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Avocado production faces a substantial global threat in the form of Phytophthora

root rot (PRR). When trees succumb to PRR, their canopy health deteriorates,

leading to adverse impacts on production. To effectively implement remedial

strategies, infected trees need to be identified, evaluated, and located within the

field. The current commercially acceptedmethod for determining PRR severity in

canopies consists of a visual estimation using the ‘Ciba-Geigy’ rating scale. This

rating scale incorporates a numerical severity ranking system based on a visual

approach conducted by trained personnel. However, tracking tree health using

visual ratings is a time-consuming process, fraught with practical challenges

arising from gradual visual changes, spatial variation, and dimensions of the

orchards. To address these limitations, the integration of remote sensor-based

methods is proposed as a viable alternative to the visual severity ranking. A field

experiment was conducted in two avocado blocks to investigate the effect of

spatial resolution, phenological stages, and canopy conditions on themapping of

PRR severity. The results of this study showed that canopy management

practices revealed a pronounced influence in the determination of the severity

ranking using remote sensing (RS) methods and that these methods can be used

as an alternative to visual estimations. Additionally, the spatial resolution of the

images emerged as a significant factor, improving the estimation of severity

when more detailed spatial data were incorporated into the analysis. In the most

favorable scenario, an R2 determination coefficient of 0.80 was achieved. In

summary, RS approaches can provide valuable information to mitigate the effect

of PRR in avocado production. However, the image characteristics and particular

canopy conditions need to be carefully considered in order to deliver a reliable

method that can be used for informed decision-making. Nonetheless, the results

were promising and could open doors to further investigate RS methods as a

subjective and efficient means of PRR severity rankings.
KEYWORDS

remote sensing, avocado, disease severity detection, RGB imaging, plant projective
cover, multispectral imaging, UAV, satellite
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1 Introduction

Diseases in avocado trees negatively affect productivity and may

ultimately result in tree mortality over time. Phytophthora root rot

(PRR) is a globally significant disease with a wide-ranging host

spectrum, affecting nearly 5000 plant species (Haagsma et al., 2020).

It is considered a major threat to avocado production globally (Erwin

and Ribeiro, 1996). PRR is a soil-borne disease caused by the oomycete

Phytophthora cinnamomi which primarily attacks the roots under

warm and moist soil conditions. In mature plants, the pathogen

causes an over-production of low-weight fruit which is detrimental

to the crop yield (Ramıŕez-Gil et al., 2017). The pathogen is known to

attack trees by destroying their small absorbing roots. These roots

become brittle and can eventually die, leaving the tree with little

nutrient and water uptake ability. In extreme circumstances, PRR-

infected trees are reduced to a bare framework of dying branches (Pegg

et al., 2002; Garcıá-Pineda et al., 2010). In avocado trees afflicted with

PRR, canopy health characteristically declines resulting in smaller,

wilted leaves with brown tips that are pale green (Marais et al., 2002).

Once PRR is identified, growers have the opportunity to

implement remedial strategies that combine cultural practices

with chemical control (Eskalen et al., 2017). The most used

chemical control method includes treatment with phosphonates

(Salgadoe et al., 2018). Phosphonate applications are most effective

when applied preventatively or at an early stage of tree decline.

Consequently, growers often apply phosphonates preventatively on

an annual basis, considering the aggressive and destructive nature of

the disease. However, this preventive approach can result in

unnecessary expenditure and resource allocation if the tree is not

significantly infected. Consequently, some growers opt to

implement visual canopy health assessments. This allows them to

make informed decisions as to whether phosphonate applications

are required and apply chemical control only if deemed necessary.

The current commercially accepted method for estimating PRR

severity in canopies consists of a visual estimation using the ‘Ciba-

Geigy’ rating scale. This visual rating scale incorporates a numerical

severity ranking system that chiefly evaluates canopy porosity, leaf

color, and twig die-back and is conducted by trained personnel

(Darvas et al., 1984; Nutter et al., 2006). However, tracking changes

in tree health due to PRR infections using visual ratings is a time-

consuming process and can prove exceptionally challenging in

practice. This challenge arises from the gradual nature of visual

changes, spatial variation within orchards, and the considerable

expanses of land that require monitoring (Garza et al., 2020).

Salgadoe et al. (2018) highlighted that despite its common usage,

the visual assessment of tree health is inefficient in terms of time,

labor, and cost requirements. Mahlein (2016) further emphasizes

that visual assessment methods such as these require the

involvement of experienced individuals with well-developed skills

in diagnostics and disease detection and are thus introducing a

potential for human bias. Additionally, the assessments require

trained experts to ensure that observations are comparable across

orchards and growing seasons, thereby increasing the potential for

human bias.

In the context of phosphonate applications, their preventative

use necessitates precise timing, usually directly after harvest and
Frontiers in Agronomy 02
during the summer root flush when the leaf flush has hardened off.

This adds to the complexity of the process, especially when dealing

with extensive hectares that may require phosphonate treatments.

This can lead to constraints and complications with time and labor

force. Therefore, the need arises for an objective and efficient

technique characterized by high sensitivity and reliability to

enhance the detection of PRR disease severity in avocado

tree canopies.

Remote sensor-based methods offer an alternative to the human

vision inspection for disease detection, presenting notable benefits

for the management of PRR infections in avocado orchards (e.g.,

Abdulridha et al., 2018; Salgadoe et al., 2018). These methods

facilitate the rapid coverage of larger areas, facilitating quicker

and more informed management decis ions regarding

phosphonate treatments. Among these remote sensors, optical

sensors measuring reflectance have emerged as highly promising

tools (Chaerle and van der Straeten, 2000; West and Bravo, 2003;

Sankaran et al., 2010; Mahlein et al., 2012). Reflectance-based

sensors can detect changes in the leaf structure and pigments of

plants induced by plant pathogens and diseases. These sensors are

installed on multiple platforms, categorized into three major

categories: space-borne (satellites), airborne (aircraft, and

unmanned aerial vehicles (UAVs)) and ground-based (proximal

sensing). Aerial (space-borne and airborne) remote sensing (RS)

has recently gained traction in plant disease detection applications

with red, green, and blue (RGB) and spectral (multi- and

hyperspectral) sensors receiving the most attention thus far

(Mahlein, 2016).

RGB and multispectral (MS) images, acquired from aerial

platforms at different resolutions, have proven effective in

detecting various disease symptoms and health conditions in

several tree crops at the orchard or farm level. Examples include

banana plants (Selvaraj et al., 2020), macadamia (Johansen et al.,

2020), olives (Hornero et al., 2020), avocado (De Castro et al., 2015;

Salgadoe et al., 2018; Pérez-Bueno et al., 2019; Tu et al., 2019) and

citrus (Kumar et al., 2010; Li et al., 2012; Garcia-Ruiz et al., 2013;

Chang et al., 2020; Garza et al., 2020). However, most of these

studies focused on fixed/same canopy conditions within a short/

single temporal range, often neglecting phenological aspects.

Regarding avocado trees, previous research has not considered

canopy conditions nor the impact of orchard management. These

studies are predominantly centered on, single orchard studies with

short or no temporal aspects considered for disease detection or

canopy condition assessment at the orchard or farm level.

