environment (E) 47.9 **** 48.4 **** 30.6 **** 19.7 ****

Genotype (G) 2.83* 4.28* 38.5*** 1.11 ns

G×E 182 **** 154 **** 169 **** 5.43 *

CV (%) 48.61 31.43 13.45 32.72

Genetic parameters

s2p 3.13 8.89 103 40.6 10.4

H2 0.01 0.0281 0.191 0.0151

h2mg 0.476 0.498 0.86 0.315

H2
Piepho 0.212 0.149 0.569 0.314

H2
Cullis 0.308 0.327 0.726 0.442

AS 0.649 0.707 0.927 0.561

GEIr2 0.534 0.492 0.385 0.097

rge 0.562 0.525 0.55 0.099

CVg 5.18 5.46 6.06 4.06

CVr 15.1 14.4 6.22 28.4

CV ratio 0.343 0.379 0.975 0.143

ns, *, **, ***, and **** indicate no significant difference, significant at p ≤0.05, p ≤ 0.01, p ≤ 0.001, and p ≤ 0.0001, respectively. s2P
r2, coefficient of determination of the GEI interaction; AS, Selection accuracy; rge, correlation of GEI interaction; CVg, genoty
variation (%).
p

https://doi.org/10.3389/fagro.2024.1466040
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Sellami et al. 10.3389/fagro.2024.1466040
preferred over the originally proposed WAASB index method.

According to Table 4, three factor components (FA) were

identified, explaining 68.61%, 63.87%, and 69.55% of the total

variance for S2di, R², and RMSE, respectively, in durum wheat traits.

In our factor analysis, we evaluated the communality (h2i) and

uniqueness (u2i) of each variable to understand how well they are

represented by the common factors. Communality indicates the

proportion of a variable’s variance explained by these factors, while

uniqueness shows the variance not explained by them. The average

h2i values were 0.69 for S2di, 0.64 for R², and 0.70 for RMSE. For S2di,

all durum wheat traits had h2i values greater than 0.5 except for

TGW and Cb. For R² and RMSE, all traits had h2i values above 0.5

except for Alt and TGW. This indicates that most traits are well

represented by the common factors in our analysis.

The nine durum wheat traits were grouped into three factors

(FA) for each stability parameter. For S2di, the first factor (FA1)

showed a strong positive correlation with important quality traits,

such as the gluten index (0.92) and protein content (0.90), and a

moderate correlation with bleached wheat grain (0.61). The second

factor (FA2) included traits related to plant productivity, like grain

yield (0.94) and ears per m² (0.84), and some quality traits such as

thousand-grain weight (0.50) and hectoliter weight (0.48). The third
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factor (FA3) had a strong negative correlation with the quality trait

shriveled wheat grain (−0.88) and a significant positive correlation

with the morphological trait of plant height (0.70).

For R² and RMSE parameters, FA1 was associated with quality

traits, including protein content (−0.92), gluten index (−0.91), and

thousand-grain weight (−0.59) for R², and gluten index (−0.92), protein

content (−0.89), bleached wheat grain (−0.61), and thousand-grain

weight (−0.50) for RMSE. The second factor (FA2) grouped productive

traits (grain yield (−0.80) and ears per m² (−0.83)) and the

morphological trait of plant height (0.62) for R², and productive

traits (grain yield (−0.86) and ears per m² (−0.91)) for RMSE.

Finally, FA3 showed a high correlation with quality traits (bleached

wheat grain (0.67) and shriveled wheat grain (−0.80)) for R², and with

the morphological trait plant height (−0.58), and quality traits such as

shriveled wheat grain (0.83) and protein content (0.72) for RMSE.
3.4 Correlations between agronomic and
quality traits

Figure 6 illustrates Pearson’s correlation coefficients between

various agronomic and quality traits. These correlations illustrate
FIGURE 5

Distribution of grain yield (t ha⁻¹) for 41 wheat varieties test across ten consecutive crop seasons (2013–2014 to 2022–2023) in southern Italy.
FIGURE 4

Proportion of the phenotypic variance for nine wheat traits evaluated during ten consecutive growing seasons. GY, grain yield; Sp, ears per m2; TGW,
1000 grain weight; Glu, gluten index; Pro, protein content; Alt, height; Pe, hectoliter weight; Cs, shriveled wheat grain; Cb, bleached wheat grain.
se

2, environment variance; sg2, genotype variance; sge2, interaction g × e variance; sr2, residual variance.
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TABLE 4 Factorial analysis of 9 durum wheat traits: assessing regression deviations (S2di), regression determination coefficient (R2), and square root mean square error (RMSE) with a weighted emphasis of 70%
on performance and 30% on stability.

R2 RMSE

FA1 FA2 FA3 Communality Uniquenesses FA1 FA2 FA3 Communality Uniquenesses

−0.11 −0.80 −0.12 0.66 0.34 0.15 −0.86 0.24 0.82 0.18

0.14 −0.83 0.3 0.80 0.20 0.016 −0.91 −0.10 0.84 0.16

−0.92 0.017 0.05 0.85 0.15 −0.89 0.124 0.12 0.83 0.17

−0.04 0.63 0.16 0.42 0.58 0.001 0.33 −0.58 0.44 0.56

−0.53 −0.40 −0.42 0.62 0.38 −0.44 −0.17 0.72 0.74 0.26

−0.91 −0.001 0.12 0.84 0.17 −0.92 0.12 0.02 0.85 0.15

−0.59 0.06 −0.09 0.36 0.64 −0.50 −0.21 0.33 0.40 0.60

−0.23 −0.07 0.67 0.51 0.49 −0.62 0.08 −0.36 0.52 0.48

−0.21 −0.15 −0.80 0.70 0.30 0.15 0.32 0.83 0.82 0.18

2.51 1.89 1.35 – – 2.59 2.12 1.55 − −

27.88 21.01 14.99 − − 28.80 23.52 17.23 − −

27.88 48.89 63.87 − − 28.80 52.32 69.55 − −

complete trait description.
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Trait
S2di

