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The cultivation of sugarcane (Saccharum officinarum L.) in the face of climate change requires robust strategies for managing pests, diseases, and weeds. This systematic review exposes critical deficiencies in current practices and underscores the need for climate-adaptive strategies. Climate change differentially influences pest behaviour, disease progression, and weed growth across various regions, yet the lack of region-specific responses impairs effective management. The review emphasizes the necessity for localized approaches that consider specific climatic conditions and the development of predictive models to anticipate pest and disease outbreaks. These models include Decision Support Systems (DSS), Support Vector Machines (SVM), Susceptible-Exposed-Infectious-Recovered (SEIR) models, Geographic Information Systems (GIS), Species Distribution Models (SDMs), Agricultural Production Systems sIMulator (APSIM), and Integrated Pest Management (IPM). Crucial strategies encompass integrated pest and disease management, adaptive breeding, precision agriculture, and ongoing innovation. Precision agriculture technologies, such as remote sensing and drones, enable early detection and prompt interventions. By adopting these adaptive measures and addressing existing research gaps, the sugarcane industry can bolster its resilience and maintain productivity amidst evolving climatic conditions.
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1 Introduction

Sugarcane (Saccharum officinarum L.) stands as a vital global crop, playing a pivotal role in sugar production, bio-energy through bagasse, and livestock feed from straw (Msomba et al., 2021). Its cultivation spans 124 countries, with Brazil, India, and China dominating production. However, the sugar industry faces threats from climate change-induced shifts in temperature and weather patterns, amplifying the impact of insect pests, noxious weeds, and diseases (Bordonal et al., 2018; Sorvali et al., 2021).

Climate change exacerbates the outbreak and spread of pests like yellow sugarcane aphids (YSA) and diseases like gummosis and smut, impacting global sugarcane productivity (Cock and Allard, 2013; Lu et al., 2021). The primary driver of the challenges faced by the sugarcane industry is climate change, affecting temperature, rainfall, and humidity (Tamiru and Fekadu, 2019). The consequent impact on insect pests and diseases poses a significant threat to sugarcane cultivation globally. Yellow sugarcane aphids (YSA) (Sipha flava (Forbes)), white scales (Pseudaulacaspis pentagona (Targioni)), and white grubs (Phyllophaga sp.) are recognized culprits affecting sugarcane productivity worldwide (Ramanujam et al., 2021). The increasing prevalence of pests such as YSA, attributed to climate-driven shifts, necessitates a thorough examination of their impact and strategies for sustainable management (Way et al., 2015). It is inevitable that climate parameters significantly impact insect pests and disease pathogens in agriculture (Raid et al., 2013).

Diseases, including gummosis, ratoon stunting disease, smut, leaf scald, sugarcane mosaic virus, and leaf rust, further compound the challenges faced by the sugarcane industry (Lu et al., 2021). High temperatures are predicted to escalate the incidence of smut disease (Matthieson, 2007), while dry weather exacerbates ratoon stunting disease symptoms (Ramanujam et al., 2021). Climate-induced extreme weather events are cited as major contributors to diseases like leaf brown rust and orange rust (Raid et al., 2013). The impact of these diseases on sugarcane requires meticulous study to develop effective adaptation and mitigation strategies.

The significant sugarcane producers face challenges like insect pests infestation and disease proliferation, but comprehensive studies on the prevalence and severity of these factors are lacking (January et al., 2020). Understanding the influence of climate variability and sugarcane varieties on pests and diseases in different regions is critical for tailoring interventions. Economic thresholds, considering factors like pest density, crop variety, and market value, are essential for informed decision-making in pest management (Knutson et al., 2016). The absence of such thresholds specific to notorious pests like YSA highlights the need for focused research in this area (Bowling et al., 2016).

Climate change affects population dynamics, distribution, and activity of pests, necessitating adaptive management strategies (Mercer, 2020). Yet, limited information exists on the effects of climate change on sugarcane pests and diseases, emphasizing the need for research and innovative management tactics (Mercer, 2020). There is also a need to evaluate the influence of agro-ecological zones and sugarcane varieties on pest and disease variability. This addresses the gap in understanding how these factors contribute to the source-sink dynamics, timing, and severity of infestations (Pekarcik and Jacobson, 2021). For instance, considering the rapid population growth potential of sugarcane aphids, economic thresholds are crucial for effective pest management and sustainable sugarcane productivity (Bowling et al., 2016; Brewer et al., 2017). Therefore, this systematic review intends to provide a comprehensive understanding of the factors influencing sugarcane production globally and their interplay with climate change. The study aims to contribute valuable insights into sustainable sugarcane cultivation strategies, considering the increasing challenges posed by climate-induced changes in pest and disease dynamics by analyzing existing literature and conducting new research. The findings can inform policymakers and practitioners, enabling evidence-based decision-making to ensure the long-term viability of the sugarcane and sugar industry worldwide.

The rationale of this review emphasizes the impact of climate change on sugarcane pests and diseases, plus explicitly addressing potential adaptation and mitigation strategies, especially climate-driven adaptation strategies. Importantly, Mercer’s (2020) suggestions modified integrated pest management tactics and monitoring climate and pest populations, but the study could benefit from a more detailed exploration of innovative approaches and practices that could enhance the industry’s resilience to climate-induced challenges. Much of the existing research focuses on the global impact of climate change on sugarcane production but somewhere lacks a detailed examination of region-specific challenges and solutions. Sugarcane cultivation is highly influenced by local agro-ecological conditions, and there may be unique factors affecting pest and disease dynamics in different regions (Lu et al., 2021). There is also a gap in the exploration of existing or potential pest and disease forecasting models in literature (Mulianga et al., 2013; Donatelli et al., 2017; Bhatt et al., 2022; Koralewski et al., 2022; Daphal and Koli, 2023; Ngcobo et al., 2023). Developing accurate and reliable models for predicting the occurrence and severity of pests and diseases can be crucial for proactive and timely management (Ngcobo et al., 2023; Sharma et al., 2023; Subedi et al., 2023). The research could delve into incorporating a more in-depth analysis of the available forecasting models and propose improvements or new models tailored to the sugarcane industry, considering the specific challenges posed by climate change. Addressing these research gaps would contribute to a more holistic and actionable understanding of the complex interplay between climate change, sugarcane pests and diseases, and sustainable cultivation practices.

