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Unlocking the potential of
simulated hyperspectral imaging
in agro environmental analysis:
a comprehensive study of
algorithmic approaches
Shafaq Khan1*, Munir Majdalawieh2, Boubakeur Boufama1,
Yajan Sharma1 and Ashwitha Basani1

1School of Computer Science, University of Windsor, Windsor, ON, Canada, 2College of
Technological Innovation, Zayed University, Dubai, United Arab Emirates
This study focuses on identifying and evaluating the severity of powdery mildew

disease in tomato plants. The uniqueness of this work lies in combining the

imaging and advanced deep learning methods to develop a technique that

transforms Red Green Blue (RGB) images into Simulated Hyperspectral Images

(SHSI) to perform spectral and spatial analysis for precise detection and

assessment of powdery mildew severity, thereby enhancing disease

management. Furthermore, this research evaluates three advanced pre-trained

VGG16 models, ResNet50 and EfficientNet-B7 algorithms for image

preprocessing and feature extraction. Extracted features are passed to a neural

network generator model to convert RGB image features into SHSIs, providing

insights into the spectrum. This method enables the image analysis to perform

assessments from SHSIs for health classification using Normalized Difference

Vegetation Index (NDVI) values, which are meticulously compared with accurate

hyperspectral data using metrics like mean absolute error (MAE) and root mean

squared error (RMSE). This strategy enhances precision farming, environmental

monitoring, and remote sensing accuracy. Results show that ResNet50’s

architecture offers a robust framework for this study’s spectral and spatial

analysis, making it a suitable choice over VGG16 and EfficientNet-B7 for

transforming RGB images into SHSI. These simulated hyperspectral images

offer a scalable and affordable approach for precise assessment of crop

disease severity.
KEYWORDS

hyperspectral imaging, powdery mildew, deep learning, plant disease detection, neural
networks, feature extraction techniques, image processing in agriculture
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1 Introduction

Agriculture has played a role in societies throughout history as a

food source and continues to be significant in the present day.

Among the various crops grown, tomatoes are recognized as a rich

source of vitamins, minerals, fibre and unique protein components.

Moreover, their potential to lower cancer risk highlights their value

in nutrition. Nevertheless, growing tomatoes comes with challenges

due to plant diseases impacting crop yield and quality. Various

diseases, like those caused by viruses, bacteria and different types of

fungi, can seriously harm the health of plants. These pathogens can

lead to symptoms like wilting, spots, on leaves and even plant death.

Bacterial infections often show up as localized spots or areas of

decay on plant tissues, while fungal infections can spread

throughout the plant, affecting everything from leaves to seeds.

Powdery mildew caused by the fungus Leveillula Taurica stands out

as one of the detrimental diseases affecting tomato plants. Factors

like weather patterns exacerbate the spread of this disease, posing

increasing difficulties for farmers.

Additionally, oomycetes, a group of organisms that’s genetically

different but look similar to fungi, pose unique challenges to plant

health by causing leaf discoloration or premature death of plants.

To simplify classification and management, plant diseases are

generally grouped into fungal, viral and bacterial infections. A

visual representation in Figure 1 outlines these disease types,

providing a framework for recognizing their characteristics

and relationships.

Traditionally, identifying such diseases has relied on time-

consuming manual checks that may only sometimes be accurate

(Rahman et al., 2023). When faced with these obstacles, scientists

explore technical methods to identify plant diseases, especially

when dealing with tomato powdery mildew. Researchers have

also used pre-trained deep-learning models to tackle agricultural

challenges (Majdalawieh et al., 2023). Hyperspectral imaging (HSI)

technology is being explored for environmental monitoring and

remote sensing of geographic locations and image analysis, mainly

at the industrial level. However, research is also undergoing for its

application at the agricultural level. HSI captures detailed data

across wavelengths enabling early detection of diseases that may

not be visible, to the naked eye or standard RGB cameras. This HSI

image-based approach can offer insights into plant health. Deep

learning models, and neural networks (CNNs) have shown

impressive performance in categorizing plant diseases based on

image data. These models can handle large datasets by recognizing

patterns indicative of specific diseases. Research has showcased the

success of models like ResNet, AlexNet and GoogleNet in achieving

accuracy in identifying plant diseases. Despite their benefits, we face

limitations in quantitative analysis with traditional RGB images.

Moreover, RGB imaging captures three wavelength bands (red,

blue, and green), potentially overlooking subtle disease symptoms

that appear beyond the visible spectrum.

This limitation implies that when visible symptoms become

apparent, the disease might have already inflicted harm to the plant

(De Silva and Brown, 2022). Additionally, environmental elements,

like lighting conditions and background noise, can often affect RGB

images, potentially compromising the accuracy of disease detection
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models (Ramesh and Vydeki, 2020; Li and Li, 2022). Relying solely

on RGB images may result in delayed identification of plant

diseases, underscoring the need for sophisticated imaging

methods such as HSI to enhance precision and enable early

detection. To truly grasp the potential of HSI technology, it’s

helpful to understand the constraints of RGB images in this

scenario. Traditional color images consist of three wavelength

bands: red (around 650 nm), green (520 nm) and blue (475 nm)

light (Arad et al., 2020). On the other hand, hyperspectral systems

can capture a range of light wavelengths that can go beyond what

the human eye can see in the visible spectrum (400 700 nm). This

enhanced capability enables the collection of data across various

visible and invisible wavelengths (Pushparaj et al., 2021).

