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Introduction

The partial possibilities of using modified antisense oligonucleotides were first found by

Paul Zamechnik and Mary Stephenson in 1978 on Rous sarcoma virus (Zamecnik and

Stephenson, 1978). One of the eventual mechanisms of action of antisense oligonucleotides

was detected a year later when Helen Donis-Keller presented results showing that

RNase H cleaves the RNA strand in RNA–DNA heteroduplexes in a site-specific

manner (Donis-Keller, 1979). It took three decades for unmodified antisense

oligonucleotides to be conceptually applied in the form of contact unmodified antisense

DNA (CUAD) biotechnology (Oberemok, 2008) and for oligonucleotide insecticides

(briefly, olinscides or DNA insecticides) to be used for plant protection (Manju et al.,

2022; Gal'chinsky et al., 2024; TriLink BioTechnologies, 2024) (Figure 1). In 2008, an equal

sign was put between unmodified antisense DNA oligonucleotides and contact insecticides

(Oberemok, 2008). By that time, the development of phosphoramidite DNA synthesis

(Hoose et al., 2023) made it possible to synthesize and test antisense DNA fragments on a

large number of pests at an affordable price. Oligonucleotide insecticides were tested for the

first time on the spongy moth Lymantria dispar. The contact application of antisense DNA

oligonucleotides targeting IAP genes has shown its effectiveness on both baculovirus-free

and LdMNPV-infected spongy moth caterpillars (Oberemok et al., 2016, 2017; Kumar

et al., 2022).

In 2019, three important changes occurred that significantly advanced the development

of CUAD biotechnology. First, rRNAs of insect pests began to be used as targets for

oligonucleotide insecticides (this led to an increase in the efficiency of oligonucleotide

insecticides since rRNA makes up 80% of all RNA in the cell) (Oberemok et al., 2019a).

Second, the length of oligonucleotide insecticides was successfully reduced to 11
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nucleotides, providing sufficient selectivity (1/4,194,304)

(Oberemok et al., 2022) in action (this helped to decrease the cost

of oligonucleotide insecticides since the yield of phosphoramidite

DNA synthesis for short DNA sequences is higher). Third,

representatives of the suborder Sternorrhyncha, serious pests of

agriculture and forestry all over the world, were found to be highly

sensitive to oligonucleotide insecticides (Gal'chinsky et al., 2020;

Oberemok et al., 2020; Useinov et al., 2020; Oberemok et al., 2022;

Gal'chinsky et al., 2023; Oberemok et al., 2023; Puzanova

et al., 2023).

In the course of research, we discovered that oligonucleotide

insecticides act through the DNA containment (DNAc) mechanism,

which consists of two steps. In the first step of DNAc, antisense DNA

oligonucleotide (oligonucleotide insecticide) complementarily

interacts with target rRNA (in other words, it “arrests” target

rRNA) and interferes with the normal functioning of ribosomes

(“arrested” ribosomes); this process is accompanied by substantial

insect pest mortality. After that, we see target rRNA

hypercompensation by the DNA-dependent RNA polymerase as

the only way for the insect cell to fight for life when target rRNAs

and/or polycistronic rRNA transcripts are “arrested” by antisense

DNA oligonucleotides. In the second step, RNase H cleaves the target

rRNA and a substantial decrease in its concentration occurs; this step

is also accompanied by substantial insect pest mortality (Gal'chinsky

et al., 2024; Oberemok and Gal’chinsky, 2024).

Oligonucleotide insecticides can be designed using the

DNAInsector program (dnainsector.com) or using manually the

sequences of pest rRNAs found in the GenBank database.

Phosphoramidite solid-phase and liquid-phase methods of

oligonucleotide synthesis are used to obtain olinscides.

Oligonucleotide insecticides are generally dissolved in nuclease-

free water, and the usual concentration is 1 mg of olinscides per

10 ml of water solution and applied per m2 of plant leaves
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containing insect pests. We believe that contact delivery of

unmodified antisense DNA (CUAD) is much more efficient

(Oberemok et al., 2019b) than oral delivery of unmodified

antisense DNA (ODUAD) because of active DNases present in

the digestive tract of insects (Schernthaner et al., 2002; Keyel, 2017).

Oligonucleotide insecticides are applied using hand sprayers or

cold fog generators. Olinscides possess high selectivity in action and

safety for non-target organisms, low-carbon footprint, and rapid

biodegradability and create an opportunity for elaboration of

insecticides with multi-decade utility based on conservative

sequences of pest ribosomal RNA genes (Oberemok et al., 2019a,

2022; Gal'chinsky et al., 2023; Puzanova et al., 2023; Gal'chinsky

et al., 2024). In the case of target-site resistance, new olinscides

can be easily recreated displacing the target site to the left or right

from the olinscide resistance site of the target rRNA (Gal'chinsky

et al., 2024).