Developing climate-resilient sugarcane varieties through genetic research and adaptive breeding is essential. Further studies on integrated pest and disease management (IPDM) that combine biological, chemical, and cultural practices are necessary for effective management under changing climates. Advancing precision agriculture technologies like drones, remote sensing, and can enhance early detection, monitoring, and targeted treatment of pest and disease outbreaks. Researching soil health and biodiversity, particularly the role of soil microbiomes, is vital for improving resilience. Additionally, sustainable cultivation practices such as reduced tillage, organic amendments, and crop rotation should be investigated. Finally, examining the effects of extreme weather events on pest and disease dynamics and developing mitigation strategies is crucial. These research directions can enhance the resilience and sustainability of sugarcane cultivation. It would also provide practical insights for stakeholders in the sugarcane industry, enabling them to make informed decisions and implement effective strategies to ensure long-term productivity and resilience (Ncoyini et al., 2022; Kadam et al., 2023; Shawky et al., 2023). Addressing the research gaps in understanding the interplay between climate change, sugarcane pests, diseases, and sustainable cultivation practices is crucial. Key initiatives include developing climate-resilient sugarcane varieties through genome sequencing, editing, and field trials. IPDM by creating biocontrol agents and testing related protocols can improve pest and disease management. Enhancing precision agriculture technologies with AI, machine learning, and drone integration aids in early detection and outbreak management.

Early detection of pests and diseases in sugarcane can be significantly enhanced through a variety of advanced technologies and methods (Li, 2024). One crucial tool is remote sensing, which involves the use of satellites and drones equipped with multispectral or hyperspectral sensors (Waters et al., 2024). These sensors can detect subtle changes in plant health and vigour, allowing for early identification of stress indicators associated with pest infestations or disease outbreaks. Remote sensing data is processed using sophisticated algorithms and software to generate maps that pinpoint areas of concern in sugarcane fields, enabling targeted intervention (Fresneda-Quintana et al., 2024).

Diagnostic tools play a pivotal role in early detection as well. These include handheld devices and laboratory assays that analyze plant samples for specific pathogens or pest infestations (Vinayaka and Prasad, 2024). Polymerase chain reaction (PCR) techniques, for instance, can rapidly detect the presence of pathogens with high accuracy (Archana et al., 2024). Immunological assays and DNA-based diagnostics also contribute to precise identification and monitoring of pest and disease threat (Tu et al., 2024).Emerging technologies such as Internet of Things (IoT) devices and sensor networks are increasingly integrated into precision agriculture systems. These devices monitor environmental parameters like temperature, humidity, and soil moisture in real-time (Narayana et al., 2024). They can provide continuous data streams that are analyzed to detect anomalies indicative of pest activity or disease development.

Artificial intelligence (AI) and machine learning algorithms are transforming early detection capabilities by analyzing large datasets from remote sensing, IoT sensors, and diagnostic tools (Vinayaka and Prasad, 2024). These algorithms can identify patterns and predict potential outbreaks before visible symptoms manifest, allowing farmers to implement proactive management strategies promptly (Chaiyana et al., 2024). Collaboration between researchers, agricultural extension services, and technology developers is crucial for advancing these technologies. Funding opportunities from governmental agricultural departments, research grants, and partnerships with private sector entities may further drive innovation in early pest and disease detection technologies. By leveraging these advanced tools and methods, sugarcane growers can achieve more effective pest and disease management, leading to improved crop health and productivity. Soil microbiomes, can boost plant resistance (Xiao et al., 2024). Researching sustainable practices like reduced tillage, organic amendments, and crop rotation promotes sustainability. Examining the effects of extreme weather events on pest and disease dynamics and developing climate adaptation strategies can mitigate risks. Funding and collaboration opportunities include national agricultural departments, international organizations, private sector investments, academic institutions, NGOs, and innovation grants. These efforts can significantly enhance sugarcane resilience and sustainability.




2 Methodology for literature search

This baseline desk review of literature and synthesis of the findings spanned from January to April 2024 (See details in Table 1; Figure 1). The literature search followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework outlined by Tlatlaa et al. (2023). PRISMA serves to enhance transparent reporting by elucidating the motivations behind the study (answering “why”)?, detailing the actions undertaken by the authors (answering “what”)?, and presenting the review findings (answering “what”)?. The PRISMA furnishes a checklist for a systematic literature review report, covering various sections such as title, abstract, introduction, methods, results, discussion, and other pertinent information, following the PRISMA 2020 checklist guidelines updated by Page et al. (2021). The PRISMA emphasizes that the title should unmistakably denote the report as a literature review, while the abstract needs to provide a structured summary. It also stresses that the introduction should discuss the rationale and objectives of the review. Methods entail specifying eligibility criteria, information sources, search strategy, selection process, and risk of bias assessment. Results involve detailing the study selection process, characteristics, risk of bias, and individual study outcomes. The discussion segment is dedicated to interpreting results, addressing limitations, and exploring implications. Additional information includes registration details, funding sources, conflicts of interest, and the availability of data and materials.


Table 1 | Methods utilized for literature search.






Figure 1 | Quantity of studies identified and incorporated into the analysis. Adapted from Tlatlaa et al. (2023).