FA1 FA2 FA3 Communality Uniquenesses

GY −0.09 0.94 −0.07 0.89 0.11

Sp 0.07 0.84 0.04 0.71 0.27

Pro 0.90 0.15 −0.17 0.85 0.15

Alt −0.07 −0.09 0.70 0.50 0.50

Pe 0.480 0.482 −0.42 0.64 0.36

Glu 0.92 0.13 −0.13 0.89 0.11

TGW 0.39 0.50 0.09 0.41 0.59

Cb 0.61 −0.15 0.30 0.48 0.52

Cs −0.04 −0.15 −0.88 0.80 0.20

Eigenvalue 2.96 1.70 1.51 − −

Relative
variance (%) 32.89 18.93 16.79 − −

Cumulative
variance (%) 32.89 51.82 68.61 − −

Boldface factor loadings indicate the most relevant traits for each factor component. See Table 3 for th
e
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the relationships among traits using the mean performance and

stability (MPS) index, which was established based on three stability

parameters (S2di, R², and RMSE). Approximately 25% of the

correlations were significant for both R² and RMSE, while 30.56%

were significant for S2di. Traits show varying degrees of correlation

depending on the stability parameter considered. Notably, protein

content and gluten index exhibited a highly positive correlation

(>0.88) across all stability parameters. Additionally, grain yield and

spike per square meter (Sp) demonstrated a moderate positive

correlation, with coefficients ranging from 0.52 to 0.70. There was

a low positive correlation between shriveled wheat grain (Cs) and

hectoliter weigh (Pe), with values ranging from 0.33 to 0.43.

Conversely, plant height showed a low negative correlation with

Cs for S2di (−0.36), Pe for RMSE (−0.33), and Sp for R² (−0.34).

Thousand-grain weight (TGW) exhibited low positive correlations

with several traits: grain yield (0.40), Pe (0.37), and gluten index

(0.35) for S2di. For RMSE, TGW was positively correlated with Pe

(0.46), and for R², it correlated positively with protein content (0.39)

and gluten index (0.35). Pe also had low positive correlations with

grain yield (0.35) and protein content (0.38) for R², with protein

content (0.35) for RMSE, and with grain yield (0.38), Sp (0.38), and
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protein content (0.44) for S2di. Additionally, a low but significant

positive correlation between bleached wheat grain (Cb) and both

protein content and gluten index (0.32 and 0.40, respectively) was

observed for the RMSE parameter.
3.5 Identifying superior genotypes with the
MTMPS index

The ranking of the 41 durum wheat varieties based on the

Multi-Trait Index (MTMPS) analysis, with a 15% selection

intensity, is illustrated in Figure 7. Among the 41 varieties

evaluated, six were selected for each of the three regression

variance parameters (S2di, R², and RMSE). Regarding the R²

parameter, the varieties with lower MTMPS values were Core

(G18), Furio Camillo (G31), Antalis (G4), Bering (G9), Dylan

(G24), Gibraltar (G32), and Anco Marzio (G3) (Figure 7A). For

the RMSE parameter, Core (G18), Aureo (G7), Svevo (G76), Antalis

(G4), Bering (G9), and Marco Aurelio (G49) were selected

(Figure 7B). In the S2di parameter, the varieties with lower

MTMPS values were Core (G18), Aureo (G7), Marco Aurelio
FIGURE 6

Pearson’s correlation coefficients between agronomic and quality traits for the mean performance and stability (MPS) index, with a 70% emphasis on
performance and 30% on stability, for regression parameters R2 (A), RMSE (B), and S2di (C). Refer to Table 3 for the complete trait description.
FIGURE 7

Multi-trait index (MTMPS) analysis of durum wheat varieties with 15% selection intensity (red circle), emphasizing 70% performance and 30% stability
for regression parameters: R2 (A), RMSE (B), and S2di (C). Based on the Eberhart and Russell (1966) model. See Supplementary Table S1 for the
complete variety description.
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(G49), Antalis (G4), Furio Camillo (G31), Claudio (G14), and Svevo

(G76) (Figure 7C). These six varieties selected across three

regression parameters demonstrated satisfactory mean grain yield

performance. Specifically, their yields ranged from 3.41 t/ha in R²,

to 3.91 t/ha in RMSE, and 3.61 t/ha in S2di. Additionally, these

varieties exhibited better stability in grain yield across different

growing seasons, highlighting their resilience and consistency under

varying environmental conditions.

The multi-trait mean performance and stability index (MTMPS)

proved highly effective in selecting traits with selection gain (SG) for all

durumwheat traits, achieving a success rate of 77.77% (7 out of 9 traits)

based on RMSE and R², and 88.89% (8 out of 9 traits) based on S2di,

with a few exceptions. Notably, the trait Cb showed reductions of

4.95%, 10.17%, and 13.55% for S2di, RMSE, and R², respectively,

indicating its favorable desirability as a wheat trait in this context.