Hyperspectral technology is widely explored as a tool for

detecting plant diseases. This method involves analyzing

wavelengths within the spectrum, mainly focusing on the visible

to near-infrared and sometimes short-wave infrared ranges. By

capturing data from numerous narrow bands, hyperspectral sensors

can effectively detect subtle changes in plant health caused by

diseases. This advanced technology enables disease detection

before visible symptoms manifest, facilitating differentiation

between different disease types. Hyperspectral imaging technology

can play a role in real-time monitoring of plant health on a large
FIGURE 1

Plant Diseases Fundamental (Devaraj et al., 2019).
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scale, providing precise and timely information to support modern

agricultural practices (Thomas et al., 2020; Bock et al., 2019; FAO,

2019). This advanced imaging method may allow us to see plant

details (Figure 2) that are not visible to the naked eye or regular

cameras. The data obtained can be compared to healthy plant

dimensions, offering insights beyond what traditional imaging

techniques can provide. This new method marks a step ahead in

monitoring crop health and could transform efforts to ensure

food security.

This strategy is particularly beneficial for invasive evaluations of

plant health. For instance, in Figure 3 we can see a side-by-side

comparison of a RGB image (3a) and a hyperspectral image (3b) of

tomato leaves. These images were taken under conditions at a

wavelength of 1390 nm. The hyperspectral image provides insights

into the structure and composition of the leaves, which is crucial for

studying tomato leaves given their high transpiration rates and
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vulnerability to water stress. This imaging method allows

researchers to gather information about leaf shape and health

without contact by carefully selecting illumination wavelengths

and areas of interest (Zhao T. et al., 2020).

Although hyperspectral imaging technology is robust,

its implementation can be expensive and complicated

(Nguyen et al., 2021). Additionally, it may sometimes struggle

with capturing data on a large scale to overcome these challenges,

simulated hyperspectral images must be created. This approach can

potentially improve the training of machine learning algorithms in

deep learning scenarios and introduce opportunities for object and

scene recognition without relying on complex imaging equipment.

Consequently, the primary goal of this research is to enhance the

precision and accuracy of disease detection and health assessment

in tomato plants by developing a novel technique that transforms

RGB images into Simulated Hyperspectral Images (SHSI).
FIGURE 2

Electromagnetic spectrum with visible and infrared light displayed on the lower bar (Lowe et al., 2017).
FIGURE 3

RGB image and Hyperspectral image at a 1390 nm wavelength (Huang and Chang, 2020; Zhao T, et al., 2020).
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Additionally, the research delves into the evaluation of deep

learning models by comparing three pre-trained models for

feature extraction of plant images.
2 Related work

Zhao J. et al. (2020) tackled the high costs and low-resolution

problems of hyperspectral imaging by developing a method to

reconstruct these images from simple RGB photos taken with a

smartphone camera. They used a model called HSCNN-R,

optimized to convert RGB images of tomatoes into hyperspectral

photos accurately. These converted images were then used to assess

the quality of the tomatoes by measuring specific quality indicators.

The results matched closely with actual lab measurements, proving

that this method is effective and promising for real-time fruit quality

monitoring in agriculture and beyond. However, the hyperspectral

images were taken using an expensive camera.

Moreover, a comparison of deep learning models was not

undertaken in this study. Other research (Lin et al., 2019) examines

the powdery mildew disease and its severity in cucumbers via a

convolutional neural network (CNN) model using semantic

segmentation. Even though they could identify the condition with

96.08% accuracy, their images were captured in a controlled

environment, and the considered dataset was inefficient in size and

variety. Another advanced technique was used by researchers

(Nguyen et al., 2021) to identify illnesses in grapevines brought on

by the grapevine vein-clearing virus(GVCV). They captured fine-

grained images of healthy and diseased grapevines using a specialized

hyperspectral sensor camera that records a broad spectrum of light

beyond what human eyes can perceive. They also developed

specialized markers, such as the normalized pheophytization index

(NPQI), to better detect the illness, Converting ordinary RGB photos,

such as those taken with our smartphones, into hyperspectral

photographs, which record much more light-related data. They

tested three distinct approaches using a set of 450 conventional

photos and their corresponding hyperspectral variants. Convhs_5,

the most straightforward approach, produced passable results but

lacked clarity. The best approach that produced findings that were

both obvious and practical was Enhanced-ResNet. However, their

lack of computing capacity prevented them from testing the most

sophisticated approach, Dense-HSCNN, to its full potential

(Pushparaj et al., 2021). The problem is converting RGB

photographs from a conventional camera into comprehensive

hyperspectral images, which can reveal much more information

about an object or scene than what is first seen. They developed a

method named C2H-Net based on an artificial intelligence

framework to produce finely detailed images from ordinary

photographs. They developed and made a new set of high-

resolution photographs available to the public, dubbed C2H-Data,

to aid their study and future investigations. Researchers may find a

wealth of information in this collection, which includes several

photos of various things. They demonstrated the superiority of

their approach over several current techniques by testing their new

system on this collection as well as two others (Yan, L et al., 2020).