3 Findings of the review and synthesis

The review presents findings organized into six main sections: (1) Limited emphasis on climate-driven adaptation strategies for pest and disease control, (2) Inadequate examination of region-specific climate effects on pest and disease dynamics, (3) Sparse assessment of pest and disease forecasting models under climate change, (4) Impact of climate change on insect pests affecting sugarcane, (5) Impact of climate change on sugarcane diseases, and (6) Climate change influence on prominent sugarcane weeds.



3.1 Limited emphasis on climate-driven adaptation strategies for pest and disease control

While existing literature comprehensively acknowledges the influence of climate change on sugarcane pests and diseases, it somewhat overlooks the need for detailed exploration of climate-driven adaptation strategies. Some literature highlights the impact of climate change on the proliferation of insect pests and diseases, emphasizing the role of temperature, atmospheric carbon dioxide levels, and precipitation patterns (Delcour et al., 2015; Skendžić et al., 2021; Shivanna, 2022; Nguru and Mwongera, 2023). However, the specific measures and practices that can be implemented to adapt sugarcane cultivation to these changing conditions are not extensively discussed. Understanding how climate change alters the dynamics of pest and disease populations is crucial, but equally important is the identification of adaptive measures that farmers and stakeholders can employ (Sakdapolrak et al., 2024; Sarkar et al., 2024). For instance, the study could be required delving into the development and implementation of climate-resilient agronomic practices, pest-resistant sugarcane varieties, and precision farming technologies. Integrating these adaptation strategies into the research framework would provide a more comprehensive guide for practitioners seeking sustainable solutions in the face of climate-induced challenges (Araújo et al., 2023; Durán-Díaz, 2023).

Limited emphasis on climate-driven adaptation strategies for pest and disease control of sugarcane reflects a critical gap in addressing the evolving challenges posed by climate change in agricultural systems (Shahzad et al., 2021; Grigorieva et al., 2023). Grigorieva et al. (2023) conducted a comprehensive review of adaptation strategies and interventions proposed globally to mitigate the impact of climate change on agricultural development and production and underscored the importance of context-specific adaptation strategies, cautioning against limiting discussions to singular “top-down” or “bottom-up” approaches. Grigorieva et al. (2023) pointed out that some adaptation measures may be insufficient or even exacerbate vulnerability to climate change. In many agricultural contexts, including sugarcane cultivation, historical approaches to pest and disease control have primarily relied on conventional methods such as chemical pesticides and resistant crop varieties (Budeguer et al., 2021). While these methods have been effective to some extent, they often overlook the complex interplay between climate change and pest/disease dynamics. Pests and diseases may adapt and spread in ways that traditional management practices can no longer adequately address as climate conditions continue to change (Singh et al., 2019; Shahzad et al., 2021).

There is a pressing need for comprehensive studies to understand how climate variability influences the behaviour, life cycles, and prevalence of sugarcane pests and diseases. Without knowledge on these aspects, it becomes challenging to devise targeted adaptation strategies that can effectively mitigate risks and enhance resilience in sugarcane production systems (Grigorieva et al., 2023). Resource constraints further exacerbate the issue, as agricultural research and development budgets may prioritize other pressing concerns over climate-driven adaptation strategies for sugarcane (Khan and Akhtar, 2015). Limited funding and resources hinder the innovation and implementation of novel approaches that could bolster the resilience of sugarcane crops against pest and disease pressures exacerbated by climate change (Dixon et al., 2014).

Moreover, policy frameworks and agricultural extension programs may not adequately emphasize the importance of climate-resilient pest and disease management practices in sugarcane cultivation (Peng et al., 2020; van Zonneveld et al., 2020). There is a need for policymakers to integrate climate adaptation considerations into agricultural policies and provide incentives for adopting sustainable practices. Additionally, raising awareness among farmers and stakeholders about the implications of climate change on sugarcane production and the necessity for proactive adaptation measures is essential for fostering widespread adoption of climate-smart practices (Vermeulen et al., 2018; Adesipo et al., 2019; Kalimba and Culas, 2020; Das and Ansari, 2021; Majhi et al., 2023). Increased vulnerability to pest infestations and disease outbreaks can result in reduced yields, lower-quality produce, and economic losses for farmers and the sugar industry (Tripathi et al., 2022; Ward et al., 2022). Moreover, reliance on chemical pesticides and fungicides may contribute to environmental degradation, posing risks to soil health, water quality, and biodiversity (Boudh and Singh, 2019; Mandal et al., 2019; Alengebawy et al., 2021). Addressing this requires a concerted effort from multiple stakeholders, including researchers, policymakers, industry representatives, and farmers (Bartels et al., 2013). Investments in research and development, capacity building, policy support, and public awareness are crucial for developing and implementing effective climate-resilient pest and disease management strategies in sugarcane cultivation (Khatri-Chhetri et al., 2019; Shrestha and Thapa, 2019). By prioritizing climate adaptation in agricultural decision-making processes, stakeholders can enhance the sustainability and resilience of sugarcane production systems in the face of climate change (Andrieu et al., 2019).




3.2 Inadequate examination of region-specific climate effects on pest and disease dynamics

There is a notable research gap concerning the exploration of region-specific climate impacts on sugarcane pests and diseases. Climate change manifests differently in various geographic locations, influencing the prevalence and behaviour of pests and diseases in distinct ways (Giliba et al., 2020; Hauser et al., 2021; Skendžić et al., 2021; Singh et al., 2023). To address this gap, the research could incorporate a more nuanced examination of how local climate patterns and environmental conditions contribute to the challenges faced by sugarcane growers (Finch et al., 2021; Montalvo-Navarrete and Lasso-Palacios, 2024). This regional focus would facilitate the development of tailored recommendations and strategies, accounting for the specific interactions between climate variables and pest/disease dynamics in sugarcane fields. For instance, Nguru and Mwongera (2023) assessed the impact of climate change on the suitability of natural habitats for crop pests and diseases, and project an increased geographical spread of suitable habitats for crop pests in warmer environments by the 2030s. According to Nguru and Mwongera (2023), the importance of future-facing, long-term climate adaptation and mitigation measures create less suitable microclimates for crop pests and diseases.