Specifically, the trait Cb exhibited reductions of 4.95%, 10.17%, and

13.55% for S2di, RMSE, and R², respectively, which is desirable wheat

trait in this context. Additionally, Cs showed a slight reduction of

0.04% for S2di. Conversely, the trait Alt experienced increased gains of

0.33%, 1.21%, and 1.50% for RMSE, S2di, and R², respectively, which are

not suitable for mechanized harvesting. For the parameters R² and

RMSE, Cs increased by 1.92% and 4.46%, respectively, which negatively

impacts durum wheat quality. Regarding S2di, the selection gain

percentages for traits with desirable values ranged from 0.70% for Pe

to 3.65% for TGW (Table 5). Similarly, the MTMPS index gains for the

R² and RMSE parameters followed a comparable pattern, with

increases in selection gains for six desirable wheat traits. For R², the

gains ranged from 1.28% for Pe to 6.08% for Sp, while for RMSE, the

gains ranged from 0.19% for Pe to 3.67% for Glu (Table 5).

Figure 8 illustrates the strengths and weaknesses of selected

durum wheat varieties identified over ten consecutive growing

seasons. Based on the R² parameter, the “G31” variety exhibits

strengths in FA1, indicating high performance in quality wheat

traits such as protein (Pro), gluten (Glu), thousand-grain weight

(TGW), and plant height (Pe). The variety “G4” shows strengths

associated with FA2, which includes grain yield (GY), ears per m²

(Sp), and plant height (Alt), while the variety “G9” excels in FA3,

encompassing traits like shriveled wheat grain (Cs) and bleached

wheat grain (Cb) (Figure 8A). For the RMSE parameter, FA1, which

primarily relates to Pro, Glu, TGW, and Cb, significantly influences

the deviation of the “G49” variety from the ideotype, suggesting

areas for improvement in these traits. Meanwhile, the “G4” variety

demonstrates strengths in both FA2 (GY and Sp) and FA3 (Alt, Pe,

and Cs), indicating a well-rounded performance across these factors

(Figure 8B). Regarding the S2di parameter, the “G18” variety

performs very well in FA1, showing strong traits in protein (Pro),

gluten (Glu), and bleached wheat grain (Cb). The “G14” variety

shows robustness in FA2, associated with GY, Sp, and Pe. On the

other hand, the “G31” variety presents a positive gain in traits

related to Alt and Cs (Figure 8C).
4 Discussion

In recent years, Italy a country that suffers from drought for

most of the year and where agriculture requires large amounts of
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water, especially for wheat cultivation, has been working for many

years on developing new varieties of durum wheat that can resist

drought and high temperatures due to the phenomenon of global

warming, which has become a global concern.

In this study, the grain yield, agronomic traits, and quality

parameters of 41 durum wheat varieties were assessed over ten

consecutive growing seasons in Southern Italy, particularly in the

foothills of the Apennine Mountains. The likelihood-ratio test

indicated a significant effect of genotype by environment

interaction (GEI) for all traits, demonstrating that the

performance of these varieties was strongly influenced by different

growing conditions. GEI significantly impacts grain yield in wheat,

highlighting the complexity of breeding programs aimed at

improving yield stability across diverse environments. Studies

have consistently shown that wheat genotypes exhibit variable

performance under different environmental conditions,

underscoring the necessity of multi-environment trials to

accurately assess their yield potential (Eltaher et al., 2021; Gupta

et al., 2022; Khare et al., 2024).

The contrasting environmental conditions during warm and

cooler years had a significant impact on wheat grain yield,

agronomic traits, and quality parameters. The observed

differences can be attributed to the interplay between various

climatic factors and their effects on wheat development stages.

In warm and dry environments like those in 2021 and 2022,

high temperatures, high vapor pressure deficit (VPD), and water

deficit had profound impacts on agronomic and quality traits.

Water stress, occurring on more than 20% of days during the

tillering stage, reduced the number of tillers by 21%, flag leaf area by

43%, plant height by 12%, and dry matter by 19% compared to

control treatments, highlighting the sensitivity of this stage to water

deficits (Zabn and Alsajri, 2022). High temperatures and water

stress during the jointing stage accelerated the development process,

leading to shorter periods for biomass accumulation and potentially

reducing overall plant height and yield (Djanaguiraman et al.,

2020). The combination of high temperatures (Tmax ranging

from 22.4°C to 35.9°C) and high vapor pressure deficit (VPD up

to 2.83 kPa day⁻¹) during the critical heading and maturity stages

created significant heat and drought stress. During the grain-filling

stage, high temperatures accelerated the process, resulting in shorter

maturation times and smaller grains, leading to higher

concentrations of proteins, including gluten-forming proteins like

gliadins and glutenins (Gagliardi et al., 2020; Djanaguiraman et al.,

2020; Yang et al., 2023; Sihag et al., 2024). Elevated temperatures

and high VPD can alter the balance of protein fractions in the grain,

increasing the proportion of gliadins relative to glutenins, which

enhances the gluten index and overall protein content (Torbica and

Mastilović, 2008). These environmental stresses also influence the

synthesis and assembly of glutenin polymers, crucial for dough

strength and elasticity (Torbica and Mastilović, 2008; Wehrli et al.,

2021). Additionally, studies have shown that high VPD can activate

nitrogen metabolism, as indicated by increased expression of

nitrogen transporter genes and higher concentrations of amino

acids such as glutamine, aspartate, and serine in the leaves (Fakhet

et al., 2021). These amino acids play crucial roles in regulating

nitrate reductase gene expression and overall nitrogen assimilation,
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which can shift the balance of protein fractions in the plant. The

combined effects of elevated temperatures and high VPD on

stomatal conductance, photosynthesis, and nitrogen metabolism

lead to significant changes in the balance of protein fractions in

wheat, necessitating careful nitrogen management to optimize

protein quality and maintain crop productivity in warm

environments (Fakhet et al., 2021; El Haddad et al., 2021).

Our study found that the residual variance of quality traits, such as

gluten index and protein content, is often higher than other phenotypic

variances due to the inherent complexity and variability associated with

nitrogen management strategies (Table 2). Environmental variability,

measurement errors, genotype by environment interactions, and

temporal variability all contribute to this increased residual variance.