Hyperspectral imaging technology is like a compelling camera that
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records much more information about what it sees, which is very

beneficial for determining the composition of various objects. Their

study examines why these powerful cameras are utilized less

frequently and was published in Scientific Reports. They are costly

and challenging to operate, making it difficult to apply them to

regular requirements like assisting with healthcare or determining

food quality. To address this issue, the researchers looked at more

than 25 clever methods to extract comparable hyperspectral

information from the ordinary pictures we take with our phones or

cameras. They discovered two primary approaches: one that

functions best when there is a shortage of data and another that

uses deep learning, a form of artificial intelligence, to do its magic in

situations with abundant data. They determined the benefits and

drawbacks of each strategy by testing them using publicly available

web data (Zhang et al., 2022). A unique technology to transform

ordinary camera photos (RGB images) into highly detailed images

that can see beyond what our eyes can, much like having supervision

in terms of colours. This study used a technique known as spectral

super-resolution to improve the image in a way that allows us to see

more colours and features that are often undetectable, in contrast to

conventional approaches that attempt to make the image clearer or

sharper. Much important information is lost when attempting to

extract hyperspectral information (greater colour detail) from these

essential photographs since it was never collected in the first place.

The researchers created a multi-scale deep convolutional neural

network (CNN), a kind of artificial intelligence, as a clever

computer model to address the issue. Like a detective, their model

can locate and utilize hints in the image to reconstruct the missing

colour details. It extracts visible and hidden colour information by

examining various sizes of photos (Yan Y et al., 2018). The challenge

was centered around an interesting technological challenge in 2020:

converting standard camera photos (the RGB kind we all take) into

incredibly detailed images with significantly more colour

information, like what you would get with hyperspectral imaging.

They had run this challenge twice, so this was not their first rodeo.

Two different competitions were set up: one named “Clean,” where

the objective was to create these intricate graphics from flawless,

noise-free RGB photos by employing some clever calculations, and

another called “Real World,” where the challenge became more

difficult. This time, participants were given noisy, compressed

images from cameras that weren’t explicitly calibrated for the task

images, similar to what most of us have on our phones. A vast

collection of 510 hyperspectral photos of nature scenes was provided

to add interest and provide enough material for everyone to work. In

the end, 14 teams advanced to the championship round out of the

more than 100 participants who signed up for the challenge (Arad

et al., 2020). By sharing a unique collection of plant photos, a group of

academics made significant progress in smart farming in 2023. These

images, however, are not just any photos. They were captured using a

hyperspectral camera, an incredibly sophisticated sensor that sees

details that ordinary cameras miss. Farmers can produce more and

better crops with this type of camera since it can tell us a lot more

about plants, such as whether they need more water. A significant

issue in the past was the need for sufficient high-resolution plant

images to develop more intelligent agricultural instruments. To build

a massive collection of these hyperspectral photos, the team chose to
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take 385 pictures of various plants across Russia in the summer of

2021. With 237 distinct colour bands, these photos exhibit various

hues surpassing humans’ sight ability (Gaidel et al., 2023).

To summarize, researchers (Lin et al., 2019), Nguyen et al.

(Nguyen et al., 2021), and Pushparaj et al. (Pushparaj et al., 2021)

have explored utilizing deep learning and hyperspectral imaging to

identify illnesses and stress in plants, such as cucumbers and

grapevines. They used a range of models, from CNNs to

Enhanced-ResNets, and explored ways to reduce the hurdles to

acquiring advanced imaging technologies by recreating

hyperspectral images from regular RGB images. Our research,

which takes inspiration from these initiatives, offers a novel

technique for simulating hyperspectral images from RGB images.

This will enable a larger audience to benefit from the sophisticated

capabilities of hyperspectral analysis without requiring expensive

equipment. Furthermore, our research will explore three advanced

pre-trained VGG16 models, ResNet50 and EfficientNet-B7

algorithms, to find the most suitable one for image preprocessing

and feature extraction. Our solution aims to improve affordability

and agricultural sustainability by integrating deep learning

techniques to automate disease diagnosis and utilizes simulated

hyperspectral data for complete plant health evaluation.
3 Materials and methods

This research presents a novel method (Figure 4) that blends

sophisticated imaging and computer science to enhance how we

analyze plant health. We transform standard RGB images into

Simulated Hyperspectral Images (SHSI). These images reveal details

about plant health that are usually invisible to the naked eye. We use
Frontiers in Agronomy 05
three advanced pre-trained models to extract features from these

images: VGG-16 (Alatawi et al., 2022), RESNET-50 (Mandal et al.,

2021), and EfficientB7 (Adinegoro et al., 2023). Next, we evaluate

the metrics of our SHSI by comparing them to original

hyperspectral images using two key measures: Mean Absolute

Error (MAE) and Root Mean Square Error (RMSE). This step is

crucial as it allows us to verify how effectively each model replicates

the hyperspectral data. We also carry out detailed spectral and

spatial analyses of the generated images.