Finch et al. (2021) conducted a study focusing on the global increase in mean surface temperatures, drawing attention to the rise of approximately 0.7°C per century since 1900 and a more accelerated pace of 0.16°C per decade since 1970. Studies emphasize that the primary driver of this warming trend is the heightened concentration of greenhouse gases resulting from human activities (Jorgenson et al., 2019). Literature also addresses changes in precipitation patterns, acknowledging their variability compared to temperature changes (Alexander, 2016). Despite this variability, it is argued that future climatic changes, even under conservative emission scenarios, are likely to include further temperature increases and a significant increase in drought conditions in some regions, as highlighted by the Intergovernmental Panel on Climate Change (IPCC) in 2007 (Finch et al., 2021).

The alterations in temperature and precipitation patterns will affect invasive species in various ways. Notably, climate change is anticipated to challenge conventional perceptions of nonnative invasive species, as the impacts on some species may shift while others remain unaffected (Hume et al., 2021). Moreover, certain nonnative species could become more invasive, posing additional challenges for ecosystems. Additionally, Finch et al. (2021) anticipate shifts in the geographic ranges of native species into novel habitats due to climate change. These changes in distribution patterns among both invasive and native species are expected to have profound ecological implications (Gaertner et al., 2017). The importance of considering these dynamics is also acknowledged when addressing the challenges posed by invasive species in the context of a changing climate (Finch et al., 2021; Hume et al., 2021). The analysis by Finch et al. (2021) provides valuable insights into the interconnected impacts of climate change and invasive species, based on a robust examination of global temperature trends and their implications for ecological systems.




3.3 Sparse assessment of pest and disease forecasting models under climate change

Sparse assessment of pest and disease forecasting models under climate change encompasses the limited evaluation of predictive models designed to anticipate the emergence, spread, and impact of pests and diseases on agricultural and ecological systems amidst shifting climatic conditions (Hamdi et al., 2022; Fassnacht et al., 2024). This field of study is of paramount importance due to the significant threats posed by pests and diseases to global food security, ecosystem health, and economic stability, particularly in the face of climate change-induced alterations in temperature, precipitation patterns, and extreme weather events (Abbass et al., 2022; Mwangi et al., 2023).

Model development involves constructing predictive models based on historical data and assumptions about environmental conditions, incorporating factors such as temperature, humidity, precipitation, host plant physiology, pathogen biology, and insect behaviour to simulate the spread and impact of pests and diseases (Donatelli et al., 2017; Lee and Yun, 2023). Climate change considerations are crucial as climate change alters environmental conditions, including temperature regimes, rainfall patterns, and the frequency of extreme weather events (Lee et al., 2022). Incorporating climate change variables and scenarios into predictive models presents significant challenges due to uncertainties in future climate projections and complex interactions between climate and biological systems (Kamga et al., 2022). Data limitations contribute to sparse assessment, arising from challenges in the availability, quality, and spatial/temporal resolution of data required to calibrate, validate, and refine forecasting models (Petropoulos et al., 2022; Yang et al., 2022). Insufficient data on pest and disease occurrences, environmental variables, and management interventions can hinder the accuracy and reliability of predictive models, particularly in regions with limited monitoring infrastructure and research capacity (Akhter and Sofi, 2022; Dhanaraju et al., 2022; Taylor et al., 2023).

This systematic review emphasizes the critical role of predictive models in developing adaptive strategies for sugarcane sustainability. Decision Support Systems (DSS), such as the DSSAT framework, integrate crop growth models, weather data, and management practices to simulate crop growth and predict pest and disease outbreaks (Equation 1). Tailoring DSSAT for localized climate patterns allows for the anticipation of pest and disease threats, enabling timely interventions.

 

Where Y is yield, T is temperature, P is precipitation, N is nutrient availability, and W is water availability.

Machine learning models, including Random Forest and Support Vector Machines (SVM), analyze large datasets, including climate variables and historical disease incidence, to forecast future disease outbreaks (Equation 2). These models, trained on localized climate data, are effective in predicting specific disease threats.

 

Where ŷ is the predicted outcome, and ŷi are the predictions from individual trees in the forest.

Epidemiological models like Susceptible-Exposed-Infectious-Recovered (SEIR) can be adapted to predict the spread of sugarcane diseases by incorporating local climate variables, pest population dynamics, and crop growth stages, thus helping devise targeted control measures (Equation 3).

 

Where S is susceptible, E is exposed, I is infectious, R is recovered, β is the transmission rate, σ is the incubation rate, and γ is the recovery rate.

Geographic Information Systems (GIS) combined with Species Distribution Models (SDMs) predict pest infestations by analyzing spatial and climatic data (Equation 4), identifying high-risk areas for pest outbreaks and enabling proactive pest management strategies.

 

Where P(x) is the probability of species presence, β0 is the intercept, βi are coefficients, and xi are the predictor variables.

Climate-driven crop simulation models, such as Agricultural Production Systems sIMulator (APSIM), simulate the growth and yield of sugarcane under different climate scenarios (Equation 5). The APSIM predicts the impact of climate variables on sugarcane growth and the likelihood of pest and disease problems, facilitating the development of adaptive strategies to enhance crop resilience by incorporating localized climate data.

 

Where G is growth, Gmax is maximum growth, T is temperature, Topt  is optimal temperature, Tmin  is minimum temperature, and P is precipitation.

Bioeconomic models, which combine climate data with pest and disease management costs, optimize Integrated Pest Management (IPM) strategies by predicting the most cost-effective and sustainable approaches to pest and disease control, tailored to localized climate patterns (Equation 6). These predictive models present the necessity of adapting to localized climate patterns to effectively manage pest and disease threats, ensuring the resilience and productivity of sugarcane cultivation amidst evolving climate conditions.