Understanding and managing these sources of variability is crucial for
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improving the accuracy and reliability of field trial results in plant

breeding and agronomic research (Geiler-Samerotte et al., 2013; Wang

et al., 2023). However, during heading and maturity, these conditions

(elevated temperatures and high VPD) also impair photosynthesis and

reduce pollen viability, leading to lower grain yield and reduced

hectoliter weight due to the production of shriveled grains (Dupont

and Altenbach, 2003; Jamieson et al., 2004; Triboï et al., 2003). Water

deficit exacerbates these effects by limiting the plant’s ability to uptake

water, further increasing the relative protein content compared to

carbohydrates (Guttieri et al., 2000; 2001; Gulati et al., 2014).

In the cooler years such as 2013, 2014, 2015, 2017, and 2020,

characterized by favorable water availability and lower vapor

pressure deficit (VPD), wheat plants experience reduced stress

across all phenological stages, including emergence, tillering,
TABLE 5 Durum wheat traits, selection differential (SD), heritability (h2), and selection gain (SG) of selected varieties for the MPS index using three
regression variance parameters (S2di, R

2 and RMSE).

Regression variance index Traits Factor SD SD (%) h2 SG SG (%) Sense Goal

S2di

Pro FA 1 1.11 8.54 0.21 0.23 1.78 increase 100

Glu FA 1 1.17 11.86 0.25 0.30 2.99 increase 100

Cb FA 1 −2.09 −10.01 0.49 −1.03 −4.95 decrease 100

GY FA 2 0.29 9.28 0.24 0.07 2.26 increase 100

Sp FA 2 14.18 4.93 0.31 4.38 1.53 increase 100

Pe FA 2 0.72 0.92 0.76 0.55 0.70 increase 100

TGW FA 2 1.92 4.20 0.87 1.67 3.65 increase 100

Alt FA 3 1.96 2.75 0.44 0.86 1.21 decrease 0

Cs FA 3 −0.01 −0.22 0.20 0.00 −0.04 decrease 100

R2

Pro FA 1 1.29 9.95 0.21 0.27 2.07 increase 100

Pe FA 1 1.32 1.68 0.76 1.01 1.28 increase 100

Glu FA 1 1.32 13.31 0.25 0.33 3.35 increase 100

TGW FA 1 0.98 2.13 0.87 0.85 1.85 increase 100

GY FA 2 0.56 18.08 0.24 0.14 4.41 increase 100

Sp FA 2 56.47 19.66 0.31 17.47 6.08 increase 100

Alt FA 2 2.41 3.39 0.44 1.07 1.50 decrease 0

Cb FA 3 −5.71 −27.40 0.49 −2.83 −13.55 decrease 100

Cs FA 3 0.42 9.57 0.20 0.08 1.92 decrease 0

RMSE

Pro FA 1 1.36 10.48 0.21 0.28 2.18 increase 100

Glu FA 1 1.44 14.55 0.25 0.36 3.67 increase 100

TGW FA 1 1.54 3.37 0.87 1.34 2.93 increase 100

Cb FA 1 −4.29 −20.56 0.49 −2.12 −10.17 decrease 100

GY FA 2 0.16 5.11 0.24 0.04 1.25 increase 100

Sp FA 2 11.08 3.86 0.31 3.43 1.19 increase 100

Alt FA 3 0.53 0.75 0.44 0.24 0.33 decrease 0

Pe FA 3 0.20 0.25 0.76 0.15 0.19 increase 100

Cs FA 3 0.98 22.22 0.20 0.20 4.46 decrease 0
f

See Table 3 for the complete trait description.
rontiersin.org

https://doi.org/10.3389/fagro.2024.1466040
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Sellami et al. 10.3389/fagro.2024.1466040
jointing, heading, and maturity. These conditions promote better

early growth and establishment due to higher relative humidity

during the emergence and tillering stages, which enhances seedling

vigor and tiller formation (Farooq et al., 2009). Adequate water

availability and moderate temperatures during the jointing stage

support robust stem elongation and biomass accumulation, setting

a strong foundation for subsequent growth phases (Shang et al.,

2020). During the critical heading and maturity stages, cooler

temperatures and sufficient precipitation reduce heat and drought

stress, allowing for optimal photosynthesis, pollen viability, and

grain setting. This results in higher grain yield, increased hectoliter

weight, and more spikes per square meter (Cetin et al., 2022). The

cooler temperatures also lead to a more prolonged grain filling

period, enabling the development of plumper, denser grains with

lower protein and gluten content. This dilution effect occurs

because the grains have more time to accumulate biomass, which

dilutes the concentration of proteins within the grain (Lama et al.,

2022; Zhang et al., 2022). Furthermore, the high precipitation and

lower VPD conditions in cooler environments enhance plant water

status by maintaining higher stomatal conductance and reducing

water loss, which supports better growth and biomass accumulation

and reduces the incidence of shriveled grains, as the plants were not

concentrating their resources on survival but rather on maximizing

growth and yield (Gibberd et al., 2000; Stoddard et al., 2006; Fakhet

et al., 2021). The negative correlation between precipitation and

grain protein concentration further supports this, as cooler, wetter

conditions typically result in lower protein content (Fowler, 2003;

Orlandini et al., 2011).

Traditionally, plant breeders have focused on single-trait analysis,

primarily yield, due to its direct economic impact, simplicity, and ease

of measurement (Luby and Shaw, 2009; Yan, 2021; Beavis and

Mahama, 2023). Yield-focused breeding is less resource-intensive
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and easier to implement, particularly in early breeding stages or

regions with limited resources. This approach has a strong historical

precedent due to the straightforward nature of phenotypic

measurement and selection processes (Luby and Shaw, 2009).