Additionally, while multiple platforms (i.e., single platform or

proximal combined with satellite imagery) have been researched

in other crops, the combined use of UAV and satellite imagery

remains unexplored in avocado.

In this context, this study aims to investigate different RS

techniques for mapping the severity of PRR in avocado orchards

by considering the combination and interaction of 3 important

factors: i) Spatial resolution (satellite and UAV); ii) Multi-temporal

approach (phenological periods); and iii) Canopy conditions

(Pruning type and intensity). The RS techniques were two

different platforms: UAVs (RGB and MS imagery) and satellites

(MS imagery). Spectral properties of target trees were extracted
frontiersin.org
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from each technique over four periods and compared to the

commercial visual severity rating method, ‘Ciba Geigy’ rating

scale, by linear regression. By doing this research, this study

contributes to a better understanding of using RS techniques as

an alternative to human vision in the detection of PRR in

avocado orchards.
2 Material and methods

2.1 Experimental sites

The study was conducted on two commercial avocado farms,

ZZ2 and Westfalia Fruit, located in the Tzaneen area of Limpopo

Province, Northern South Africa (Figure 1A). This location is

classified as having a Monsoon-influenced humid subtropical

climate (Regional Weather and Climate of South Africa, 2023).

For this study, single PRR-infected orchards within each farm were

selected. These orchards shared identical cultivars, rootstock, and

planting year, but varied in canopy management practices (Table 1).

The selection was based on previous in-house and academic

research projects conducted in conjunction with the farm owners

and managers (McLeod et al., 2018). Additionally, an RS-based

screening analysis was implemented on Sentinel-2A (S2A) imagery

to evaluate the intra-block changes in vigor, expressed as

normalized difference vegetation index (NDVI) (Figures 1B, C)

and to further define the study area. Furthermore, this screening

analysis ensured that severity variability was evident in the selected

orchard blocks. One of the major symptoms of PRR is the

progressive death of shoots and branches which is detectable

through NDVI analysis. Orchards with different canopy
Frontiers in Agronomy 03
management practices were selected to create a more “realistic”

representation of data, as differing farms/companies often

implement different practices.
2.2 Target tree selection and geolocation

Research blocks containing 13 to 17 rows of trees comprising

±1.18 hectares (ha) for the ZZ2managed block (block 1) and ±1.85 ha

for the Westfalia Fruit managed block (block 2) were selected. Target

trees were selected by two experienced personnel from ZZ2 and

Westfalia fruit, relying on visual assessments using the ‘Ciba-Geigy’

rating scale. A total of 69 trees were selected for this research: 34 trees

in block 1 and 35 trees in block 2. To ensure variability was present in

the tree dataset, target trees expressing different levels of canopy

decline were selected with dimensionless rankings ranging from 0 to

8. Furthermore, the locations of the target trees were captured using a

Global Positioning System (GPS) rover, and their coordinates were

saved in theWGS-84 reference system. The positions of the trees were

measured in the middle of the rows, perpendicular to the trees. The

accuracy of these positions is of utmost importance due to the multi-

temporal aspect of this research and the need for accurate integration

across the RS techniques utilized.
2.3 Data acquisition

Reference measurements, UAV imagery, and satellite imagery

were acquired over 10 months, from May 2021 to February 2022,

covering four different phenological periods. Figure 2 summarizes

the whole process followed in this study. This comprises the data
FIGURE 1

Location of research blocks using imagery from Google Earth (A). Example of the RS-based screening analysis used for the block selection (A, B).
Normalized difference vegetation index (NDVI) obtained by satellite S2A (May 2020) (B) Block –1 - Gigas (managed by ZZ2) (C) Block –2 - McNoon
Estate (managed by Westfalia Fruit).
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acquisition from the different platforms/RS techniques and the

processing steps to get qualitative results from which the analysis

was conducted. Images were acquired from UAV and satellite

platforms and then image analysis was conducted.
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2.4 Reference measurements –
severity rankings

Visual assessments of the target trees in each block were

conducted using the ‘Ciba-Geigy’ for each period (Darvas et al.,

1984). To ensure consistency within the rankings, the visual

assessments were conducted by the same two personnel

throughout the duration of the experiment.
2.5 UAV imagery – MS and RGB

Images were captured of both blocks during each of the four

data collection periods using a DJI Phantom 4 Pro multirotor (DJI,

Shenzhen, China). The multirotor was equipped with a 16-bit RGB

camera (model FC6310), and a 12-bit RedEdge™ 3 MS camera

(MicaSense Inc., Seattle, U.S.A). The RedEdge™ 3 camera recorded

spectral information in blue [B] (465 – 475nm); green [G] (550 –

570nm); red [R] (663 – 673nm); RedEdge [RE] (716 – 722nm) and

near-infrared [NIR] (820 – 860nm). Both cameras were stabilized in

pitch, roll, and yaw by a three-axis gimbal. To ensure full coverage

of the areas, the UAV was flown autonomously along pre-

programmed flight paths, with parameters shown in Table 2, set

in the DroneDeploy application (California, U.S.A.). The flights

took place as close to solar noon as possible to avoid shadows and

the UAV was flown along a flight path along-tree rows.

Field marks were positioned in the middle of the rows (at the

GPS point locations), next to the target trees for target tree
MSI
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FIGURE 2

Flow diagram of the data acquisition and analysis.
TABLE 1 The characteristics of blocks selected in this study.

Block 1
(intense pruning)

Block 2
(mild pruning)

GPS coordinates -23.767399, 30.130339 -23.714705, 30.145743

Research area ± 1.18 ha ± 1.85 ha

Elevation 767 m above sea level 960-986 m above sea level

Slope Slight South-East ( ± 1%) Moderate North-West
( ± 21%)

Distance
between trees

3.5 m 4 m

Distance
between rows

7 m 8 m

Year planted 2011 2011

Cultivar Hass Hass

Rootstock Dusa Dusa

Pruning
type/intensity

Limb removal/intense Mild

Irrigation system Microjet sprinkler Microjet sprinkler
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identification and the reflectance panel was imaged immediately

before each flight at the respective sites for radiometric calibration.

Orthomosaics were generated for both RGB (DJI camera) and MS

(RedEdge™ 3 camera) datasets along with RGB-Digital Elevation

Models (DEM’s) and MS-DEM’s for each flight were constructed

using Agisoft Metashape version 1.7.6 (Agisoft LLC., St. Petersburg,

Russia) following the standard Agisoft photogrammetric pipeline

that produces dense Structure-from-Motion (SfM) point clouds.

The onboard GPS on the UAV supplied sufficient geolocation;

therefore, the images weren’t geometrically calibrated in Agifsoft.

Before processing, all photos were visually assessed for quality

assurance. DEM’s achieved resolutions of 2.0 < 7.0 cm/pix for all

16 datasets (8 x RGB-DEM’s, 8 x MS-DEM’s) and the orthomosaics

attained resolutions of 1.0 <4.0 cm/pix for all 16 datasets (8 x RGB,

8 x MS orthomosaics). These results, maintaining a precision level

of 5.0 cm, are deemed sufficient for precision farming purposes

(Candiago et al., 2015). Upon completion, the DEM imagery was

exported as GeoTIFF files and orthomosaics were exported in JPEG

format, preserving the B, G, R, RE, and NIR channels for analysis.