 

Where NPV is the net present value, Bt are benefits in year t, Ct are costs in year t, r is the discount rate, and T is the time horizon.

While literature explains upon the importance of monitoring climate and pest populations, there is a notable gap in the exploration of existing or potential pest and disease forecasting models. Climate change not only affects the prevalence of pests and diseases of sugarcane but also alters their spatial and temporal distribution (Srinivasan et al., 2024). Robust forecasting models can play a pivotal role in predicting the occurrence and severity of outbreaks, enabling proactive and targeted management strategies (Subedi et al., 2023).

There exists complex relationship between the explosive growth of the global population, technological advancements, and the challenges posed by climate change to agricultural e production (Subedi et al., 2023). Subedi et al. (2023) indicated that the confluence of these factors has given rise to a complex scenario where the progress that has fuelled increased food demand is under threat due to the adverse impacts of climate change. The significantly acknowledged issues arising from climate change include rising carbon dioxide levels, frequent droughts, and temperature fluctuations (Waheed et al., 2023; Yanagi, 2024). These environmental shifts pose substantial challenges to crop production and, consequently, jeopardize global producing systems. The focus of much literature in this discipline lies in understanding how these climatic variables affect the biology and ecology of insect pests, which play a pivotal role in the delicate balance of agricultural ecosystems (Skendžić et al., 2021; Abbass et al., 2022). Given the dependence of insect pests on climate factors, any alterations in these variables have far-reaching implications for crop productivity (Subedi et al., 2023). The interconnectedness of insect pests, climate change, and crop yields underscores the urgency of comprehending the impact of climate change on insect pest dynamics (Table 2). A key contribution of literature lies in its exploration of modern pest monitoring technologies and prediction tools. Literature advocates for the integration of these advanced tools to enhance ability to monitor and predict pest behaviour in the face of changing climatic conditions. Despite the valuable insights provided by literature, there remain certain research gaps that merit further investigation. One crucial aspect is the need for more extensive field studies to validate the efficacy of the proposed pest monitoring technologies and prediction tools in diverse agricultural settings (Chawade et al., 2019; Preti et al., 2021). Additionally, understanding the socio-economic impacts of implementing these technologies, especially in resource-limited regions, is crucial for ensuring the practicality and accessibility of these strategies (Maduka et al., 2023). Furthermore, studies emphasize the importance of climate variables in influencing insect pest biology, but there is room for additional research into the potential feedback loops between insect pests and climate change (Barton et al., 2019; Yang et al., 2021). How, for instance, changes in pest populations may further exacerbate climate issues or create new challenges for agricultural sustainability is an intriguing avenue for future exploration.


Table 2 | Interconnections between sugarcane cultivation and sustainability.



These gaps may be addressed by the research that could include a more thorough evaluation of existing forecasting models, examining their applicability to changing climate conditions (Balogun et al., 2020). Moreover, it could explore the development of new models that incorporate climate change variables, providing accurate predictions for sugarcane growers. This emphasis on forecasting would empower stakeholders with timely information, helping them anticipate and mitigate the impact of emerging pest and disease threats in the context of a changing climate (Rocklöv et al., 2023). By incorporating these considerations, the research could bridge critical gaps and offer a more holistic understanding of the relationship between climate change, sugarcane pests and diseases, and the adaptive measures necessary for sustaining the industry (Grandis et al., 2024).




3.4 Impact of climate change on plant growth-reducing factors of sugarcane

Sugarcane growth is significantly hindered by insect pests, diseases, and weeds, with climate change exacerbating these challenges. Elevated temperatures and altered precipitation patterns enhance pest populations and disease prevalence, disrupting plant health. Weeds thrive under these warmer conditions, competing aggressively with sugarcane and reducing yields. Climate change also disrupts the phenology and life cycles of pests, diseases, and weeds, making traditional management practices less effective. These shifts necessitate integrated management strategies, including cultural, biological, and chemical controls, alongside precision agriculture and adaptive breeding programs to develop resilient sugarcane varieties and ensure sustainable cultivation amidst evolving climatic conditions. The details of these factors are described in subsequent sections.



3.4.1 Influence of climate change on insect pests of sugarcane

Climate change profoundly influences insect pest dynamics in sugarcane cultivation, complicating efforts to maintain sustainable production. The relationship between shifting climatic conditions and pest behaviour necessitates a comprehensive understanding to develop long-term strategies for sustainability (Weier et al., 2024). A primary effect of climate change is the alteration of temperature patterns (Balasundram et al., 2023; Bibi and Rahman, 2023; Johnson, 2023; Singh et al., 2023). Pests such as white scales (Aulacaspis tegalensis) (Sarjan et al., 2021), white grubs (Cochliotis melolonthoides) (Kumar and Prasad, 2020), and yellow sugarcane aphids (Sipha flava) (Dumont et al., 2023) impact sugarcane productivity globally.

The yellow sugarcane aphid (YSA) is particularly sensitive to temperature variations (Skendžić et al., 2021; Bhattacharyya et al., 2023; Bouri et al., 2023; Prajapati et al., 2023). Climate change-induced temperature increases expand YSA’s suitable habitat range, leading to greater prevalence in sugarcane fields (Chen et al., 2023; Li et al., 2024; Nikpay et al., 2023). Higher temperatures also accelerate YSA’s reproductive capacity, exacerbating challenges for growers (Bhagarathi and Maharaj, 2023; Walia and Kaur, 2024). Changing rainfall patterns further contribute to insect pest proliferation in sugarcane fields (Valencia Arbeláez et al., 2021). Altered precipitation affects water availability, influencing pest abundance and distribution (Subedi et al., 2023). In regions with changing rainfall, pests like white scales, white grubs, and YSA may find new ecological niches, shifting population dynamics (See Table 3). This necessitates adaptive pest management strategies that consider evolving climatic conditions (Janousek et al., 2023; Waheed et al., 2023).