However, as the need for crops with multiple desirable traits like

disease resistance, drought tolerance, and nutritional quality grows,

the limitations of single-trait analysis are becoming clear (Merrick

et al., 2022). Multi-trait analysis, which considers genetic correlations

between traits, enhances predictive accuracy and efficiency and offers

a more comprehensive and sustainable approach. With advanced

statistical tools and computational resources becoming more

accessible, multi-trait analysis is increasingly adopted to address the

complex challenges of modern agriculture effectively (Guo et al.,

2014; Merrick et al., 2022).

The MTMPS index is a sophisticated quantitative genetic

technique used for the selection of suitable varieties across

various crop species such as bread wheat (Farhad et al., 2022),

elephant grass (Rocha et al., 2018), and maize (Olivoto et al., 2021;

Yue et al., 2022) and is free from the multicollinearity problem

(Sampaio Filho et al., 2023). According to the MTMPS results, two

varieties, Antalis (G4) and Core (G18), were consistently selected

across all regression parameters, indicating their broad adaptability

and robust performance across diverse environments, particularly

in drier and warmer conditions. Additionally, variety Furio Camillo

(G31) was positioned near the selection intensity threshold for the

RMSE parameter and ranked among the top six varieties for both R²

and S²di, suggesting it possesses valuable traits. Overall, Antalis (G4)

and Core (G18) varieties were consistently selected across all

regression parameters, showcasing their unique strengths. The

Antalis (G4) variety is optimal for grain yield and number of ears

per m², making it a top choice for high-yield production. In

contrast, the Core (G18) variety excels in protein content and
FIGURE 8

Comparative analysis of strengths and weaknesses of stable landraces across environments: proportion of each factor in the computed MTMPSI.
Smaller proportions (closer to the outer edge) indicate greater similarity to the ideotype for the trait within that factor. The dashed line represents
the expected value if all factors contributed equally. Refer to Table 4 for a detailed description of the factor analysis (FA). The 20, 25, 40, 50, 60, and
75 value indicate the contribution of each factor to the MTMPSI for each. Regression parameters: R2 (A), RMSE (B), and S2di (C), as per the Eberhart
and Russell (1966) model.
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gluten index, underscoring its potential for producing high-quality

wheat. However, both varieties exhibit the undesired trait of high

shriveled wheat grain, which should be addressed in future breeding

programs to enhance their overall quality.
5 Conclusions

This study underscores the critical influence of environmental

factors on the performance of durum wheat varieties in Southern

Italy, emphasizing the importance of genotype by environment

interaction (GEI) in breeding programs. The significant GEI effects

observed highlight the necessity for multi-environment trials to

accurately evaluate and enhance yield stability and quality traits

across diverse conditions. Our findings indicate that warm years

characterized by high temperatures, elevated vapor pressure deficit

(VPD), and water deficits adversely affect grain yield and quality,

leading to lower yields, reduced hectoliter weight, and increased

grain shriveling. Conversely, cooler years with sufficient water

availability and lower VPD foster better plant development,

resulting in higher yields, increased hectoliter weight, and a

greater number of spikes per square meter. The application of the

Multi-Trait Mean Performance Selection (MTMPS) index proved

to be an effective tool for identifying durum wheat varieties with

superior performance and stability, particularly under varying

environmental conditions. Varieties such as Antalis (G4) and

Core (G18) demonstrated broad adaptability and robust

performance, making them valuable candidates for high-yield and

quality wheat production. These findings suggest that future

breeding efforts should focus on multi-trait analysis to balance

yield with other critical traits such as disease resistance. In

conclusion, the integration of advanced statistical tools and

computational resources in multi-trait selection can significantly

improve the resilience and productivity of durum wheat varieties.

Addressing undesired traits like high grain shriveling in future

breeding programs will further enhance the overall quality and

stability of wheat crops, ensuring sustainable agricultural practices

in the face of climate change.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Frontiers in Agronomy 16
Author contributions

MHS: Data curation, Formal analysis, Investigation, Methodology,

Software, Supervision, Validation, Visualization, Writing – original

draft, Writing – review & editing. IDM: Data curation, Formal analysis,

Investigation, Project administration, Resources, Writing – review &

editing. LO: Data curation, Formal analysis, Investigation, Project

administration, Resources, Writing – review & editing. EC: Formal

analysis, Investigation, Project administration, Resources, Writing –

review & editing. PDV: Conceptualization, Supervision, Writing –

review & editing. MM: Conceptualization, Resources, Supervision,

Writing – review & editing, Project administration.
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fagro.2024.1466040/

full#supplementary-material
References
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). “Crop evapotranspiration
– guidelines for computing crop water requirements,” in FAO irrigation and drainage
paper 56/food and agriculture organization of the united nations. Rome.

Arnold, S. J. (2023). The selection surface and adaptive landscape for multiple traits
(Oxford University Press eBooks), 58–82. doi: 10.1093/oso/9780192859389.003.0005

Beavis,W., andMahama, A. A. (2023).Plant breeding basics. In:Quantitative genetics for plant
breeding (Iowa State University Digital Press). Available online at: https://iastate.pressbooks.pub/
quantitativegenetics/back-matter/plant-breeding-basics/ (Accessed 12 Jun 2024).
Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., and
Wood, E. F. (2018). Present and future köppen-geiger climate classification maps at 1-
km resolution. Sci. Data 5, 180214. doi: 10.1038/sdata.2018.214

Bernardo, R. (2020). Breeding for quantitative traits in plants. 3rd (Woodbury,
Minnesota: Stemma Press).