We calculate important spectral indices like the Normalized

Difference Vegetation Index (NDVI) and the Enhanced Vegetation

Index (EVI) and spatial features such as Haralick values to gain a

fuller picture of plant health (Devaraj et al., 2019. For each image,

we measure NDVI values and assess the severity of vegetation

health based on established threshold values (Huang and Chang,

2020; Sreedevi and Manike, 2022). This thorough approach

showcases our dedication to advancing agricultural techniques

through the latest technology, ensuring accurate plant health

assessments with the help of deep learning and innovative

imaging solutions (Gaidel et al., 2023; Gonog and Zhou, 2019).
3.1 Preparing the dataset

Our research relied heavily on three benchmark datasets, which

provided vital context for analysis and comparison. These

benchmark datasets were carefully selected to offer a consistent

foundation for evaluating the effectiveness and performance of our

suggested techniques. By adding these benchmarks, our results

become more dependable and broadly applicable, encouraging a

more thorough assessment of our models compared to accepted
FIGURE 4

Block diagram of the proposed method.
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industry norms (Sreedevi and Manike, 2022; Lowe et al., 2017). In

this dataset preparation stage, our work strategically uses OpenCV’s

versatility to collect a dynamic range of real-time images. These

photos form the basis of our study on the severity of plant diseases,

emphasizing the widespread problem of powdery mildew (Lin et al.,

2019). The carefully assembled dataset for this study is notable for

its diversity and comprehensiveness. We have included examples of

several phases of powdery mildew infection to guarantee a wide

range of circumstances for a comprehensive investigation of the

suggested approaches (Nguyen et al., 2021; Gaidel et al., 2023). The

range of infection severity, from early beginnings to severe signs, is

covered in this carefully chosen collection, which strengthens the

dataset’s resilience and representativeness. In conclusion, the

foundation of this research is the creation of our diverse dataset,

which includes benchmark datasets, guaranteeing a careful and

ethical examination of our suggested methodologies in the context

of plant disease assessment (Sreedevi and Manike, 2022).

3.1.1 Dataset 1: Leaf disease dataset
Dataset-1 is publicly available at https://data.mendeley.com/

datasets/tywbtsjrjv/1. This dataset is an extensive compilation of

61,486 photos covering 39 distinct classes of plant leaves, including

background shots devoid of leaves, as well as specimens in good

health and those afflicted with various diseases. Six augmentation

techniques have been used to improve its volume and diversity.

These approaches include rotation, scaling, noise injection, flipping,

gamma correction, and PCA colour augmentation. Although many

different plant species exist in the dataset, our work specifically

focuses on the tomato classes. We use images in various conditions,

from healthy to diseased, to develop and test our suggested method

for plant identification (Arun Pandian and Gopal, 2019).

3.1.2 Dataset 2: Dataset of Tomato leaves
The link to access this dataset is https://data.mendeley.com/

datasets/ngdgg79rzb/1.This dataset offers many photos of tomato

leaves that have been carefully selected from two different sources

and are intended for the in-depth examination of various plant

diseases. Ten types of tomato leaf conditions, including both

healthy and diseased states, are included in the initial half of the

dataset, which is reduced to a consistent dimension for analysis

from the PlantVillage database. The second section contains photos

from Taiwan that have been greatly enhanced through various

augmentation techniques to improve the dataset’s diversity and

usefulness. The images combine single and multiple-leaf scenarios

against simple and complicated backdrops (Huang and

Chang, 2020).

3.1.3 Dataset 3: BGU iCVL Hyperspectral
Image Dataset

This HSI image dataset is available at https://icvl.cs.bgu.ac.il/

hyperspectral/. This dataset represents a comprehensive collection

of hyperspectral photographs using a high-resolution Specim PS

Kappa DX4 hyperspectral camera, which recorded 201 photos in

519 spectral bands between 400 and 1000 nm. The spatial resolution
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of each image is 1392 x 1300, and the pixel values range from 0 to

4095, which corresponds to the 12-bit depth of the camera.

The dataset comprises.Mat files with data down sampled to 31

spectral channels for the 400 nm to 700 nm range for practicality’s

sake. Although the dataset includes photos of various plant species,

this work focuses only on pepper plants. By using this

comprehensive spectral information, we may improve our

comprehension and analysis of plants health and disease aspects

(Arad and Ben-Shahar, 2016).
3.2 Image preprocessing

3.2.1 Grayscale conversion
Grayscale image conversion is our first step in the preparation

pipeline. This conversion reduces the complexity of the picture data

by concentrating only on intensity variation rather than colour,

which is essential for the further image processing stages. The

grayscale conversion is fundamental because it eliminates colour

distraction and enhances aspects like texture and form that are

important for assessing plant health. Although the code snippets do

not specifically demonstrate the process, converting an RGB image

to grayscale usually entails averaging the colour channels or using a

more complex formula to resemble human vision closely. Grayscale

photos allow us to concentrate on the structural features of the

leaves, which are essential for spotting deficits or illnesses in plant

health monitoring.

3.2.2 Thresholding for binary mask creation
We use thresholding to produce a binary mask separating plant

leaves from the backdrop after grayscale conversion. This step is

essential to isolate the leaf areas of interest. Otsu’s thresholding

approach is specifically utilized, autonomously ascertaining the

ideal threshold value to distinguish the leaf pixels from the

backdrop. The product is a binary picture with a black backdrop

and white leaf regions. Our code uses threshold_otsu from the

skimage.filters to determine this threshold value. The filter package

is then applied to the grayscale picture. This procedure produces a

binary mask that makes it possible to precisely separate the leaf from

its surrounds, which is necessary for further feature extraction

and analysis.
3.2.3 Morphological operations
Morphological techniques like closure are used to the binary

mask to improve the segmentation further. These actions assist in

connecting nearby items that belong to the same leaf but were

divided by the thresholding process and filling in tiny gaps within

the discovered leaf regions. Closing works exceptionally well to

provide a more accurate reproduction of the leaf’s form and to

smooth out the leaf’s outline. This is done in the preprocessing

script using close from skimage.morphology and a structural

element (or kernel) specified by square(3). By enhancing its

quality, this procedure makes the binary mask a more dependable

basis for obtaining significant characteristics from the leaf.
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3.2.4 Clearing the border
The image’s border must be cleared to remove any noise or

artifacts touching the edges during preprocessing. This method

guarantees that the analysis concentrates only on characteristics

entirely present in the picture, preventing errors brought about by

partially present objects or irrelevant noise at the edges. To do this,

use the clear_border method from skimage.segmentation eliminates

any related elements that encounter the picture border. This step

further cleans the binary mask to guarantee that the following

analysis is predicated on distinct, unambiguous representations of

the leaf.