Table 3 | Common insect pests affecting sugarcane and the target parts.



Climate change also alters the phenology and behaviour of insect pests (Subedi et al., 2023; Shafiq et al., 2024). Shifts in life stage timing, such as reproduction and larval development, are linked to climatic signals. Disruptions in these signals can increase pest pressure on sugarcane crops, impacting yield and quality (Tait et al., 2021; Zheng et al., 2024). For instance, the reproductive patterns of Heteronychus paolii Arrow (Dynastinae) and Schizonycha vastatrix Chiaramonte (Melolonthinae) are influenced by temperature and rainfall variability, causing population fluctuations (Cock and Allard, 2013). Extreme weather events associated with climate change, such as hurricanes and cyclones, complicate insect pest dynamics in sugarcane cultivation (Cilas and Bastide, 2020; Volk et al., 2023). These events disrupt habitats and pest behaviour, leading to altered infestation patterns (Volk et al., 2023). Post-hurricane conditions may favour rapid pest proliferation, threatening sugarcane production sustainability (Palanivel and Shah, 2021).




3.4.2 Influence of climate change on diseases of sugarcane

Climate change presents numerous challenges to sugarcane production, particularly through its influence on disease pathogens (Savary and Willocquet, 2020). Understanding the relationship between changing climatic conditions and sugarcane diseases is crucial for developing effective long-term sustainability strategies (See Table 4). One significant impact of climate change on sugarcane diseases is the alteration in temperature patterns (Linnenluecke et al., 2020). Rising global temperatures create favourable conditions for the proliferation of certain disease pathogens. For instance, smut disease, caused by the fungus Sporisorium scitamineum, thrives in warmer conditions (Bhuiyan et al., 2021; Rajput et al., 2021). Increased temperatures associated with climate change contribute to the incidence and severity of smut, posing a substantial threat to sugarcane yields. Similarly, leaf scald, caused by the bacterium Xanthomonas alibilineans, is influenced by temperature shifts, with high temperatures exacerbating its symptoms (Bini et al., 2023; Li et al., 2024).


Table 4 | Correlation between climate change and sugarcane diseases.



Changing rainfall patterns also play a pivotal role in the spread and severity of sugarcane diseases (Kim et al., 2024). Climate change leads to shifts in rainfall timing, distribution, and intensity, affecting the water-dependent life cycles of disease-causing organisms. Gummosis, caused by the bacterium Xanthomonas axonopodis pv. vasculorum, is highly influenced by moisture conditions (Hussain et al., 2024; Li et al., 2024; Parthasarathy et al., 2024). Altered rainfall patterns can facilitate the spread of this bacterium or create conducive conditions for its development, increasing gummosis incidences in sugarcane fields. Leaf rust, caused by Puccinia melanocephala, is also sensitive to moisture levels, with deviations from normal rainfall patterns affecting its prevalence (Wójtowicz et al., 2020).

The geographical distribution and behaviour of disease vectors, such as insects and fungi, are influenced by climate change. These vectors are crucial in transmitting pathogens, and their altered patterns contribute to disease spread in sugarcane fields. Climate-induced shifts in the distribution and behaviour of pests like white scales, white grubs, and yellow sugarcane aphids can lead to variations in disease transmission patterns, further complicating disease dynamics in sugarcane cultivation (Dumont et al., 2023).

Extreme weather events associated with climate change, such as hurricanes and cyclones, also impact sugarcane disease dynamics (Badillo-Márquez et al., 2021; Christina et al., 2021). These events can cause physical damage to sugarcane plants, creating entry points for pathogens and facilitating disease spread. Hurricanes and cyclones can increase sugarcane crops’ vulnerability to diseases like leaf rust and smut (Ahmad, 2023). Additionally, the aftermath of extreme weather events can create conditions favourable for rapid pathogen proliferation, threatening sugarcane production sustainability (Singh et al., 2018; Noureen et al., 2022).




3.4.3 Influence of climate change on notorious weeds of sugarcane

Climate change has a multifaceted impact on the dynamics of notorious weeds affecting sugarcane cultivation, presenting challenges to the sustainability of this vital crop (Chaki et al., 2023; Vasileiou et al., 2024; Nath et al., 2024). The interplay between shifting climatic conditions and the behaviour of noxious weeds requires a comprehensive understanding to develop effective strategies for long-term sustainability.

One of the primary effects of climate change on weeds is the alteration in temperature and precipitation patterns (Sreekanth et al., 2023; Kachare et al., 2024). Rising global temperatures influence the germination, growth, and reproductive processes of weeds, with some species thriving in warmer conditions. Weeds such as Imperata cylindrica (cogon grass) and Sorghum halepense (Johnson grass), recognized as notorious competitors with sugarcane, may experience increased vigour and expansion of their ecological range in response to elevated temperatures (Shumail et al., 2022; Othman et al., 2023; Tan et al., 2024). Changes in precipitation patterns, including altered onset and distribution of rainfall, further contribute to the weed proliferation challenge. Weeds like Cyperus rotundus (purple nutsedge) and Echinochloa colona (jungle rice) are adapted to varying moisture conditions, and climate-induced shifts in precipitation can create favourable habitats for these aggressive competitors (Eslami and Arpanahi, 2023; Keerthi Sree et al., 2023; Mahgoub, 2023).