Once the orthomosaics and DEM’s were created for the sites,

the individual targeted trees were clipped out of the parent images

using QGIS. These individual images were saved in tiff format and

used for the following analysis. The size of the clipped images was

determined by the row and tree spacing, canopy size, and the

amount of canopy overlapping. Individual block 1 images were

7.0 m by 5.0 m and block 2 were 8.5 m by 4.0 m. These dimensions

were narrower because the trees were growing intertwined, and the

researchers endeavored to not have neighboring trees in the image.

Additionally, they were longer to accommodate the larger canopies

and wider row spacing.

Radiometric calibration was performed on the MS imagery in

Agisoft Metashape version 1.7.6 (Agisoft LLC., St. Petersburg,

Russia) as part of the workflow before processing the

orthomosaics. The software used the images of the white
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radiometric panel and the panels’ predetermined calibration

values (obtained from MicaSense) to convert the raw sensor

values into reflectance values.
2.6 Satellite imagery – MS

High-resolution (0.50 – 0.75 m) satellite imagery was acquired

from third-party suppliers (Maxar Technologies and GEO Data

Design (Pty) LTD. This imagery came pre-georeferenced and had

undergone radiometric correction. High-resolution imagery

generally has short revisit times, so imagery was acquired with

acquisition dates as close to the UAV data collection dates (Table 3).

Medium-resolution (10 m) Sentinel-2B (S2B) imagery was

obtained from the European Space Agency (ESA) Copernicus

Open Access Hub (https://scihub.copernicus.eu/dhus/#/home).

Cloud-free Level-1C (L1C), ortho-rectified imagery expressed in

top-of-atmosphere (TOA) reflectance were downloaded and

atmospherically corrected to generate Level-2C using the Sen2Cor

(version 2.5.5, ESA, Paris, France) in the Sentinel application

platform SNAP (version 9.0.0, ESA, Paris, France) using the

default parameters. Images were not filtered for cloud cover since

no clouds were present over the study areas and the images were not

resampled. Finally, the 10 m resolution bands 2, 3, 4, and 8 (B, G, R,

and NIR respectively) were exported in the GeoTIFF format as a

single image. The individual trees were clipped out of all the parent

images using the same method as described above.
2.7 Data analysis – outputs from UAV and
satellite imagery

2.7.1 Determination of plant projective cover
(fcover) from UAV-RGB imagery

The calculation of plant projective cover (fcover) was performed

using DEM’s obtained from UAV-RGB images. These DEM’s

allowed for the determination of the canopy extent by

considering all points above a certain height threshold and

disregarding the points below. Using the individual DEM’s as

masks and specifying a predefined height threshold as inputs, the

fcover was calculated for each individual image using MATLAB

(version 9.11.0.1809720 (R2021b) Update 1, MathWorks, U.S.A.)

code and exported as a percentage. The height threshold was based

on the elevation/altitude and was determined by measuring the

difference in height between the ground and the lowest part of the

tree. Subsequently, the fcover was correlated to the ‘Ciba-Geigy’

severity rankings to determine whether there was a relationship

between fcover and severity.

2.7.2 Vegetation indices
2.7.2.1 Determination of vegetation indices from UAV-
MS imagery

The MS imagery was used to calculate vegetation indices (VI’s).

The selected VI’s were determined based on the five spectral bands

acquired by the sensor and on relevant literature (Table A1 in

Appendix A). DEM’s from the MS imagery were used as masks for
TABLE 2 Flight planning parameters of the study sites.

Parameter Reference value and units

Flight altitude AGL 55 m

Speed 5 m/s

Direction Along-tree-row

Images
capture interval

1 s

Time of flight 11h30 to 14h00 SAST

Coverage area Block 1: 37 m2; Block 2: 51 m2

Ground resolution < 4 cm

Number of images Block 1: ± 180 (RGB), ± 780 (MS); Block 2: ± 340 (RGB),
± 930 (MS)

Number of strips Block 1: 13; Block 2: 12

Overlap 75%

Side lap 76%
AGL is above ground level; SAST is South African Standard Time; RGB is red, green, and blue;
MS is multispectral.
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the same masking purpose as mentioned above. The individual tree

images were analyzed using MATLAB code that calculated the

mean reflectance value of each band, and based on these mean

values, a total of 45 VI’s utilizing B, G, R, RE, and NIR bands were

calculated. The full list of VI’s used in this study is presented in

Appendix A (Table A1).

2.7.2.2 Determination of vegetation indices from satellite
imagery – high- and medium-resolution

High- and medium-resolution imagery of the individual trees

was used to calculate 27 VI’s that utilized B, G, R, and NIR bands.

For medium-resolution imagery (S2B), the single-band reflectance

values for each tree were extracted using the “Point Sampling Tool”

plugin in QGIS (version 3.20.2 Odense, QGIS Development Team).

These extractions were carried out at the precise GPS points

surveyed in the field to extract the mean reflectance value of the

corresponding band. Before calculating the VI’s, the S2B digital

numbers (DN) were divided by 1000 to obtain the reflectance,

ranging from 0 to 1. The “Point Sampling Tool” was used due to the

large pixel size (10 m resolution), making use of a clipping polygon

unnecessary. For high-resolution imagery, the clipping method

described earlier was employed to extract the individual trees

from the parent rasters in QGIS. Subsequently, “zonal statistics”

was applied to each of the individual tree rasters, calculating the

mean reflectance value for the corresponding band. To avoid having

non-canopy features, the polygons were placed so that only the

canopy was inside them.
2.8 Statistical analysis

This study aimed to determine trends between the severity

rankings and the calculated VI values from different remote sensing
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platforms, to extract an underlying pattern of behavior over four

periods. The trends were determined by a linear regression analysis

using as a criterion the visual severity ranging measure by experts in

the field experiments and as predictors the remote sensing derived

values (fcover and VI values). The VI’s demonstrating the most

significant correlations with the visual severity rankings were

identified and descriptive statistics were performed on them. The

linear regression analysis was performed using R Statistical Software

version 4.1.2 (R Core Team, 2021) and GraphPad Prism version

9.0.0 (GraphPad Software, California, U.S.A.) was used to generate

scatter plots and boxplots.
3 Results

3.1 Severity rankings

Severity rankings were acquired of each target tree over four

phenological periods: post-harvest period (PH), flowering period

(F), early fruit development period (ED) and late fruit development

period (LD). Figure 3 shows an example of the spatial distribution

of the rankings measured in the field during the PH period in May

2021 for block 1 (Figure 3A) and block 2 (Figure 3B). As seen for

this period in block 1, trees with higher severity rankings are located

on the southwest side of the block, while in block 2 they are more

sparsely spatially distributed. Block 1 severity rankings were fairly

consistent over the four data collection periods, changing no more

than one or two rankings (Figure 4A). More often, the changes were

negative as the season progressed resulting in February having the

highest severity rankings (Figure 4B). Block 2 severity rankings were

relatively similar in consistency, although slightly less, over the four

data collection periods (Figures 4C, D). Severity rankings acquired

in September, FP, were clearly the highest (Figure 4D).
TABLE 3 Summary of imagery collected.

Phenological period

UAV imagery (MS &
RGB)
Super

high-resolution

Satellite imagery
(MS)

High-resolution

Satellite imagery
(MS)

Medium-
resolution

Between late fruit development (fruit growth and maturation) and post-
harvest (PH).