3.2.5 Application of the preprocessed mask
Ultimately, the original (or suitably transformed) picture is

applied with the preprocessed mask, which separates the leaf pixels

from the surrounding pixels. To preserve just the pixels inside the

leaf regions for additional examination, the binary mask is

multiplied element by element with the original picture data in

this application. The workflow assumes this step even if it is not

shown in the given snippets since the separated leaf sections would

be the main focus of the subsequent feature extraction and analysis

procedures. Applying the binary mask guarantees that the leaf

receives all the attention it needs, allowing for a more thorough

and precise assessment of its health.

For the deep learning models to reliably estimate plant health

based on the visual information retrieved from the photos, each of

these preprocessing stages is essential to prepare the images for the

rigorous analysis that comes next. Figure 5 shows the RGB images

before the pre-processing is done. Here in these images, we can

detect the white powdery spots on the leaves, which signifies the

leaves have some disease.
3.3 Feature extraction with the models
(VGG16, RestNet50, EfficientNet-B7)

3.3.1 VGG-16
In our research, the VGG-16 model is adapted as a crucial feature

extractor within our pipeline because of its robust convolutional neural
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network architecture initially developed for image classification. By

configuring VGG-16 without its top layers, focusing instead on its

convolutional base, we harness the model to capture comprehensive

feature maps from input images. The model, pre-trained with

ImageNet weights, outputs data from its ‘block5_pool’ layer. This

output offers a dense and insightful representation of the essential

features of the images optimized for further processing. The procedure

begins with the image preprocessing to fit VGG-16’s requirements.

This includes resizing the image to 224x224 pixels, converting it to

grayscale, and applying a binary threshold. Morphological operations

are further employed to highlight significant areas within the image.

The processed image is then converted into a 4D tensor and

normalized, aligning it with the input specifications of the VGG-16

model, ensuring the data is in an optimal state for feature extraction.

These extracted features serve as the input to our specially designed

generator model, which includes layers that upscale the feature maps to

simulate hyperspectral images with a desired spectral resolution of 31

bands. The generated hyperspectral images are then utilized to

compute various spectral indices and features, including NDVI and

Haralick texture features, which are essential for analyzing vegetation

health. In summary, our work demonstrates an innovative application

of the VGG-16 model, extending its use beyond traditional image

classification to generate valuable hyperspectral simulations. These

simulations are integral for scientific analysis and environmental

monitoring, showcasing the versatility and adaptability of deep

learning techniques in tackling real-world challenges in image

processing and remote sensing.

Figure 6 illustrates VGG16’s architecture with 13 convolutional

layers, 5 Max Pooling layers, and 3 Dense layers, totalling 21 layers.

Remarkably, it employs 16 weight layers by repeating 3x3

convolution filters, 2x2 max pool layers, and consistent padding

throughout, distinguishing itself with a focus on simplicity and

effectiveness. The fully connected layers at the end culminate in a

softmax layer for 1000-way ILSVRC classification.

3.3.2 RESENET50
In our research, we have adapted the ResNet50 model, a

sophisticated deep convolutional neural network, as a feature

extractor for processing images aimed at spectral analysis and
FIGURE 5

RGB images considered before pre-processing (Arun Pandian and Gopal, 2019; Huang and Chang, 2020).
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hyperspectral image simulation. The ResNet50 model, known for its

deep architectural efficiency, was configured with pre-trained

ImageNet weights, excluding its classification layers. This

configuration targets the convolutional base of the model,

particularly leveraging the output from the ‘conv5_block3_out’

layer. This specific layer was chosen for its capability to produce

high-level, abstract representations of input images, capturing

crucial feature maps essential for downstream processing tasks.

The images undergo a rigorous preprocessing routine before feature

extraction. This includes conversion to RGB format, grayscale

transformation, application of a binary threshold, and execution

of morphological operations such as closing and clearing borders.

These steps significantly enhance the isolation of pertinent features

while minimizing background noise. Subsequently, the images are

formatted into a tensor suitable for ResNet50 through the

`preprocess_input` function, standardizing the pixel values to fit

the model’s input requirements. Upon preprocessing, the images

are inputted into ResNet50, where the model extracts a dense

feature map from the processed images. These extracted features

are then utilized as inputs to a generator model designed to upscale

the features and simulate a hyperspectral image encompassing

multiple spectral bands. This innovative application underscores

the versatility of the ResNet50 model, demonstrating its extension

beyond traditional image classification to facilitate advanced tasks

like environmental monitoring and analysis within our

research framework.