Climate change also influences the phenology and life cycles of notorious weeds in sugarcane fields (Pires da Silva et al., 2014; Giraldeli et al., 2021). The timing of seed germination, emergence, and flowering is intricately linked to environmental cues, including temperature and photoperiod. As these cues undergo alterations due to climate change, the phenological patterns of weeds may be disrupted, impacting their synchronization with sugarcane crops (Anwar et al., 2021; Deeksha et al., 2022; Santosh and Pavithran, 2024). This mismatch in timing can result in increased weed pressure on susceptible crops, affecting overall yields and hindering sustainable sugarcane production. The impact is particularly pronounced with weeds like I. cylindrica, known for its aggressive growth and ability to outcompete sugarcane in various agro-climatic conditions (Sivakumar et al., 2018).

Changing climatic conditions also influence the distribution and spread of notorious weeds, creating challenges for weed management practices (Anwar et al., 2021; Rao et al., 2023). Most notorious weeds often disperse their seeds through wind, water, or human activities (Balah, 2021; Khattak et al., 2024). Climate-induced alterations in wind patterns and increased frequency of extreme weather events can facilitate the long-distance dispersal of weed seeds, leading to the colonization of new areas (Table 5). This expansion of weed distribution zones poses a significant threat to the sustainability of sugarcane cultivation, as it increases the likelihood of weed infestations in previously unaffected regions (Allsopp et al., 2021; Baltazar and De Datta, 2023).


Table 5 | Notorious weeds of sugarcane.



Extreme weather events associated with climate change, such as hurricanes, cyclones, and floods, further exacerbate the challenges posed by notorious weeds in sugarcane fields. These events can disrupt weed management practices and create conditions conducive to rapid weed proliferation. For example, flooding can displace weed seeds and rhizomes, redistributing them across fields and complicating efforts to control their spread (Smith et al., 2021; Haring, 2022). The aftermath of extreme weather events may necessitate intensive weed control measures to prevent the establishment of weed populations that could jeopardize the health and productivity of sugarcane crops.





3.5 Managing insect pests, diseases, and weeds in sugarcane fields amid climate change

Integrated management practices are vital for addressing the complex challenges posed by insect pests, diseases, and notorious weeds in sugarcane fields, especially in the context of climate change. These integrated approaches combine cultural, biological, and chemical control measures to mitigate impacts while minimizing environmental risks. Integrated Pest Management (IPM) strategies include crop rotation, the use of natural predators, and targeted pesticide applications (Koshariya et al., 2023; Lantero et al., 2023). These measures collectively help in reducing pest populations and protecting the environment (Baste and Watson, 2022; Morya and Kumar, 2023). Adaptive breeding programs are essential, focusing on developing pest-resistant sugarcane varieties that can adapt to evolving pest pressures, such as breeding for YSA resistance (Bakala et al., 2020; Naqvi et al., 2022; Shahid et al., 2024).

Integrated Disease Management (IDM) practices involve adjusting planting schedules, optimizing irrigation, and using biological controls such as natural predators or beneficial microorganisms (Bhuiyan et al., 2021; Ram et al., 2022). Chemical control, when carefully managed, remains a crucial tool against disease outbreaks (Grigorieva et al., 2023; Gyamfi et al., 2024). Breeding programs are also vital in developing disease-resistant varieties by incorporating traits that enhance resistance to specific pathogens influenced by climate change (Legros et al., 2021; Nunes et al., 2024; Parveen and Rashtrapal, 2024).

Integrated Weed Management (IWM) combines cultural, mechanical, biological, and chemical control measures to manage weed populations effectively (Scavo and Mauromicale, 2020; Kousta et al., 2024). Strategies such as crop rotation, cover cropping, and targeted herbicide applications play integral roles in IWM, enhancing sugarcane resilience against weed encroachment (Cherubin et al., 2021; Schrader et al., 2024). Adaptive breeding programs also focus on developing sugarcane varieties that can better compete with and resist notorious weeds, ensuring sustainable production amidst evolving climatic conditions (Gobu et al., 2020; van Antwerpen et al., 2022; Geng and Yufeng, 2023; Spelman, 2024).

Precision agriculture utilizes cutting-edge technologies such as drones, sensors, and data analytics to offer transformative real-time monitoring and management of pests, diseases, and weeds (Ayoub-Shaikh et al., 2022; Karunathilake et al., 2023). This approach enhances resource efficiency and reduces environmental impacts through optimized interventions (Ahmad, 2023; Nikpay et al., 2023). Precision agriculture aligns with the broader goal of sustainable and efficient farming practices, ensuring the resilience of sugarcane cultivation amid changing climatic conditions (Grandis et al., 2024; Pachiappan et al., 2024; Shaktawat and Swaymprava, 2024).

Early detection of pest, disease, and weed infestations allows for targeted interventions, optimizing resource use and minimizing impacts on sugarcane (Mylonas et al., 2020; He et al., 2024). Research into innovative resistant varieties and novel control methods is essential for staying ahead of emerging challenges in sugarcane cultivation (Storkey et al., 2021; Gautam and Hens, 2022; Roy et al., 2023; Kamath et al., 2024). Continued research and innovation are crucial for sustainable sugarcane cultivation in a changing climate, as they inform adaptive management strategies and develop resistant varieties and novel control methods (Hill et al., 2011; Bordonal et al., 2018; Singh et al., 2019; Ali et al., 2023). Integrating IPM, IDM, and IWM strategies with precision agriculture and early detection ensures sustainable and productive sugarcane cultivation worldwide (Maxwell et al., 2019; Mercer, 2020; Walsh et al., 2020; Srinivasa Rao et al., 2022). These approaches help the sugarcane industry navigate the complexities of climate change and ensure long-term resilience (Chen et al., 2023; Harvey et al., 2023; Ranganathan et al., 2023).