Hardened flush.

RGB (≈ 1 cm), MS (≈ 3 cm)
[26/05/2021]

SuperView (50 cm)
[31/03/2021] S2B (10 m)

[26/05/2021]JPSS1 (75 cm)
[15/04/2021]

Between bud development and flower opening period (F). First flush
RGB (≈ 1 cm), MS (≈ 3 cm)

[26/05/2021]

View-Ready (50 cm) [27/
06/2021] S2B (10 m)

[13/09/2021]SuperView (50 cm)
[24/09/2021]

Early fruit development period (ED) (fruit growth).
Small fruit & hardened flush.

RGB (≈ 1 cm), MS (≈ 3 cm)
[10/12/2021]

S2B (10 m)
[2/12/2021]

Early to late fruit development period (LD).
Larger fruit & second (fruit growth and maturation) flush.

RGB (≈ 1 cm), MS (≈ 3 cm)
[17/02/2022]

S2B (10 m)
[10/02/2022]
PH is post-harvest; F is flowering; ED is early fruit development; LD is late fruit development; UAV is Unmanned Aerial Vehicle; MS is multispectral; RGB is red, green, and blue; JPSS1 is Joint
Polar Satellite System 1; S2B is Sentinel-2B. Square brackets indicate the date of acquisition. The dates of the severity ranking acquisition correspond to UAV imagery acquisition.
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3.2 Plant projective cover (fcover) (RGB-
UAV imagery)

fcover was calculated of each target tree in each period using the

RGB-UAV imagery as a percentage of a specific selected rectangle

size. Figure 5 shows an example of the tree extraction method used to
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calculate fcover based on tree height. Figure 5A shows the RGB image

of a section of the orchard in block 2 while Figure 5B shows the RGB

image of the target tree from which the fcover is calculated. Figures 5C,

D, respectively, show the DEM where the ground is eliminated using

the height thresholding technique. fcover for block1 ranged between

22% and 100% with a median of 48% (Figure 6A). The standard
FIGURE 4

Target tree severity rankings for each tree in block 1 (A) and block 2 (C), and boxplots of the severity rankings for each period in block 1 (B) and block 2 (D).
FIGURE 3

Locations of target trees. (A) Block 1 and (B) Block 2. Images from UAV (acquired in May 2021).
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deviation was 15%, indicating some variation. While fcover for block 2

ranged between 71% and 100% with a median of 83%. The standard

deviation was 6%, indicating little variation (Figure 6B).

In block 1, the linear regression analysis indicated a significant

correlation between fcover and the severity ranking for all the studied

periods with R2 values ranging between 0.52 and 0.65 (Figure 7).

Promising results were obtained in the PH period (Figure 7A). The

F period also achieved high R2 values (Figure 7B). The ED and LD

periods produced the lowest R2 values (Figures 7C, D).
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Furthermore, in block 2, the regression analysis showed a low

correlation with R2 values of, 0.30, 0.01, 0.26, and 0.48 for PH, F,

ED, and LD periods, respectively (Figure 8). Better results were

achieved in the PH and LD periods (Figure 8). These align with the

results from block 1. Block 1 received intense pruning while block 2

received mild pruning and the canopies were kept large. It is

important to note that pruning is done to improve the sunlight

entering the inside of the canopy and is therefore executed

irrespective of PRR-infections.
FIGURE 5

Example of single tree extraction. RGB image of a selected area (A), RGB image of a single tree (B), DEM image of a selected area (C) and DEM
image of a single tree (D).
FIGURE 6

Boxplots of the fcover incorporating all data collection periods for block 1 (A) and block 2 (B).
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3.3 Vegetation indices

3.3.1 Super high-resolution (UAV imagery)
In order to simplify the identification, the VI’s that provided a

good agreement with the severity ranking, an R2 threshold of 0.65,

was defined (Table 4). Block 1 achieved very promising results,

specifically during the PH and F periods where 25 and 27 VI’s

respectively achieved correlations of 0.65 or more. Block 2 only

achieved correlations of 0.65 or more (six VI’s) in the PH period.

Furthermore, in block 2, the F period achieved correlations of 0.50

to 0.57 in six VI’s while the remaining two periods only achieved

0.40 as the highest. In both blocks, the individual bands were not

good indicators. Although the green band in the PH period, block 2

received a correlation of 0.51.

Six VI’s achieved correlations of 0.80 in the PH period for block

1: GNDVI, REMSR, CI, GRVI, MACI and CIGE. These bands also

performed well in block 2 during this period, but not as high. In

block 1, potential VI’s across all the periods were ACI, BRVI, CIGE,

GNDVI, GRVI, MACI, MARI, MSR, REMSR and SR. They

achieved higher than an R2 of 0.70 in each period. However, after

performing basic statistical analysis, the top five VI’s (considering

standard deviation and R2) all include IPVI, ACI and BNDVI.

Although the R2 for block 2 was substantially lower, these VI’s were

also amongst the top five for all periods. Block 2 did not achieve any

consistently high correlations. Although CI, CIGE, GNVDI, GRVI,

MACI, MARI, NDRE and REMSR were relatively consistent from

PH to F. Additionally, the R2 values appear to decrease as

time progressed.
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3.3.2 High-resolution (satellite imagery)
0.50 m March LD and 0.50 m bud development data sets

achieved the highest results for block 1 with regression values of

0.64 and higher while 0.75 m LD and 0.50 m F achieved the highest

in block 2 with regression values up to 0.55 (Table 5). Although the

correlations are not as high as the UAV imagery correlations, they

were still relatively high with CIGE, GRVI, and GNDVI (block 1 LD

period 0.50m); TCARI, TCARI/OSAVI (block 1 LD period 0.75 m);

MSAVI and GNDVI (block 1 bud development period 0.50 m); and

TCARI/OSAVI (block 1 F period 0.50 m) being the highest in the

respective periods. In block 2, the highest correlation was in the LD

period (0.75 m), TCARI, followed by GARI and TCARI/OSAVI in

the same period with the latter achieving the same correlation in the

F period. Otherwise, block 2 achieved low regression values, with no

strong correlations. The indices that achieved high correlations in

block 1 correspond to some of the high performers in the UAV

imagery. Although no clear pattern is evident, TCARI/OSAVI,

CIGE, GRVI, GNDVI, SR, GARI, and REDCI showed some

consistency across all the collection periods.
3.3.3 Medium-resolution (satellite imagery)
Block 1 VI’s showed more promise, however, both blocks

achieved low correlation values (Table 6). Again, PH imagery

appeared to show the most promise but only in block 1. Block 2

performed extremely poorly. GNDVI seemed to perform the best.

Values obtained during LD were significantly lower than in the

other periods. In addition to the other RS techniques, CIGE and
FIGURE 7

Linear regression between severity ranking and fractional cover of block 1. (A) May 2021, (B) September 2021, (C) December 2021, and (D) February 2022.
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TABLE 4 Correlation coefficients (R2) of the comparison between severity ranking and VI’s obtained from super high-resolution imagery (UAV).