The modern phosphoramidite method of synthesis of

oligonucleotide insecticides does not lead to the accumulation of

greenhouse gases such as nitrogen oxide, ozone, methane, or carbon

dioxide. DNA synthesis occurs in an airless environment in an

acetonitrile solution using catalysts. Compared with neonicotinoids,

widely used for pest control, oligonucleotide insecticides do not

have a carbon footprint although there could be a minimal amount

in some cases. For example, the ratio of tCO2/t for the production of

neonicotinoid thiamethoxam is 0.351 (Gal'chinsky et al., 2023).

We showed that deoxyribonucleases, which are present in the

cell homogenates of the spongy moth (L. dispar L.), Colorado

potato beetle (Leptinotarsa decemlineata Say), cottony cushion

scale (Icerya purchasi Maskell), and their host plants (Quercus

pubescens Willd., Solanum tuberosum L., P. tobira Thunb.), have

a high biodegradability potential for oligonucleotide insecticides

and ensure their fast degradation (usually within 24 h) upon

interaction with them (Oberemok et al., 2018; Oberemok et al.,

2019a; Gal'chinsky et al., 2023).

The use of olinscides could solve, or at least improve, the

fundamental problem of insecticide selectivity. The results of our

work showed that the change of just one nucleotide at the 1st (5′-
end), 6th, and 11th (3′-end) positions leads to a substantial decrease
in biological efficiency of the target 11-nucleotide-long olinscides

(Oberemok et al., 2019a; Puzanova et al., 2023; Gal'chinsky et al.,

2024). Also many random oligos in our investigations did not cause

a significant insecticidal effect on target insect pests (Oberemok

et al., 2017; Gal'chinsky et al., 2020; Useinov et al., 2020; Oberemok

et al., 2022). Moreover, previous studies of the effect of

oligonucleotide insecticides on the biochemical parameters of the

plants Quercus robur L., Malus domestica Bokh (Zaitsev et al.,

2015), and Triticum aestivum L (Oberemok et al., 2013), and on the

viability of the insects Manduca sexta L., Agrotis ipsilon Hufnagel

(Oberemok et al., 2015), and Galleria mellonella L (Oberemok et al.,

2019a), showed their safety for non-target organisms. However, we

assume that non-canonical base pairing, such as A:С (С:A) and G:T

(T:G) (Du et al., 2005; Luige et al., 2022), may occur between DNA

olinscides and imperfect sites of rRNAs (Figure 1). Definitely, non-

canonical base pairing should be taken into consideration during

the design of olinscides so as not to harm non-target organisms

(Gal'chinsky et al., 2024).
FIGURE 1

Advanced features of CUAD biotechnology.
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The purpose of this article is to provide a brief overview of the

experiments using oligonucleotide insecticides, which will help us to

show the simplicity and effectiveness of CUAD biotechnology, as

well as evaluate its high potential for agronomy.
Lymantria dispar (Linnaeus, 1758)

The spongy moth (formerly known as gypsy moth) L. dispar L.

(Lepidoptera: Erebidae) is the notorious invasive polyphagous pest

of the Holarctic region, infesting over 500 plant species and causing

widespread loss of leaves in forests in Europe, Asia, North America,

and parts of Africa (Martemyanov et al., 2019; Boukouvala et al.,

2022). In Europe and North America, the preferred hosts of L.

dispar vary by region but include the species of Quercus, Salix,

Populus, and Betula (Boukouvala et al., 2022).

The oligonucleotide insecticide oligoRIBO-11 (5′-TGC-GTT-
CGA-AA-3′) targeting the 5.8S rRNA at a concentration of 72 ng/

µL leads to a 46.9% ± 9.3% mortality rate of the spongy moth larvae

on the sixth day (Oberemok et al., 2019a).
Unaspis euonymi (Comstock, 1881)

The euonymous scale U. euonymi Comstock (Hemiptera:

Diaspididae) is the most common and serious pest found on

Euonymus plants (Salisbury et al., 2013). It is frequently

encountered in dendro log ica l nurser ies , parks , and

ornamental gardens.

The oligonucleotide insecticide oligoUE-11 (5′-ATA-CCG-
ACG-AT-3′) targeting the 28S rRNA at a concentration of 100

ng/µL leads to a 99.24% ± 1.32% mortality rate of the euonymous

scale larvae on the 10th day (Gal'chinsky et al., 2020; Oberemok

et al., 2020).
Dynaspidiotus britannicus
(Newstead, 1898)

The holly scale D. britannicus Newstead (Hemiptera:

Diaspididae) is often found on the species of Buxus, Hedera, Ilex,

and Laurus (Nakahara 1982) and on conifers (Ülgentürk et al.,

2012; Kaydan et al., 2014) and is also a minor pest of olive trees,

palms, and ornamentals.