Bishwas, K. C., Poudel, M. R., and Regmi, D. (2021). AMMI and GGE biplot analysis
of yield of different elite wheat line under terminal heat stress and irrigated
environments. Heliyon 7, p.e07206. doi: 10.1016/j.heliyon.2021.e07206
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fagro.2024.1466040/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fagro.2024.1466040/full#supplementary-material
https://doi.org/10.1093/oso/9780192859389.003.0005
https://iastate.pressbooks.pub/quantitativegenetics/back-matter/plant-breeding-basics/
https://iastate.pressbooks.pub/quantitativegenetics/back-matter/plant-breeding-basics/
https://doi.org/10.1038/sdata.2018.214
https://doi.org/10.1016/j.heliyon.2021.e07206
https://doi.org/10.3389/fagro.2024.1466040
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Sellami et al. 10.3389/fagro.2024.1466040
Boncinelli, F., Dominici, A., Bondioni, F., and Marone, E. (2023). Consumers
bahavior towards the country-of-origin labeling policy: The case of the pasta market
in Italy. Agribusiness. 40(1), 46–69. doi: 10.1002/agr.21831

Bonfil, D. J., Abbo, S., Degen, D., Simchon, Y., and Ben-David, R. (2023). Towards
stable wheat grain yield and quality under climatic instability. Agron. J 115, 1622–1639.
doi: 10.1002/agj2.21351

Bux, C., Lombardi, M., Varese, E., and Amicarelli, V. (2022). Economic and
environmental assessment of conventional versus organic durum wheat production
in southern Italy. Sustainability 14, p.9143. doi: 10.3390/su14159143

Carucci, F., Gatta, G., Gagliardi, A., Bregaglio, S., and Giuliani, M. M. (2023).
Individuation of the best agronomic practices for organic durum wheat cultivation in
the Mediterranean environment: a multivariate approach. Agric. Food Secur 12, 12.
doi: 10.1186/s40066-023-00417-5

Cereals and Grains Association (2024). American association of cereal chemists
(AACC) approved methods of analysis. Available online at: https://www.cerealsgrains.
org/resources/Methods/Pages/default.aspx (Accessed 23 May 2024).

Cetin, O., Yildirim, M., Akinci, C., and Yarosh, A. (2022). Critical threshold
temperatures and rainfall in declining grain yield of durum wheat (Triticum durum
desf.) during crop development stages. Romanian Agric. Res 39, 247–257.
doi: 10.59665/rar3924

Costa, C., Costa, A. E. D. S., Neto, F. P. L., de Lima, M. A. C., Martins, L. S. S., and
Musser, R. S. (2023). Repeatability coefficient for fruit quality and selection of mango
hybrids using REML/BLUP analysis. Euphytica 219, 120. doi: 10.1007/s10681-023-
03249-3

Costa-Neto, G., Galli, G., Carvalho, H. F., Crossa, J., and Fritsche-Neto, R. (2021).
EnvRtype: a software to interplay enviromics and quantitative genomics in agriculture.
G3 Genes|Genomes|Genetics 11, jkab040. doi: 10.1093/g3journal/jkab040

Cullis, B. R., Smith, A. B., and Coombes, N. E. (2006). On the design of early
generation variety trials with correlated data. J. Agricultural Biological Environ. Stat 11,
381–393. doi: 10.1198/108571106x154443

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. J. R. Stat. Society: Ser. B (Methodological) 39, 1–
22. doi: 10.1111/j.2517-6161.1977.tb01600.x

Djanaguiraman, M., Narayanan, S., Erdayani, E., and Prasad, P. V. V. (2020). Effects
of high temperature stress during anthesis and grain filling periods on photosynthesis,
lipids and grain yield in wheat. BMC Plant Biol 20, 1–12. doi: 10.1186/s12870-020-
02479-0

Dupont, F. M., and Altenbach, S. B. (2003). Molecular and biochemical impacts of
environmental factors on wheat grain development and protein synthesis. J. Cereal Sci
38, 33–146. doi: 10.1016/S0733-5210(03)00030-4

Eberhart, S. A., and Russell, W. A. (1966). Stability parameters for comparing
varieties 1. Crop Sci 6, 36–40. doi: 10.2135/cropsci1966.0011183x000600010011x

Elahi, I., Saeed, U., Wadood, A., Abbas, A., Nawaz, H., and Jabbar, S. (2022). Effect of
climate change on wheat productivity.Wheat-Recent Advances. M. R. Ansari (London:
IntechOpen). doi: 10.5772/intechopen.103780

El Haddad, N., Choukri, H., Ghanem, M. E., Smouni, A., Mentag, R., Rajendran, K.,
et al. (2021). High-temperature and drought stress effects on growth, yield and
nutritional quality with transpiration response to vapor pressure deficit in lentil.
Plants 11, p.95. doi: 10.3390/plants11010095

Eltaher, S., Baenziger, P. S., Belamkar, V., Emara, H. A., Nower, A. A., Salem, K. F.
M., et al. (2021). GWAS revealed effect of genotype × environment interactions for
grain yield of Nebraska winter wheat. BMC Genomics 22, 1–14. doi: 10.1186/s12864-
020-07308-0

Etana, D., and Merga, D. (2021). Additive main effect and multiplicative interaction
model (AMMI) in plant breeding stability analysis: review. J. Agric. Res. Pesticides
Bioferti l izers 2. Available at : https://aditum.org/images/currentissue/
1628678596Galley_Proof.pdf.

Euronext (2023).World durum wheat market focus. Available online at: https://www.
euronext.com/en/news/world-durum-wheat-market-focus (Accessed 20 Jul. 2024).