VI’s

May September December February

PH F ED LD

Block1 Block2 Block1 Block2 Block1 Block2 Block1 Block2

ACI 0.79 0.74 0.76 0.68

BNDVI 0.69 0.66

BRI 0.66

BRVI 0.74 0.79 0.74 0.73

CI 0.80 0.70 0.82 0.72

CIGE 0.80 0.69 0.82 0.77 0.75

EVI 0.79 0.77

GI 0.66

GNDVI 0.80 0.76 0.78 0.71

GRVI 0.80 0.69 0.82 0.77 0.75

IPVI 0.74 0.64 0.65

MACI 0.80 0.69 0.82 0.77 0.75

MARI 0.78 0.63 0.79 0.76 0.76

MCARI 0.75 0.83

(Continued)
F
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FIGURE 8

Simple linear regression between severity ranking and fractional cover of block 2. (A) May 2021, (B) September 2021, (C) December 2021, and
(D) February 2022.
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TABLE 4 Continued

VI’s

May September December February

PH F ED LD

Block1 Block2 Block1 Block2 Block1 Block2 Block1 Block2

MSAVI 0.76 0.73

MSR 0.79 0.77 0.73 0.69

MTVI 0.65

NDRE 0.79 0.68 0.81 0.73

NDVI 0.74 0.65

OSAVI 0.76 0.71

RDVI 0.69 0.72

REDCI 0.78 0.81 0.73 0.72

REMSR 0.80 0.70 0.82 0.73

RE-G 0.76

RVI 0.71

IRG 0.67

SAVI 0.76 0.71

SR 0.78 0.78 0.73 0.72

TCARI 0.75 0.75

TCARI/OSAVI 0.73 0.73 0.67

TVI 0.69
F
rontiers in Agrono
my
 11
This table indicates the VI’s (vegetation indices) that achieved an R2 of 0.65 or higher during any period. Bold text indicates an R2 of 0.80 or more. The remaining VI’s and non-significant VI’s
were omitted. PH is post-harvest period; F is flowering period; ED is early fruit development period and LD is late fruit development period. For VI’s, see Table A1 in the Appendix.
TABLE 5 Correlation coefficients (R2) of the comparison between severity ranking and VI’s obtained from high-resolution imagery (Satellite).

VI’s March (0.50m) April (0.75m) June (0.50m) September (0.50m)

LD LD Bud development F

Block1 Block2 Block1 Block2 Block1 Block2 Block1 Block2

TCARI 0.43 0.43 0.59 0.55 0.70

TCARI/OSAVI 0.43 0.54 0.52 0.73 0.67 0.52

MCARI 0.74 0.40

SAVI 0.43 0.75

OSAVI 0.43 0.74 0.44

MSAVI 0.76 0.40

EVI 0.75

CIGE 0.68 0.46 0.48 0.74 0.48 0.43

GRVI 0.68 0.46 0.48 0.74 0.48 0.43

GNDVI 0.64 0.49 0.47 0.76 0.47 0.43

RDVI 0.75

SIPI 0.72

(Continued)
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GRVI also did well in block 1, PH. In addition, RDVI achieved a

relatively high correlation. GNDVI, CIGE and GRVI performed

well in the UAV imagery, and did relatively well in the high-

resolution satellite imagery indices.
4 Discussion

4.1 Severity rankings

Severity rankings were acquired from each target tree over four

data collection periods by trained agronomists. Severity rankings

were consistent in terms of spatial patterns and did not change

drastically over the growing season. The lowest severity rankings

present in the PH period in both blocks could potentially be due to

the presence of matured leaves and no flush or fruit, which may

interfere with the structural properties of the canopies (Figure 4C).

The presence of fruit and flowers could affect the rankings due to

their being high-energy sinks (Rahman et al., 2022). Flushes occur
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in spring (F period, superimposed on flowering), therefore

competition for nutrients and water occurs (Rahman et al., 2022)

and summer (LD period).

From a practical point of view, the visual screening of severity

rankings in block 1 was simple owing to the flat terrain, smaller

canopies, and minimal ground cover vegetation. Symptom

expression in this block was clearer, which was potentially due to

the smaller, less vigorous canopies that were as a result of intense

pruning. Intense pruning on this farm is where major limbs are

removed to maintain orchard access between rows and enhance

light interception. On the other hand, block 2 was slightly more

complex due to the sloped terrain, large and high-vigor canopies,

and overgrown ground cover vegetation. The pruning level had a

strong influence on the screening process.

Selected blocks were well-irrigated; therefore, it is not likely that

canopy decline was a result of water stress. On the contrary, in block

1, high infections may be due to a surplus of water in the south-

eastern section of the block, which is close to a water body and at the

bottom of a slight slope. This factor, including poor-draining soils
TABLE 5 Continued

VI’s March (0.50m) April (0.75m) June (0.50m) September (0.50m)

LD LD Bud development F

Block1 Block2 Block1 Block2 Block1 Block2 Block1 Block2

SR 0.44 0.43 0.44 0.44 0.73 0.36 0.35 0.47

ARVI 0.44 0.72 0.46

GARI 0.51 0.49 0.52 0.74 0.42 0.49

TVI 0.75

REDCI 0.44 0.43 0.44 0.45 0.73 0.37 0.35 0.47

IPVI 0.73 0.47

NDVI 0.71 0.47

BRVI 0.71
This table indicates the VI’s (vegetation indices) that achieved the highest R2 during any period. The remaining VI’s and non-significant VI’s were omitted. Bold text indicates R2 above 0.65.
TABLE 6 Determination coefficients (R2) of the comparison between severity ranking and VI’s obtained from medium-resolution imagery (Satellite).

VI’s May September December February

PH F ED LD

Block 1 Block 2 Block 1 Block 2 Block 1 Block 2 Block 1 Block 2

GNDVI 0.56 0.45 0.47 0.45

CIGE 0.56 0.43 0.43 0.44

GRVI 0.56 0.43 0.43 0.44

G band 0.49 0.30 0.39 0.45 0.30

SIPI 0.48 0.41 0.35

RDVI 0.50 0.41 0.34

BRVI 0.43 0.42 0.37

GARI 0.49 0.38 0.32 0.30
This table indicates the VI’s (vegetation indices) that achieved the highest R2 during any given period. The remaining VI’s and non-significant VI’s were omitted. Bold text indicates R2 above 0.45.
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and high soil temperatures, is the optimal environment for PRR.

Salgadoe et al. (2018) found that the distribution of trees in severe

decline was in areas attributed to water logging conditions and

lower in elevation, much like block 1. Although mulch is used in this

block to help combat PPR infections, it seems they are still present.

On the other hand, healthy trees appear to be situated at the

northern side of the block, which is at the top of the slight slope.

High infections in block 2 do not seem to indicate a distinct pattern.
4.2 Super high-resolution
(UAV imagery – fcover)

In our case, super high-resolution refers to pixel size of <0.05m

obtained by MS imagery with the sensor mounted on a UAV flown at

an altitude of 55m. From this UAV imagery, fcover and VIs were

evaluated as indicators of PRR severity. VIs obtained from UAV

imagery are discussed in the next section. The fcover obtained by UAV

imagery changed over time so the correlation with PRR severity rating

varied according to the phenology. In block 1, promising results with

high correlations were obtained in the PH period where only mature

leaves were evident (Figure 8). The high R2 in the F period could be

due to the first flush growth and limb removal having taken place

soon after the PH period. The ED and LD periods produced the

lowest R2 values which could potentially be due to the trees bearing

fruit (thereby slightly stressed) and because limb removal pruning was

conducted in November 2021 thereby decreasing the canopy biomass.