ResNet-50 is a version of ResNet, a convolutional neural

network with 50 layers. This includes 48 convolution layers, one

MaxPool layer, and one Average Pool layer. We can see how

ResNet-50 is structured in detail in Figure 7. ResNet operates on

a deep residual learning framework, effectively tackling the problem

of vanishing gradients that often occur in intense networks. Despite

its depth of 50 layers, ResNet-50 has over 23 million trainable

parameters, fewer than many other network architectures.
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3.3.3 EFFICIENTNET-B7
Our study utilized the EfficientNet B7 model as a feature

extractor to enhance our image processing capabilities. Initially

designed for high-efficiency performance, this model was adapted

for our purposes by loading it with pre-trained ImageNet weights

and turning off its classification layers (include_top=False). We

specifically harness the output from the ‘top_activation’ layer,

which provides a sophisticated feature map that captures detailed

and abstract aspects of input images crucial for our analysis. The

methodology begins with an extensive preprocessing of images.

This involves converting the photos to RGB format, transitioning

them to grayscale, and applying binary thresholding. Additionally,

morphological operations are employed to further refine the focus

on pertinent features while minimizing background interference.

These images are then standardized through the preprocess_input

function to meet the specific input requirements of EfficientNet B7.

Following preprocessing, these images are inputted into

EfficientNet B7, which processes them to extract dense and

informative feature maps. These extracted features are fed into a

custom-built generator model with convolutional transpose layers.

This model is engineered to upscale the feature maps and simulate

hyperspectral images containing multiple spectral bands. This

simulation is critical as it replicates the data captured by actual

hyperspectral imaging, providing a foundation for detailed spectral

analysis. This approach demonstrates the versatility and robustness of

the EfficientNet B7 model beyond its conventional applications. By

adopting this advanced neural network architecture, we enable more

sophisticated analyses of environmental data, underscoring the model’s

adaptability and efficacy in handling complex tasks in ecological

monitoring and beyond. This integration marks a significant

advancement in our research methodology, pushing the boundaries

of what can be achieved with existing deep learning technologies.

EfficientNet models are built using a straightforward yet highly

effective scaling method that allows the network to be enlarged as
FIGURE 6

VGG-16 architecture delineates the precise positioning of its diverse layers (Alatawi et al., 2022).
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needed while being resource-efficient. This method makes these

models particularly good at adapting to different tasks using transfer

learning, where a model developed for one task is tweaked to

perform another. EfficientNet has several versions, labelled B0 to

B7, with the complexity and number of parameters varying from 5.3

million in the simplest version to 66 million in the most complex.

Our research will focus on using EfficientNet-B7, and we can see its

design in Figure 8.
3.4 Generating SHSI with a neural
network generator

Our study cleverly uses a deep learning-driven technique to

bridge the gap between the worlds of ordinary RGB photography

and the subtle spectrum insights of hyperspectral imaging. By

converting RGB photos into Simulated Hyperspectral photos
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(SHSI), this creative method successfully opens a wealth of

information about plant health. By editing of normal RGB photos

to imitate SHSIs over a spectrum of 237 bands far beyond the visual

range, we explore the health indicators of the plant that were

previously only accessible through sophisticated hyperspectral

cameras. The key to our approach is the careful feature extraction

from VGG16, RestNet50, and EfficientNet-B7, which sets the stage

for the intricate reconstruction that a bespoke neural network

generator performs. This generator is skilled at transforming the

retrieved features into SHSIs that capture intricate spatial and

spectral information. It has been optimized with convolutional

layers, batch normalization, and smart up sampling. Our

technique is calibrated to generate SHSIs with a resolution of

1392x1300 pixels and a spectral range of 400 to 700 nm, using 31

spectral bands, to meet analytical requirements. This sophisticated

modelling of hyperspectral data from RGB photos not only

increases the accessibility of hyperspectral analysis but also
FIGURE 8

EfficientNet-B7 Architecture (Adinegoro et al., 2023).
FIGURE 7

RESNET Architecture (Mandal et al., 2021).
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dramatically improves the capacity to track plant health, identify

illnesses early, and carry out extensive agricultural operations. The

algorithm implements this process by coordinating a smooth

transition from capturing high-resolution RGB images to creating

SHSIs. To maximize computing performance, it uses batch

processing. The result is saved in NPY format, which guarantees

the integrity of the simulated hyperspectral data for use in future

research. In addition, the code uses explicit memory management

techniques to maintain the simulation process over massive datasets

without sacrificing system performance, considering the

computational intensity.

Figure 9 illustrates the structure of Generative Adversarial

Networks (GAN) and their computational techniques. In our

work, the generator model is specifically crafted to take features

extracted from RGB images, obtained through the pre-trained

models mentioned above and transform them into simulated

hyperspectral images. The generator employs convolutional

layers, batch normalization, and up-sampling to produce realistic

hyperspectral-like representations. This innovative approach

provides valuable insights into the spectral characteristics of

powdery mildew-infected tomato plants, contributing to a

comprehensive understanding of disease severity.
3.5 Comparing the generated HSI and
metrics determination

In our study, we evaluate the capability of simulated

Hyperspectral Images (HSIs) generated from RGB images,

utilizing three distinct deep-learning models as feature extractors:

VGG16, ResNet50, and EfficientNetB7. Each model has been

carefully integrated into our pipeline to analyze their effectiveness

in capturing and reproducing the complex spectral characteristics

inherent in HSIs.
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To ensure an accurate assessment, we first resize each simulated

HSI generated by these models to match the exact spatial and

spectral dimensions of the original HSIs (Pushparaj et al., 2021).

This step is crucial as it allows for a direct and fair comparison

between the simulated and actual HSIs. Following resizing, the HSIs

are transposed to correctly align their spectral bands with those of

the original data, ensuring that each spectral component is

compared against its authentic counterpart.