Fakhet, D., Morales, F., Jauregui, I., Erice, G., Aparicio-Tejo, P. M., González-Murua,
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Piepho, H.-P., and Möhring, J. (2007). Computing heritability and selection response
from unbalanced plant breeding trials. Genetics 177, 1881–1888. doi: 10.1534/
genetics.107.074229

Pour-Aboughadareh, A., Khalili, M., Poczai, P., and Olivoto, T. (2022). Stability
indices to deciphering the Genotype-by-Environment Interaction (GEI) effect: An
applicable review for use in plant breeding programs. Plants 11, p.414. doi: 10.3390/
plants11030414

R Core Team (2013).R: A language and environment for statistical computing. In: R
foundation for statistical computing (Vienna, Austria). Available online at: https://www.
scirp.org/(S(vtj3fa45qm1ean45vvffcz55))/reference/ReferencesPapers.aspx?
ReferenceID=1742158 (Accessed 1 March 2021).

Revelle, W. (2024). psych: procedures for psychological, psychometric, and personality
research. R-packages. Available online at: https://cran.r-project.org/web/packages/
psych/index.html (Accessed 23 May 2024).

Rocha, J., MaChado, J. C., and Carneiro, P. C. S. (2018). Multitrait index based on
factor analysis and ideotype-design: proposal and application on elephant grass
breeding for bioenergy. GCB Bioenergy 10, 52–60. doi: 10.1111/gcbb.12443

Rout, N., Mishra, D., Mallick, M. K., and Mallick, P. K. (2022). Dealing with Imbalanced
Data. In: Electronic Systems and Intelligent Computing: Proceedings of ESIC 2021. Singapore:
Springer Nature Singapore. 2022, 383–390. doi: 10.1007/978-981-16-9488-2_35

Sampaio Filho, J. S., Olivoto, T., Campos, M. D. S., and Oliveira, E. J. D. (2023).
Multi-trait selection in multi-environments for performance and stability in cassava
genotypes. Front. Plant Sci 14. doi: 10.3389/fpls.2023.1282221

Scavo, A., Mauromicale, G., and Ierna, A. (2023). Genotype × environment
interactions of potato tuber quality characteristics by AMMI and GGE biplot
analysis. Scientia Hortic 310, 111750. doi: 10.1016/j.scienta.2022.111750

Shang, Y., Lin, X., Li, P., Gu, S., Lei, K., Wang, S., et al. (2020). Effects of supplemental
irrigation at the jointing stage on population dynamics, grain yield, and water-use
efficiency of two different spike-type wheat cultivars. PloS One 15, e0230484.
doi: 10.1371/journal.pone.0230484
Frontiers in Agronomy 18
Sihag, P., Kumar, U., Sagwal, V., Kapoor, P., Singh, Y., Mehla, S., et al. (2024). Effect
of terminal heat stress on osmolyte accumulation and gene expression during grain
filling in bread wheat (Triticum aestivum L.). Plant Genome 17, e20307. doi: 10.1002/
tpg2.20307

Silva, C. M., Mezzomo, H. C., Ribeiro, J. P. O., De Freitas, D. S., and Nardino, M.
(2023). Multi-trait selection of wheat lines under drought-stress condition. Bragantia
82, e20220254. doi: 10.1590/1678-4499.20220254

Soltani, A., and Sinclair, T. R. (2012). Modeling physiology of crop development,
growth and yield. Wallingford CA: CAB Int. Press pp, 322. doi: 10.1079/
9781845939700.0000

Sparks, A. (2018). nasapower: A NASA POWER global meteorology, surface solar
energy and climatology data client for R. J. Open-Source Software 3, 1035.
doi: 10.21105/joss.01035

Stoddard, F. L., Balko, C., Erskine, W., Khan, H. R., Link, W., and Sarker, A. (2006).
Screening techniques and sources of resistance to abiotic stresses in cool-season food
legumes. Euphytica 147, 167–186. doi: 10.1007/s10681-006-4723-8

Sugasawa, S., and Kubokawa, T. (2023). “General mixed-effects models and BLUP,”
in Mixed-effects models and small area estimation (Springer Briefs in Statistics,
Springer, Singapore). doi: 10.1007/978-981-19-9486-9_2

Tajalifar, M., and Rasooli, M. (2022). Importance of BLUP method in plant breeding.
J. Plant Sci. Phytopathol 6, 040–042. doi: 10.29328/journal.jpsp.1001072

Tataw, J. T., Baier, F., Krottenthaler, F., Pachler, B., Schwaiger, E., Wyhlidal, S., et al.
(2016). Climate change induced rainfall patterns affect wheat productivity and
agroecosystem functioning dependent on soil types. Ecol. Res 31, 203–212.
doi: 10.1007/s11284-015-1328-5

Torbica, A., and Mastilović, J. (2008). Influence of different factors on wheat proteins
quality. Food Feed Res 35, 47–52.

Triboï, E., Martre, P., and Triboï-Blondel, A.-M. (2003). Environmentally-induced
changes in protein composition in developing grains of wheat are related to changes in
total protein content. J. Exp. Bot 54, 1731–1742. doi: 10.1093/jxb/erg183

Viggiani, P. (2009). ““Frumento in italia“,” in Il grano. Eds. P. Viggiani, M. G. D'Egidio, B.
Saviotti, R. Angelini and Di F. N. Milano (Bayer CropScience Press, Italy), 1–91.