It is important to note that pruning is done to improve the sunlight

entering the inside of the canopy. Pruning is performed for light

interception purposes so that fruit set occurs on the inside as well as

the outside. Therefore, pruning is independent of PRR severity, i.e.,

branches with dieback are kept on the tree unless they are blocking the

sun from entering the center of the tree.

In block 2, better results were achieved in the PH and LD

periods (Figure 8) although correlations were low. These align with

the results from block 1. Interestingly, the F period showed no

correlation and the fcover values all seem to be slightly lower than the

rest of the periods. The poor results of block 2 are potentially due to

the low pruning intensity, high vigor and large size of intertwining

canopies resulting in minimal changes in fcover over the study

period. Additionally, block 2 had high ground cover vegetation
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and this potentially interfered with the calculation. It is clear that

using fcover as a method to determine PPR severity is not adequate in

this case of mild pruning and large canopies. The fcover is a good

indicator of light interception, which is a crucial determinant of

crop growth and important for flowering, fruit maturation, and

quality as well as reducing disease and pest incursions for

horticultural tree crops (Wu et al., 2020).

Salgadoe et al. (2018) found similar results of a strong linear

relationship between canopy porosity percentage and the ‘Ciba-

Geigy’ rating scale with an R2 of 0.97 in the study of PRR in

avocado. In this study, the canopy porosity was defined as “the

proportion of the sky area visible within the perimeter of the crowns

of individual plants”. Therefore, the concept is like fcover with the

difference being the sky was used as the background instead of the

ground. Tu et al. (2019) used the same parameter (with the ground

as the background) to investigate a condition ranking strategy on

avocado trees where they assessed tree crop condition directly

related to canopy structural attributes estimated from UAV image

data and used the data to rank avocado tree condition. One of the

measured parameters was fcover and the authors produced an R2

value of 0.62 against field data. The fcover relationship with PRR

severity ranking will depend on orchard management practices i.e.,

if farmers only prune branches with severe die-back, it will affect the

relationship, therefore it is an important factor to consider when

using it to identify the severity of a tree.
4.3 Vegetation indices

4.3.1 Super high-resolution (UAV imagery)
In terms of spectral information, it is well known that the

reflectance of visible light is influenced significantly by the

concentration of photosynthetic pigments, while the reflectance of

NIR is sensitive to the leaf and canopy structure (Rahman et al.,

2022). Also, literature indicates that the spectral reflectance of trees

is impacted by the orchard location (i.e., topography, slope, sun

angle) and growing season (i.e., phenological phase) (Robson et al.,

2017). Therefore, VIs can provide valuable information in order to

assess PRR severity in avocado orchards.

From our results, VI’s containing the NIR band achieved greater

correlations. The six highest correlations in block 1: CI (containing
TABLE 7 A comparison between using the mask technique versus not using the technique in block 1.

VI May Sept Dec Feb

No mask Mask No mask Mask No mask Mask No mask Mask

ACI 0.47 0.79 0.55 0.74 0.46 0.76 0.44 0.68

BNDVI 0.42 0.69 0.55 0.66 0.41 0.63 0.54 0.59

IPVI 0.72 0.74 0.70 0.64 0.56 0.65 0.61 0.55

NDVI 0.74 0.74 0.68 0.64 0.52 0.65 0.53 0.56

GNDVI 0.65 0.80 0.70 0.76 0.63 0.78 0.63 0.71

SAVI 0.76 0.76 0.53 0.71 0.30 0.27 0.35 0.61
For VI’s, see Table A1 in the Appendix.
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NIR and RE bands) and CIGE (containing NIR and G) determine

the amount of chlorophyll in plants and PRR-infected plants

display lighter color leaves. GNDVI (containing NIR and G)

estimates photosynthetic activity (as well as GRVI (containing

NIR and G)) and is commonly used to determine water and

nitrogen uptake into the plant. PRR-infected trees have reduced

water uptake ability. MACI (containing NIR and G) measures

anthocyanin content and weakening vegetation contains higher

concentrations of anthocyanins, so this VI is a good indicator of

stressed vegetation. REMSR (containing NIR and RE) is a good

indicator of stress. A study done on banana trees infected with

Fusarium wilt disease also found the CIGE, along with REDCI,

NDVI, and NDRE, to easily discriminate between healthy and

unhealthy plants (Ye et al., 2020).

All these indices contain a combination of NIR, RE and G which

are common in health detection. Stressed vegetation produces lower

solar reflectance in NIR and when the tree is infected with PRR, the

amount of chlorophyll in the leaves is reduced (Gitelson et al.,

2003). Even though the flowers altered the spectral properties of the

imagery, the F period still proved to supply high correlation results

in block 1. RE wavelength is more sensitive to flushing and thus

more effective for the detection of flushing related to tree health

(Chang et al., 2020). This could explain why the RE-related VI’s

achieved higher correlations in the F period in block 1. The low

standard deviation of the VI’s in block 2 were was potentially due to

all the canopies being large and having high vigor and therefore not

much variation is evident in the VI’s. Calculating the VI’s for block

2 proved to be slightly problematic due to the site being on a

relatively steep slope and dense ground cover was present.

The mask technique was used to eliminate spectral disturbances

of other coverages such as ground vegetation, shadows, soils,

understory (more applicable to sparse trees evident in block 1)

etc. A comparison was done between VI correlations calculated

using the mask technique versus not using the mask for block 1

(Table 7). Fewer differences occurred in February (wet season,

received 13cm of rain) while higher differences occurred in

December (wet season) and May (dry season, almost no rain).

Except for SAVI, where the highest differences were in February and

September. The VI results from the ‘no mask’ analysis were

generally worse than those that used the mask (Table 7). Perhaps

a slightly lower difference in the IPVI can be attributed to the fact

that IPVI comprises of atmospheric and soil corrections (Huete

et al., 1999). GNDVI and NDVI also had very small differences

while ACI and BNDVI had the largest differences. To conclude, the

effect of the mask technique was not great, the soil and ground

vegetation did not appear to have much effect on the index in the

case of no mask. However, subtle differences are present, and these

may have contributed to the favorable results of the

high correlations.

Shadows may lead to variation in VI’s. Shadows are evident in

the imagery, and these may lead to the overestimation of NDVI,

SAVI and SR and an underestimation of some VI’s such as RVI1

(Ranson and Daughtry, 1987) As in the Garcia-Ruiz et al. (2013)

study, the shadow might have led to higher variation in some

indices in all the imagery.
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The VI’s with the most potential, IPVI, ACI and BNDVI, have

not been recorded as efficient in the study of PRR in avocado trees.

NDVI, GNDVI, and SAVI are some of the most frequently used

VI’s in agriculture and of the three, only one (GNDVI) has featured

relatively significantly in this research. GNDVI has been found to be

a robust spectral feature in the detection of stress in citrus orchards

and may also be more effective than NDVI at detecting changes in

vegetation caused by factors such as disease (Sankaran et al., 2013).

GNDVI is more sensitive to the variation of chlorophyll content, it

works well in crops with dense canopies or in more advanced stages

of development (Sankaran et al., 2013). De Castro et al. (2015)

evaluated the spectral requirements for quick and accurate

detection of laurel wilt infected avocado trees using MS imagery.