The oligonucleotide insecticide oligoDB-11 (5′-ATA-CCG-
ACG-AT-3′) targeting the 28S rRNA at a concentration of 100

ng/µL leads to an 82.44% ± 15.62% mortality rate of the holly scale

larvae on the 10th day (Gal'chinsky et al., 2020).
Ceroplastes japonicus (Green, 1921)

The Japanese wax scale C. japonicus Green (Hemiptera:

Sternorrhyncha: Coccidae) is a polyphagous pest of soft and

hardwood trees, fruit trees, citrus trees, and ornamentals (Garcıá
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Morales et al., 2016). The host plants most commonly infested by

these insects are Citrus, Diospyros, Ilex, and Hedera (Pellizzari and

Germain, 2010).

The oligonucleotide insecticide oligoCJ-11 (5′-CGA-CCG-
ACG-AA-3′) targeting the 28S rRNA at a concentration of 100

ng/µL leads to a 78.82% ± 18.60% mortality rate of the Japanese wax

scale larvae on the 10th day (Useinov et al., 2020).
Diaspis echinocacti (Bouche, 1833)

The invasive scale insect D. echinocacti Bouché (Hemiptera:

Diaspididae) is a major and specific pest of cactus pear species

worldwide, recorded from 74 countries (Asia, Europe, North

America, and Africa) (Garcıá Morales et al., 2016). This pest was

recorded on 58 plant species in the family Cactaceae: most

commonly on Opuntia dillenii and O. ficus-indica (Imane et al.,

2022; Aalaoui and Sbaghi, 2023).

The oligonucleotide insecticide Cactus-NBG (5′-ATC-GCT-
GCG-GA-3′) targeting the 28S rRNA at a concentration of

100 ng/µL leads to an 84.2% ± 2.2% mortality rate of D.

echinocacti larvae on the 14th day (Plugatar et al., 2021).
Coccus hesperidum (Linnaeus, 1758)

The soft scale insect C. hesperidum L. (Hemiptera: Coccoidae) is

a cosmopolitan and polyphagous pest species (Kapranas et al., 2007;

Villanueva et al., 2020) causing significant damage to citrus crops,

mango, guava, and lychee (Kapranas et al., 2007). Coccus

hesperidum may have the capacity to affect approximately 125

plant families (Garcıá Morales et al., 2016).

The oligonucleotide insecticide Coccus-11 (5′-CGA-CCG-
ACG-AA-3′) targeting the 28S rRNA at a concentration of 100

ng/µL leads to a 95.59% ± 1.63% mortality rate of C. hesperidum

larvae on the 12th day (Oberemok et al., 2022).
Trioza alacris (Flor, 1861)

The bay sucker T. alacris Flor (Triozidae: Hemiptera) is an

oligophagous pest commonly feeding on economically valuable

plants from the family Lauraceae: Laurus nobilis, Laurus azorica,

Laurus novocanariensis, Cinnamomum camphora, and Laurus

indicia, particularly in Mediterranean areas but also in North and

South America (Zeity, 2018).

The oligonucleotide insecticide Alacris-11 (5′-CCA-CCG-
GGT-AG-3′) targeting the ITS2 of polycistronic rRNA transcript

at a concentration of 100 ng/µL leads to a 71.02% ± 5.21% mortality

rate of the bay sucker larvae on the ninth day (Novikov et al., 2022).

The oligonucleotide insecticide Laura-11 (5′-GAC-ACG-
CGC-GC-3′) targeting the ITS2 of polycistronic rRNA

transcript at a concentration of 100 ng/µL leads to a 72.39% ±

6.48% mortality rate of the bay sucker larvae on the ninth day

(Novikov et al., 2022).
frontiersin.org

https://doi.org/10.3389/fagro.2024.1415314
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Oberemok et al. 10.3389/fagro.2024.1415314
Icerya purchasi (Maskell, 1878)

The cottony cushion scale I. purchasi Maskell (Hemiptera:

Monophlebidae) is a cosmopolitan pest native to Australia and

New Zealand and is known to have affected over 200 different plant

species (Kollar et al., 2016). It is a pest of several ornamentals and

crops, such as Citrus reticulata, Artocarpus heterophyllus, Magnolia

denudata, and Ficus altissima (Liu and Shi, 2020).

The oligonucleotide insecticide oligoICER-11 (5′-ACA-CCG-
ACG-AC-3′) targeting the 28S rRNA at a concentration of 100 ng/

µL leads to a 70.55% ± 0.77% mortality rate of the cottony cushion

scale larvae on the 10th day (Gal'chinsky et al., 2023).
Macrosiphoniella sanborni
(Gillette, 1908)

The chrysanthemum aphid M. sanborni Gillette (Hemiptera:

Aphididae) is a major destructive oligophagous pest for

chrysanthemums (Zhong et al., 2022).