The prepared HSIs from each model are aggregated into

separate arrays, facilitating efficient batch processing for the

evaluation phase. We employ two primary metrics to evaluate the

accuracy of the simulations across all three models: Mean Absolute

Error (MAE) and Root Mean Square Error (RMSE). MAE measures

the average magnitude of errors across all pixels and bands,

providing a straightforward assessment of the average error per

pixel and band. Conversely, RMSE is particularly effective at

highlighting more significant errors, as it squares the

discrepancies before averaging, thus emphasizing the most critical

errors in the simulations. MAE (Equation 1) and RMSE

(Equation 2) formulas to determine the values.

                   MAE = o
n
i=1(yi − xi)

n
(1)

  RMSE =  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1(yi − xi)

n

r
(2)

Where n is the number of data points or observations, xi is the

actual value of the ith observation, yi is the predicted value of the ith

observation. Before calculating these metrics, we perform a rigorous

check to ensure that the dimensions of the predicted and actual HSI

stacks are consistent across all models. Any dimensional

inconsistency triggers a Value Error, preventing the computation

of misleading metrics and ensuring that our comparisons are based

on correctly aligned data. Once confirmed, MAE and RMSE are
FIGURE 9

The architecture of a Generative Adversarial Network (GAN) (Gonog and Zhou, 2019).
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computed for each model’s output to quantitatively assess how

closely each set of simulated HSIs approximates the original

hyperspectral data. This comprehensive comparison and metric

calculation allow us to evaluate and document the performance of

each model rigorously.

This approach ensures a robust evaluation of the models’

effectiveness in generating hyperspectral data from more

straightforward RGB images, providing clear, quantitative insights

into the fidelity and precision of our hyperspectral image

simulations. The results from these metrics are vital, as they

contribute significantly to understanding the capabilities and

limitations of each employed model in the context of

hyperspectral imaging technology.
3.6 Computing spectral and haralick
features of the generated images

Our research employed three feature extraction models, namely

VGG16, ResNet50, and EfficientNetB7, to generate hyperspectral

images from RGB input. These generated images were then

subjected to computational analysis to extract key metrics. First,

we computed the Normalized Difference Vegetation Index (NDVI)

from the generated hyperspectral images. NDVI is a widely used

metric for assessing vegetation health, calculated as the normalized

difference between the near-infrared (NIR) and red spectral bands.

Additionally, we computed various spectral indices, such as the

Enhanced Vegetation Index (EVI), which integrates additional

spectral bands to improve sensitivity to vegetation characteristics

and atmospheric corrections. The formula (Equation 3) calculates

the NDVI values:

NDVI =
(NIR + Red)
(NIR − Red)

(3)

Where NIR is the Near-Infrared reflectance value, Red is the

Red reflectance value. Moreover, we calculated Haralick texture

features from the grayscale versions of the generated hyperspectral

images to characterize surface textures. These texture features,

derived from the gray-level co-occurrence matrix (GLCM),

provided insights into surface homogeneity, contrast, and other

textural attributes. This comprehensive analysis allowed us to assess

vegetation health and surface characteristics across different areas

using the generated hyperspectral images from the feature

extraction models.
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4 Results

The experiments were conducted on an HP Pavilion Gaming

Laptop model 16-a01xxx featuring an Intel(R) Core (TM) i7-

10870H CPU running at a base frequency of 2.20GHz and a

maximum Turbo Boost speed of 2.21GHz. The system was

equipped with 16.0 GB of RAM, with 15.8 GB usable for efficient

processing during the experimental procedures. Operating under a

64-bit architecture, the system type was classified as x64-based. This

hardware configuration provided a robust and capable computing

environment for the execution of the experiments, ensuring optimal

performance and reliable results.

Table 1 compares the Mean Absolute Error (MAE) and Root

Mean Square Error (RMSE) values obtained from the three feature

extraction models, namely VGG16, ResNet50, and EfficientNetB7,

for both healthy and diseased images. These metrics indicate the

accuracy and robustness of the models in generating hyperspectral

images from RGB inputs. For healthy images, the MAE and RMSE

values provide insights into the discrepancy between the actual and

generated hyperspectral images, with lower values indicating better

performance. Similarly, for diseased images, the MAE and RMSE

values reflect the accuracy of the models in capturing spectral

features indicative of disease presence. A comparative analysis of

these metrics across the three feature extraction models allows us to

assess their effectiveness in capturing spectral information relevant

to healthy and diseased vegetation. The table provides a

comprehensive overview of the performance of each model,

facilitating informed decisions regarding their suitability for

specific applications in vegetation health assessment and disease

detection, as described below.
i. VGG-16 Model:

The VGG-16 model consistently performed with a slight

variation in MAE between healthy (364.78) and diseased

(364.80) images. This indicates a stable ability to predict

spectral data from RGB images regardless of the plant’s

health condition. The RMSE values for healthy and diseased

images were identical (430.47), suggesting that the error

distribution was uniform across different health conditions.

ii. ResNet50 Model:

ResNet50 showed a marginally higher MAE for

diseased images (364.82) than healthy ones (364.79).

This slight difference implies that the model is slightly

more challenged by diseased images, potentially due to the
TABLE 1 Comparison of metrics of healthy and diseased images.