3.6 Climate-resilient strategies for disease and pest management in sugarcane

Adaptive strategies play a pivotal role in mitigating the impact of climate change on sugarcane diseases and insect pests, offering prospects for the long-term sustainability of sugarcane cultivation (Shahzad et al., 2021; Bhatt et al., 2023; Kurmi et al., 2024). These strategies encompass a holistic approach that addresses the dynamic interactions between shifting climatic conditions and the complex ecosystems harbouring pathogens and pests. By integrating adaptive measures, the sugarcane industry can enhance resilience, minimize losses, and secure the sustainability of this crucial crop. One key adaptive strategy involves the development and implementation of climate-resilient sugarcane varieties (Taylor et al., 2023). Understanding the evolving dynamics of diseases and insect pests influenced by climate change allows breeders to incorporate traits that confer resistance or tolerance. For instance, breeding for resistance against yellow sugarcane aphids can lead to the creation of varieties capable of withstanding the changing pest pressures (Ademe et al., 2024). These climate-resilient varieties act as a frontline defence, reducing the susceptibility of sugarcane crops to diseases and pests, thereby contributing to sustainability in the face of climatic uncertainties.

Integrated disease management (IDM) practices represent a comprehensive adaptive strategy that combines cultural, biological, and chemical control measures to manage diseases effectively (Taylor et al., 2023). Cultural practices, such as adjusting planting schedules and optimizing irrigation, are tailored to mitigate disease risks influenced by climate change (Mishra and Mishra, 2023; Ademe et al., 2024). Biological control methods involve the introduction of natural predators or beneficial microorganisms to regulate disease vectors (Muhammad et al., 2024; Barathi et al., 2024). Chemical control, while being judiciously managed to minimize environmental impact, remains an essential tool in the arsenal against disease outbreaks (Collett et al., 2020; Dolatabadian et al., 2022). The IDM allows for a dynamic and adaptable approach, ensuring the sustainability of sugarcane production amidst the changing disease landscape. The use of drones, sensors, and data analytics in precision agriculture practices provide valuable insights into the status of crops, allowing early detection of outbreaks and targeted interventions (Shahi et al., 2023; Chaudhari et al., 2024). By staying ahead of disease and pest dynamics through real-time monitoring, precision agriculture contributes to the resilience of sugarcane cultivation in the face of evolving climatic conditions.

Climate-resilient agronomic practices play a crucial role in adapting sugarcane cultivation to the changing climate (del Pozo et al., 2019; Röling, 2019). Optimizing planting schedules, irrigation practices, and crop rotations based on climatic conditions helps mitigate the risks associated with diseases and insect pests (Richard et al., 2022; Kowalska et al., 2023). These adaptive practices ensure that sugarcane crops are strategically positioned to withstand varying environmental stresses. Farmers can proactively address challenges posed by diseases and pests, promoting the long-term health and sustainability of sugarcane crops by aligning agronomic activities with the evolving climatic conditions (Usman et al., 2020; Gonçalves et al., 2024).

On-going innovation ensures that the sugarcane industry remains dynamic and resilient in the face of climate-induced uncertainties (Aggarwal et al., 2022; Anekwe et al., 2023). Economic thresholds, another vital aspect of adaptive strategies, offer a systematic approach to making treatment decisions for diseases and insect pests. Determining the pest density at which management action should be taken to prevent economic losses guides intervention strategies (Hendrichs et al., 2021; Wolff, 2023). Economic thresholds are dynamic and can vary based on factors such as crop variety, growth stage, market value, and growing conditions. Ensuring effective control while minimizing unnecessary interventions by establishing and regularly updating economic thresholds, sugarcane growers can optimize pest management practices (Nikpay et al., 2023; Mangena et al., 2024; Reddy et al., 2024).

Adaptive strategies for sugarcane sustainability involve monitoring and predicting climate trends to anticipate future challenges (Linnenluecke et al., 2018; Grigorieva et al., 2023). Studying trends in rainfall and temperature over an extended period in sugarcane cultivation areas allows for the identification of potential shifts in disease and pest prevalence (Caron et al., 2018; Khatri et al., 2023). Growers can proactively plan interventions and implement adaptive measures by understanding how climate variables influence the dynamics of pathogens and pests (Heeb et al., 2019; Taylor et al., 2021). This forward-looking approach enables the development of climate adaptation and mitigation actions necessary to contain crop pests and diseases, fostering sustainability in the sugarcane industry (Altieri, 2002; Grigorieva et al., 2023; Mrabet, 2023). Adaptive strategies play a critical role in mitigating the impact of climate change on sugarcane diseases and insect pests, offering prospects for sustainability in the face of evolving climatic conditions (Shahzad et al., 2021). Climate-resilient agronomic practices form a comprehensive toolkit for the sugarcane industry (Tan et al., 2022; Alotaibi, 2023; Lopes, 2023).





4 Conclusions

Climate change exerts a profound impact on sugarcane production, affecting insect pests, diseases, and notorious weeds. Variations in temperature, altered rainfall patterns, and extreme weather events significantly reshape pest and disease dynamics, posing severe challenges to sustainable sugarcane cultivation. Integrated pest and disease management practices are essential to adapt to these changing environmental conditions. Implementing comprehensive control methods can help mitigate the effects of climate change on pest and disease proliferation. Adaptive breeding is another critical strategy, focusing on developing climate-resilient sugarcane varieties. These varieties are better equipped to withstand shifting climates and maintain productivity. Precision agriculture utilizes advanced technologies to monitor and manage crop health and environmental conditions more effectively. This approach can significantly enhance the ability to respond to climate-induced changes in pest and disease behaviour. Early detection and monitoring systems are crucial for the timely identification and control of pest and weed outbreaks. Establishing these systems can help manage infestations before they cause significant damage to sugarcane crops. Ongoing research and innovation are vital to continuously advancing knowledge and techniques to combat the effects of climate change on sugarcane cultivation. By staying at the forefront of agricultural science, the industry can better adapt to evolving climatic conditions. The sugarcane industry can enhance its resilience, minimize potential losses, and ensure the sustainability of this vital crop amidst the challenges posed by climate change.
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