Wang, L., Ma, L., Li, Y., Geilfus, G. M., Wei, J., Zheng, F., et al. (2023). Managing
nitrogen for sustainable crop production with reduced hydrological nitrogen losses
under a winter wheat–summer maize rotation system: an eight-season field study.
Front. Plant Sci 14. doi: 10.3389/fpls.2023.1274943

Wehrli, M. C., Kratky, T., Schopf, M., Scherf, K. A., Becker, T., and Jekle, M. (2021).
Thermally induced gluten modification observed with rheology and spectroscopies. Int.
J. Biol. Macromolecules 173, 26–33. doi: 10.1016/j.ijbiomac.2021.01.008

Yan, W. (2015). Mega-environment analysis and test location evaluation based on
unbalanced multiyear data. Crop Sci 55, 113–122. doi: 10.2135/cropsci2014.03.0203

Yan, W. (2021). A systematic narration of some key concepts and procedures in plant
breeding. Front. Plant Sci 12. doi: 10.3389/fpls.2021.724517

Yang, J., Feng, Y., Chi, T., Wen, Q., Liang, P., Wang, A., et al. (2023). Mitigation of
Elevated CO2 Concentration on Warming-Induced Changes in Wheat Is Limited
under Extreme Temperature during the Grain Filling Period. Agronomy 13, 1379–1379.
doi: 10.3390/agronomy13051379

Yue, H., Olivoto, T., Bu, J., Li, J., Wei, J., Xie, J., et al. (2022). Multi-trait selection for
mean performance and stability of maize hybrids in mega-environments delineated
using envirotyping techniques. Front. Plant Sci 13. doi: 10.3389/fpls.2022.1030521

Zabn, K., and Alsajri, F. (2022). Effect of stopping irrigation at different growth stages
in wheat growth and dry matter accumulation. Iraqi J. desert Stud 12, 18–30.
doi: 10.36531/ijds.2022.176691

Zahra, N., Hafeez, M. B., Wahid, A., Al Masruri, M. H., Ullah, A., Siddique, K. H. M.,
et al. (2022). Impact of climate change on wheat grain composition and quality. J. Sci.
Food Agric 103, 2745–2751. doi: 10.1002/jsfa.12289

Zhang, Z., Xing, Z., Zhou, N., Zhao, C., Liu, B., Jia, D., et al. (2022). Effects of post-
anthesis temperature and radiation on grain filling and protein quality of wheat
(Triticum aestivum L.). Agronomy 12, 2617–2617. doi: 10.3390/agronomy12112617
frontiersin.org

https://doi.org/10.5897/ajb10.2197
https://doi.org/10.3389/fpls.2021.772907
https://doi.org/10.25148/lawrev.14.3.7
https://doi.org/10.3390/agronomy14010102
https://doi.org/10.3390/agronomy14010102
https://doi.org/10.3390/agronomy11091839
https://doi.org/10.1111/2041-210x.13384
https://doi.org/10.2134/agronj2019.03.0220
https://doi.org/10.2134/agronj2019.03.0220
https://doi.org/10.1002/agj2.20741
https://doi.org/10.1534/genetics.107.074229
https://doi.org/10.1534/genetics.107.074229
https://doi.org/10.3390/plants11030414
https://doi.org/10.3390/plants11030414
https://www.scirp.org/(S(vtj3fa45qm1ean45vvffcz55))/reference/ReferencesPapers.aspx?ReferenceID=1742158
https://www.scirp.org/(S(vtj3fa45qm1ean45vvffcz55))/reference/ReferencesPapers.aspx?ReferenceID=1742158
https://www.scirp.org/(S(vtj3fa45qm1ean45vvffcz55))/reference/ReferencesPapers.aspx?ReferenceID=1742158
https://cran.r-project.org/web/packages/psych/index.html
https://cran.r-project.org/web/packages/psych/index.html
https://doi.org/10.1111/gcbb.12443
https://doi.org/10.1007/978-981-16-9488-2_35
https://doi.org/10.3389/fpls.2023.1282221
https://doi.org/10.1016/j.scienta.2022.111750
https://doi.org/10.1371/journal.pone.0230484
https://doi.org/10.1002/tpg2.20307
https://doi.org/10.1002/tpg2.20307
https://doi.org/10.1590/1678-4499.20220254
https://doi.org/10.1079/9781845939700.0000
https://doi.org/10.1079/9781845939700.0000
https://doi.org/10.21105/joss.01035
https://doi.org/10.1007/s10681-006-4723-8
https://doi.org/10.1007/978-981-19-9486-9_2
https://doi.org/10.29328/journal.jpsp.1001072
https://doi.org/10.1007/s11284-015-1328-5
https://doi.org/10.1093/jxb/erg183
https://doi.org/10.3389/fpls.2023.1274943
https://doi.org/10.1016/j.ijbiomac.2021.01.008
https://doi.org/10.2135/cropsci2014.03.0203
https://doi.org/10.3389/fpls.2021.724517
https://doi.org/10.3390/agronomy13051379
https://doi.org/10.3389/fpls.2022.1030521
https://doi.org/10.36531/ijds.2022.176691
https://doi.org/10.1002/jsfa.12289
https://doi.org/10.3390/agronomy12112617
https://doi.org/10.3389/fagro.2024.1466040
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org

	Assessing temporal variability in durum wheat performance and stability through multi-trait mean performance selection in Mediterranean climate
	1 Introduction
	2 Materials and methods
	2.1 Experimental site
	2.2 Climate influence assessment
	2.3 Agronomic management and experimental design
	2.4 Phenotypic and quality traits
	2.5 Statistical analysis
	2.5.1 Climatic impact on crop development
	2.5.2 Variance estimation with random effects model
	2.5.3 Mean performance and stability analyses


	3 Results
	3.1 Climatic impact on crop development
	3.2 Variance estimation with random effects model
	3.3 Factor analysis of durum wheat traits
	3.4 Correlations between agronomic and quality traits
	3.5 Identifying superior genotypes with the MTMPS index

	4 Discussion
	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