They found GNDVI was among the optimum VI's for detection.

Garcia-Ruiz et al. (2013) studied Haunglongbing infections in citrus

trees using UAV-MS imagery, finding that healthy canopies are

expected to have higher values of NDVI, GNDVI, SAVI and S

among others. In this study, GNDVI was one of the most

statistically significant VI for block 1 while NDVI, SAVI and SR

fared well. Furthermore, they found that SR had a greater difference

between healthy and unhealthy trees. This agreed to findings from

this study where SR achieved high correlations in block 1.

Interestingly, our study did not indicate that NDVI was among

the best discriminating factor of severity while a study by Pérez-

Bueno et al. (2019) who used UAV-MS imagery to detect white root

rot in avocado trees found that NDVI showed significant differences

between diseased and healthy avocado trees.

Chang et al. (2020) studied citrus greening disease using

airborne MS imagery. Focusing on NDVI, NDRE, MSAVI and

CI, they found that RE-related VI's showed a higher capability for

citrus orchard monitoring. MSAVI outperformed in quantifying

crop status, and CI was the most efficient feature for monitoring

citrus greening infection. Additionally, other works done on citrus

greening disease by Li et al. (2012) also found that CI discriminated

well. These findings agree with this study where NDVI, NDRE,

MSAVI and CI achieved relatively high correlations with CI

achieving the highest. However, CI wasn’t good statistically.

ACI, developed by van den Berg and Perkins (2004), is a VI that

increases in response to increased anthocyanins as green leaf

reflectance drops (Roberts et al., 2011). In our study, the values of

ACI tend to increase in the LD period (February) and the F period

(September), which corresponds to higher severity rankings and

bearing large fruit or flowers. Large fruit and flowers may be

changing the spectral reflectance values in the LD and F periods,

which may add stress to canopies, thereby reducing green leaf

reflectance in the leaves. While the absence and small size of fruit in

PH and ED periods respectively, may be decreasing the values of

ACI. BNDVI, or blue NDVI, is often used for areas sensitive to

chlorophyll content and has been found to make the best separation

between healthy and leaf curl infected peach trees (Pourazar et al.,

2019). PH and LD period have the lowest BNDVI, perhaps this is

due to the absence of flush.

Radiometric calibration is a prerequisite when using spectral

information, especially when in the case of multi-temporal

investigations, it would be needed as the conditions will not be
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the exact same (e.g., different light conditions) which will affect the

data validity (Pourazar et al., 2019; Tu et al., 2019). Even though

Pourazar et al. (2019) and Candiago et al. (2015) found that

radiometric calibration had an insignificant effect on classification

results and a good description of crop condition was still achieved,

these authors did not investigate the affect over multiple time

periods. Their results were therefore mainly qualitative, unlike the

results of this study where the spectral information of the trees was

normalized through the use of radiometric calibration.

In terms of flight altitude, the results of this study show that it is

a crucial factor for aerial image acquisition due to its impact on

spatial resolution and spectral resolution. Lower altitude allows for

higher spatial resolution while higher altitude imagery has a lower

spatial resolution. Our study shows that 50 to 60 m flight height is

suitable for detecting PRR in avocado orchards. Similarly, Sankaran

et al. (2013) found that 60 m altitude is more suitable for stress

detection in citrus orchards. While De Castro et al. (2015) found

that 250 m was adequate in the detection of avocado trees infected

with laurel wilt. Furthermore, they argue that any of their tested

altitudes (180 m, 250 m, 300 m) would be able to discriminate an

avocado tree infected with laurel wilt. However, the accuracy of this

statement depends on factors like sensor selection coupled with the

selected altitude. A sensor with low spatial resolution acquiring

imagery from higher altitudes may result in poor quality imagery

(e.g., imagery impacted by shadow effects and pixel-mixing) and

therefore may not be able to detect disease accurately.

To quantify leaf and canopy level infections at low altitude, one

would need to obtain accurate VI’s (Kubera, 2013). Therefore, one

needs good quality MS orthomosaics, and furthermore, good

quality greyscale MS images. The reason is because the greyscale

MS images are ultimately “stitched” together to create the multi-

band orthomosaics from which the VI’s are calculated. Issues like

varying canopy height and movement from the wind can reduce the

quality of the greyscale image and further reduce the already limited

number of tie points (in comparison to RGB imagery) that are

inherent in the greyscale images. The lower number of key points is

usually the reason for RGB imagery having a higher resolution.

4.3.2 High-resolution (satellite imagery)
In our study, high-resolution refers to pixel size of 0.50 m and

0.75 m obtained by satellites such as SuperView, JPSS1 and

ViewReady. The pixel-mixing effect is much stronger in the case

of satellite imagery as the masking technique was not used and

pixels are larger than those from the UAV imagery. Pixel-mixing

with the shadows, soil, understory, adjacent ground cover in the row

spaces such as mulch (block 1) and weeds/cover crops (both blocks)

was evident, and it is highly likely that it disturbed the spectral

values of the canopies. Adding to the complication is the seasonality

of the understory or space between rows and management thereof

as they change from season to season and depend on management

practices and therefore impact multi-temporal spectral datasets

(Hornero et al., 2020). In rainy seasons (Summer) it may be fully

covered with weeds while in dry season (Winter) it may just be bare

earth. This may have an impact on the variability of results where

June (dry) achieved better than the other periods in block 1. Shadow
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effect may also be evident and cause variability and lower

correlations. The 0.50 m June imagery having the highest

correlations in block 1 aligns closely with the UAV imagery,

where the month of May had the highest correlations. Following

is the 0.50 mMarch imagery, which would align with the LD period.

This month does not align with the UAV imagery.

Robson et al. (2017) used high-resolution WorldView-2 and

WorldView-3 satellite imagery to map yield in avocado orchards.

With a multi-temporal approach, they used NDVI to successfully

determine three vigor classes, extracted VI’s for each sample tree

and determined the yield. In this research, NDVI did not perform

well, except in block 1 June imagery. A study done by Salgadoe et al.

(2018) investigated the use of WorldView-3 imagery to quantify the

severity of PRR in avocado trees. They found that SR (NIR/R) had

the best correlation (R2 = 0.96) with the disease rankings, and it was

able to detect early decline. The spatial resolution of the

WorldView-3 imagery was 1.2 m and the imagery was from the

month of April. In this study SR achieved a determination

coefficient of 0.73 in June for the 0.50 m resolution satellite

imagery, therefore achieving similar results.

A study done by Johansen et al. (2020) found that the NIR band,

RDVI, SIPI, GNDVI and NDVI, among others, had the highest

importance when investigating macadamia tree condition using

UAV images and WorldView-3. Although the analysis method

differs to this study (machine learning approach), the results are still

telling. RDVI achieved good results in this study in the high- and

medium-resolution satellite imagery while GNDVI, NDVI, SIPI

achieved promising results in the medium-resolution imagery. A

study done on fire blight in pears also found RDVI, along with

TCARI among others, to be useful in the early-stage detection there

of (Bagheri, 2020).