MODEL MAE RMSE

Healthy images Diseased images Healthy images Diseased images

VGG-16 364.77872228654184 364.79627625715506 430.46888387355295 430.4713728635988

RESNET50 364.7867621600284 364.8190816131098 430.46747825829334 430.48721036108304

EFFICIENET-B7 364.78762257420055 364.7846363528014 430.4682410593221 430.46440039529136
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increased variability in spectral features caused by disease

symptoms. The RMSE values were close but showed a

slight increase for diseased images (430.49) compared to

healthy ones (430.47). This indicates a slightly higher

prediction error for diseased images.

iii. EfficientNet-B7 Model:
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EfficientNet-B7 exhibited the lowest MAE for diseased

images (364.78) and maintained a similar value for healthy

images (364.79). This suggests that EfficientNet-B7 is highly

effective in handling healthy and diseased spectral data. The

RMSE for diseased images (430.46) was the lowest among

the models, highlighting EfficientNet-B7’s superior
FIGURE 10

VGG-16 NDVI (A), Spectral (B) and Haralick (C) graphs for Healthy Images.
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performance in minimizing prediction errors for

diseased conditions.
Figures 10–15 are a series of graphs showcasing the NDVI,

spectral indices, and Haralick features for healthy and diseased

images. These visuals correspond to three distinct feature extraction

models: VGG16, ResNet50, and EfficientNetB7. These graphs offer a
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detailed glimpse into the spectral characteristics captured by each

model, shedding light on vegetation health assessment and disease

detection. The NDVI graphs reflect the health status of vegetation,

with higher values indicating better health. Spectral indices graphs

reveal the distribution of critical spectral features relevant to

vegetation conditions, aiding in identifying disease signatures.

Additionally, the Haralick features graphs illustrate textural
FIGURE 11

VGG-16 NDVI (A), Spectral (B) and Haralick (C) graphs for Diseased Images.
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patterns extracted from hyperspectral images, providing insights

into vegetation health through texture analysis. These visual

representations offer valuable insights into the performance of

each model, helping researchers and practitioners understand

their suitability for various vegetation monitoring and disease

diagnosis tasks.
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5 Discussion

Our study evaluated the performance of three prominent deep

learning models - VGG-16, RESNET50, and EfficientNetB7 - for

hyperspectral image analysis in the context of vegetation health

assessment. The comparison was based on metrics such as mean
FIGURE 12

RESNET50 NDVI (A), Spectral (B) and Haralick (C) graphs for Healthy Images.
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absolute error (MAE) and root mean square error (RMSE),

commonly used to measure the accuracy of regression models.

The results indicate that all three models perform similarly in

capturing healthy and diseased vegetation spectral features.

However, a marginal superiority is observed in the performance

of the RESNET50 model, as evidenced by slightly lower MAE values

across both healthy and diseased image datasets. This suggests that

RESNET50 may be more effective in accurately identifying and

distinguishing between healthy and diseased vegetation than VGG-

16 and EfficientNetB7. The consistency in performance across the

three models underscores the robustness of deep learning
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approaches for hyperspectral image analysis in agriculture. These

models can effectively extract relevant features from spectral data to

assess vegetation health, holding significant promise for disease

detection and crop monitoring applications.

Our findings contribute to the growing body of research aimed

at leveraging machine-learning techniques for precision agriculture

and crop disease management. By demonstrating the feasibility and

effectiveness of deep learning models in analyzing hyperspectral

imagery, we provide valuable insights that can inform the

development of automated systems for early disease detection and

intervention in agricultural settings. Furthermore, our study
FIGURE 13

RESNET50 NDVI (A), Spectral (B) and Haralick (C) graphs for Diseased Images.
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highlights the importance of selecting appropriate deep-learning

architectures for specific applications. While RESNET50 exhibited

slightly superior performance in our experiments, future research

could further explore more sophisticated architectures and

techniques to enhance classification accuracy and robustness.

There are several avenues for exploration and improvement in

terms of future scope:
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1. Exploring additional deep learning architectures beyond

the ones considered in this study, such as DenseNet and

Inception, could offer further insights and improve

classification performance.

2. Incorporating transfer learning techniques and leveraging

pre-trained models on more extensive and diverse datasets

could enhance the generalization ability of the models and
FIGURE 14

EFFICIENTNET-B7 NDVI (A), Spectral (B) and Haralick (C) graphs for Healthy Images.
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improve their performance across different environmental

conditions and crop types.

3. Expanding the analysis to include a broader range of

spectral indices beyond NDVI could provide a more

comprehensive understanding of vegetation health

dynamics. Incorporating indices related to chlorophyll
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content, water stress, and nutrient deficiency could

enhance the sensitivity of the models to various aspects of

plant health and enable more precise diagnosis of

crop diseases.

4. Refining the image pre-processing pipeline by exploring

techniques such as data augmentation, noise reduction, and
FIGURE 15

EFFICIENTNET-B7 NDVI (A), Spectral (B) and Haralick (C) graphs for Diseased Images.
frontiersin.org

https://doi.org/10.3389/fagro.2024.1435234
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Khan et al. 10.3389/fagro.2024.1435234

Fron
advanced morphological operations could improve the

quality of input data and consequently enhance the

performance of the models.

5. Deploying the system in real-world agricultural settings

and collaborating with domain experts to validate its

effectiveness across diverse scenarios would be crucial for

its practical applicability and scalability.
Our study lays the groundwork for future research to develop

advanced and reliable systems for precision agriculture and crop

disease management, ultimately contributing to sustainable food

production and environmental stewardship.
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