The oligonucleotide insecticide Macsan-11 (5′-TGT-GTT-
CGT-TA-3′) targeting the ITS2 of polycistronic rRNA transcript

gene at a concentration of 100 ng/µL leads to a 67.15% ± 3.32%

mortality rate of the chrysanthemum aphid after a single treatment

and a 97.38% ± 2.49% mortality rate after a double treatment (with

daily interval) on the seventh day (Puzanova et al., 2023).
Pseudococcus viburni (Signoret, 1875)

The mealybug P. viburni Signoret (formerly known as

Pseudococcus affinis) (Hemiptera: Pseudococcidae) is a

polyphagous insect recorded from 236 host-plant genera in 89

families (da Silva et al., 2017). It is a pest of several temperate fruits,

including grapes (Dapoto et al., 2011; Correa et al., 2012), apples

(Ciampolini et al., 2002), and pears (Dapoto et al., 2011).

The oligonucleotide insecticide Alpha-11 (5′-GGT-CGC-GAC-
GT-3′) targeting the 28S rRNA at a concentration of 100 ng/µL

leads to a 63.42% ± 3.1% mortality rate of the mealybug larvae on

the 14th day (Novikov et al., 2023a).

The oligonucleotide insecticide Beta-11 (5′-GGA-ATC-GAA-
CC-3′) targeting the 18S rRNA at a concentration of 100 ng/µL

leads to a 78.31% ± 4.5% mortality rate of the mealybug larvae on

the third day (Novikov et al., 2023a).

The oligonucleotide insecticide Gamma-11 (5′-CCT-CAG-
ACA-GG-3′) targeting the 5.8S rRNA at a concentration of 100

ng/µL leads to a 66.96% ± 2.9% mortality rate of the mealybug

larvae on the 14th day (Novikov et al., 2023a).
Aonidia lauri (Bouche, 1833)

The laurel scale A. lauri Bouché (Hemiptera: Diaspididae)

occurs in almost all regions of the world, except Australia and the
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Pacific Islands (Danzig and Pellizzari, 1998). It is a monophagous

species that infests Laurus sp. and causes serious damage in all

laurel-growing areas (Miller and Davidson, 1990).

The oligonucleotide insecticide oligoAL-11 (5′-ATG-CCA-
ACG-AT-3′) targeting the 28S rRNA at a concentration of 100

ng/µL leads to a 98.19% ± 3.12% mortality rate of the laurel scale

larvae on the 14th day in mixed insect pest populations (Gal'chinsky

et al., 2024).
Tetranychus urticae (Koch, 1836), a
case for oligonucleotide acaricides

The two-spotted spider mite T. urticae Koch (Acari:

Tetranychidae) is a polyphagous pest recorded from 1,275 host

plants from 70 genera representing several dozen botanical families

(Migeon and Dorkeld, 2022), either wild or cultivated, including

vegetables, ornamental plants, crops, fruit trees, and shrubs

(El-Sayed et al., 2022).

The oligonucleotide acaricide Tur-3 (5′-AAA-ACA-TCA-AG-
3′) targeting the ITS2 of polycistronic rRNA transcript at a

concentration of 100 ng/µL leads to a 72.85% ± 4.55% mortality

rate of the mite on the third day (Novikov et al., 2023b).

The oligonucleotide acaricide Turka (5′-AGC-GAC-GTC-GC-
3′) targeting the 28S rRNA at a concentration of 100 ng/µL leads to

a 77% ± 0.4% mortality rate of the mite on the third day (Novikov

et al., 2023b).
Conclusion

For the first time in the 155-year history of deoxyribonucleic

acid, we can confidently say that DNA is also a contact insecticide

with unique and advanced characteristics for plant protection.

The simplicity, flexibility, and effectiveness of the CUAD

platform for sap-feeding pests (aphids, psyllids, soft scales,

armored scales, mealybugs, etc.) are amazing. Using the unique

conservative sequences of target rRNAs of insect pests will

minimize the occurrence of target-site resistance in insect pests.

Certain combinations of nitrogenous bases in an oligonucleotide

insecticide will make it well-tailored to a single pest. The use of

unmodified DNA as a natural polymer will minimize the toxicity

load on ecosystems. Liquid-phase synthesis of DNA makes

CUAD biotechnology very cheap already today. Obviously,

more complex formulations of oligonucleotide insecticides

with auxiliary substances will help enhance the effect of

oligonucleotide insecticides on representatives from other

orders of insects. If premarket environmental risk assessment

for the approval of new active substances succeeds with

oligonucleotide insecticides for plant protection, we will get a

new class of insecticides with highly adaptable structure and

selective mode of action.
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