Other than the 0.50 m imagery acquired from June and the

three high correlation indices from March, the VI values for both

blocks were relatively similar. This suggests that the effect of canopy

management using this technique is not as clear as the UAV

technique. This is due to the resolution being too low and not

being able to discern the finer details of the canopy. From this

section of this research, we can suggest that CIGE, GRVI, GNDVI,

MSAVI and OSAVI be further investigated in the PRR detection as

they have shown promise in the LD and bud development periods.

4.3.3 Medium-resolution (satellite imagery)
In our case, medium resolution refers to pixel size of 10 m

obtained from S2B satellites. Although some correlations were

evident, VI results still performed poorly in this case of medium

resolution imagery. Medium resolution satellite imagery will not

provide telling results due to the lower resolution, especially in

crowded orchards, causing low precision and accuracies. One of the

main contributors is the mixed-pixel effects. These make it

challenging when attempting to separate the contribution of the

different canopy-scene components such as soil, shadows, and

understory, particularly in open vegetation canopies (Hornero

et al., 2020). In terms of avocado trees, they are usually planted

close to each other, (specifically in block 2) where their canopies

overlap. Along with the pixel-mixing of the trees, there is also the
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issue of pixel-mixing with the understory such as mulch (block 1)

and weeds/cover crops (both blocks). Adding to the complication is

the seasonality of the understory or space between rows. In rainy

seasons it may be fully covered with weeds (December and

February) while in the dry season (May and September) it may

just be bare earth. This may partly explain why results from May

and September were generally better than those from December and

February in block 1. Shadow effects may also interfere with the

spectral properties. At this low resolution, canopy management

practices may not play a role in the spectral properties as the 10 m

pixels are too large to describe these finer details.

In terms of the VI’s, GNDVI seemed to perform the best over all

the periods in block 1, this is no surprise as this index is a chlorophyll

index and measures the plants’ “greenness” or photosynthetic

activity. It is one of the most widely used vegetation indices to

determine water uptake in the canopy. This index is mainly used in

the intermediate and final stages of the crop cycle therefore proving

the highest results in the PH period. In addition, CIGE, used to

estimate the content of leaf chlorophyll, and GRVI, sensitive to leaf

pigments, did well in block 1, PH period. Perhaps indicating that the

mature leaves were not under stress from other factors i.e., fruit or

flowers draining energy. GNDVI, CIGE and GRVI did well in the

high-resolution imagery for June (a month after PH) andMarch (two

months before PH) and, additionally, did well in the UAV-derived

indices for the PH period. This shows that results agree, and that

compatibility is highly potential.

Availability of frequent MS imagery data from S2B offers the

opportunity to assess both spatial and temporal variation. However,

not at tree canopy level but rather at block or orchard level. This RS

technique could be used as a ‘pre-screening’ procedure to identify

potential diseased trees (Pérez-Bueno et al., 2019). Using S2B data,

Hornero et al. (2020) found that VI’s that minimized atmospheric

and background effects, ARVI and OSAVI, performed better than the

traditional VI’s such as NDVI, RDVI, and MSR. Further, they found

that ARVI and OSAVI can be used to monitor orchard-level changes

in disease incidence when investigating a xyllela fastidiosa disease in

olive trees. However, they also found that the effects of the understory

had a considerable impact on the VI’s. Similar results were obtained

in this study but for high-resolution satellite imagery (0.50 m). A

study done on banana trees by Selvaraj et al. (2020) used similar

platforms to this research. They also investigated UAV imagery along

withmulti-level satellite images. From S2B imagery, they found that it

could not map bananas as accurately as UAV and high-resolution

satellite imagery. Rahman et al. (2022) investigated the potential of

S2B data for monitoring avocado crop phenology. They were able to

show statistically significant differences between four phenological

periods using EVI. This index did not feature in this present study.
4.4 Comparison among platforms

The super high-resolution imagery obtained the best results, in

both blocks, although block 2 was significantly lower. This indicates

that UAV-MS imagery can be a good indicator of PRR severity,

especially in the PH period, but it still is not good enough to

overcome the issue of large canopies where the symptom expression
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was not clear. Major limitations in UAV-MS imagery include

coverage, costs, image processing time and weather conditions.

Although UAV’s are not affected by cloud cover as with satellite

imagery. High-resolution satellite imagery could prove to be a good

indicator of infection at block and orchard level, specifically in the

LD and bud development periods. Pixel-mixing, cloud cover and

sun angle are major concerns in high-resolution satellite imagery.

Image acquisition, temporal resolution, and sensor selection

flexibility is less than UAV imagery and cost is around the same.

A critical challenge with satellite imagery is spatial resolution

(Zhang et al., 2020). Although high-resolution satellite imagery

can have spatial resolution up to 0.31 m, the satellite image is still

not as good as those acquired through UAV-based sensing and it is

not suitable for application where the plant traits are subtle (Zhang

et al., 2020). Medium-resolution imagery could provide an

indication of high severity on an orchard/farm scale. The

resolution is too low to detect single tree, and the pixel-mixing

effect is too prominent. Although S2B imagery is free, it is not

suitable for precise PRR detection.
5 Conclusions

In this study, we explored the use of RS techniques for mapping

the severity of PRR in avocado orchards considering the spatial

resolution effect, phenological periods, and canopy conditions

modulated by pruning intensity. Ground truthing of healthy and

PRR-infected trees with various rankings, along with their GPS

position, were recorded and the trees were identified in and

segmented from all the RS imagery.

Regarding RGB-UAV imagery, we tested fcover as an indicator of

ranking severity. The results show that fcover relationship depends on

orchard management practices since this parameter is highly

influenced by the level of pruning, vigor size of canopies, and tree

spacing. In block 1 with a high pruning level, significant relationships

were registered for all phenological periods analyzed. However, in

block 2 there were poor results due to the high-vigor and size of

canopies. Under these conditions, it is clear that fcover obtained from

an aerial view is not an adequate parameter to determine PPR severity

due to the lack of sensitivity to canopy changes.

VI’s obtained by MS imagery were also analyzed as potential

indicators of PRR ranking severity, in this case, the resolution effect

was tested using different platforms to obtain super high-, high- and

medium-resolutions. VI’s CIGE, GNDVI, and GRVI, were found to

be significantly different, while having a good correlation with the

ground truth, at all the spatial resolutions. Therefore, the highest

correlation VI’s were recognized as suitable indicators of PRR

severity. Prior to statistical analysis, ACI, BNDVI, and IPVI were

deemed have the best potential for PRR severity in UAV-based MS

data. Furthermore, the results showed that the relationship with

top-performing VI’s also depends on orchard management

practices since VI’s in block 1, that received limb removal

pruning, achieved better results in all the different resolutions

tested. The results indicate that UAV-MS imagery can be a good

indicator of PRR severity, but it still is not good enough to overcome

the issue of large canopies.
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High-resolution satellite imagery could prove to be a good

indicator of the general area of infection, specifically in the LD and

bud development periods. On the other hand, medium-resolution

imagery could provide an indication of high severity on an orchard/

farm scale. In all cases, the PH period achieved the best results. Health

scouting is an important practice in the avocado industry and

understanding the spatial and temporal differences of PRR would

be useful for disease management. The results of this study show the

potential of fcover and VI’s obtained from UAV super high-resolution

imagery and VI’s obtained high-resolution satellite imagery in the

determination of PRR severity in avocado orchards. These results

could be used as a rapid sensing technology to aid in the scouting

process by reducing scouting costs and improve efficiency.
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