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To meet the grand challenges of agricultural production including climate

change impacts on crop production, a tight integration of social science,

technology and agriculture experts including farmers are needed. Rapid

advances in information and communication technology, precision agriculture

and data analytics, are creating a perfect opportunity for the creation of smart

connected farms (SCFs) and networked farmers. A network and coordinated

farmer network provides unique advantages to farmers to enhance farm

production and profitability, while tackling adverse climate events. The aim of

this article is to provide a comprehensive overview of the state of the art in SCF

including the advances in engineering, computer sciences, data sciences, social

sciences and economics including data privacy, sharing and technology

adoption. More specifically, we provide a comprehensive review of key

components of SCFs and crucial elements necessary for its success. It

includes, high-speed connections, sensors for data collection, and edge, fog

and cloud computing along with innovative wireless technologies to enable

cyber agricultural system. We also cover the topic of adoption of these

technologies that involves important considerations around data analysis,

privacy, and the sharing of data on platforms. From a social science and

economics perspective, we examine the net-benefits and potential barriers to

data-sharing within agricultural communities, and the behavioral factors

influencing the adoption of SCF technologies. The focus of this review is to

cover the state-of-the-art in smart connected farms with sufficient

technological infrastructure; however, the information included herein can be
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utilized in geographies and farming systems that are witnessing digital

technologies and want to develop SCF. Overall, taking a holistic view that

spans technical, social and economic dimensions is key to understanding the

impacts and future trajectory of Smart and Connected Farms.
KEYWORDS

cyber-agricultural systems, IoT, data analytics, precision agriculture, edge computing,
sensors, farmer networks, technology adoption
1 Introduction

Agriculture is one of the most important industries that directly

or indirectly supports a large section of society. With continual

challenges in crop production due to climatic variability, there is a

need to consider integrating technical, economic, and social

dimensions of research to meet the needs of agriculture. Among

the most pressing constraints and challenges of modern agriculture,

climate change-related crop yield decrease is among the most

important (Kummu et al., 2021). For example, Climate change is

projected to reduce agricultural productivity by 3 to 16% by 2080,

with developing countries experiencing more significant reductions

ranging from 10 to 25%; furthermore, crop diseases and other plant

stresses may become more prevalent as temperatures increase and

rainfall patterns become more variable (Mahato, 2014). This is

ushering in a new paradigm of climate-smart agriculture that

requires advances in information and communication technology

(ICT) in crop production and agricultural research. This review

establishes the concept of smart and connected farms and builds

on various technologies and concepts, e.g., the internet of things

(IoT), cyber-physical systems (CPS), smart and connected

communities, and socio-economic factors, all in the context of

empowering farmers.
2 Information and communication
technology in crop production

Some of the technologies that make ICT include IoT (Holler

et al., 2014; Perkel, 2017), robotics, big data, artificial intelligence,

and cyber-agricultural systems. With the additional support of

cloud services, IoT enables the analysis of large historical data,

including soil properties, fertilizer distribution, insect arrival rate,

temperature and humidity trend, and so on. While facilitating data

collection at every stage of crop production, IoT also paves a path to

data-driven services for intelligent farming. IoT mainly refers to the

interconnection of sensor-embedded devices/equipment and is

envisioned to improve the quality and experience of human

living, including in smart agriculture. Potential IoT and wireless

sensor networks (WSNs) applications have been reported
02
(Satyanarayana and Mazaruddin, 2013; Sakthipriya, 2014; Patil

and Kale, 2016; Xue and Huang, 2020; Bhat and Huang, 2021;

Chen et al., 2021; Roy et al., 2021).

Farmers operate at varying farm size scales, which necessitates

context-specific management. To compare scales, traditional

farming manages farm operations at the field level, while smart

farming allows decision-making at a much smaller scale, i.e., per

square meter or plants per unit area. This shift is possible due to

Cyber-Agricultural Systems (CAS) that include individualized

sensing, modeling, and actuation using machine learning (ML)

and coordinated teams of drones/robots that are enabled by

autonomy (Gao et al., 2018; Sarkar et al., 2023). Automation and

control systems provide a higher level of sophistication and

precision that can improve the profitability and sustainability of

modern production systems (Lowenberg-DeBoer et al., 2020).

These technologies support software to help reduce inputs by

more accurately targeting within-field areas with variable rate

application of fertilizer and pesticides (Babcock and Pautsch,

1998). Consequently, by targeting these field inputs more

accurately, farmers can reduce their chemical footprint on the

field. The reduction in inputs saves costs by creating a profit

potential for farmers. For example, the use of precision

agriculture technologies allows farmers to operate in a more

sustainable manner and increase their profitability (Bongiovanni

and Lowenberg-DeBoer, 2004). While these examples are focused

on the field level, similar approaches and technologies apply to

livestock management (Astill et al., 2020) and controlled

environment farms (Guo and Zhong, 2015).

Agricultural equipment manufacturers and service providers

are developing technologies that implement precision farming using

GPS location, application rate monitoring, satellite image analysis,

and predictive models for weather and crop health. While

individual farmers with robust economic condition and ability to

move to new technologies are increasingly adopting advanced

sensing and intelligent equipment (e.g., smart tractors, seed, and

chemical sprayers, aerial surveillance), there is still a lack of efficient

communications and computing technology that are effectively

connecting farmers within a community, thereby preventing them

from sharing data, analyses, and practices optimally. Overcoming

these challenges will enable better decision-making at farms and

increased crop production while collectively improving the overall
frontiersin.org
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well-being and quality of farmers’ life. Although farmers and their

technology providers collect farm-level spatial data on planting and

harvest, community-wide data collection and analysis will be

helpful to formulate management responses to production threats

that transcend farm boundaries, for example, weed seed dispersal,

pesticide dispersion in air, insect-pest migration from farm to farm,

disease spore movement through air and water, and soybean cyst

nematode (Boyd and White, 2009; Zivan et al., 2017). With rapid

networking, farm-level information and production threats can be

communicated quickly across a wider agricultural community.

Farmer communities can often formulate more effective responses

to changing climate events with information sharing and decision-

making, whereas isolated farmers or those who do not trust their

sources of information often delay taking action against production

threats (Obunyali et al., 2019). This necessitates a technology-

driven, community-enabled tool for row crop farming that

provides community-wide mitigation efforts against such threats.
3 Farmer networks, and smart and
connected farms

To improve community-wide data sharing between farmers,

novel socio-technical platforms are needed to create an SCF

network, which also provides the benefit of an early warning

system for damaging pests and other crop stressors. In Africa and

parts of western Asia, a large network of farmers uses various

sensors and networking tools to help predict and map the spread of
Frontiers in Agronomy 03
locusts that cause major damage to affected countries (Cressman,

2013). This network of technology tools and farmer observations

aims to predict when plague-level locust populations may arise and

to take preemptive action to stop the locusts before they can cause

damage that could cause problems with food insecurity (Cressman,

2013). Networked farms, data aggregation, and sharing data across

farms and fields are suitable for limiting the effect of harmful pests

in networked farms across the world.

Although community-based SCF are not yet common, farmers

have conglomerated together for on-farm testing networks where

experiments are done on the lands of participating farmers for the

mutual benefit of all farmers. The data from these tests are more

relevant and with a higher confidence level than can be tested by

farmers individually. These community-based data collection and

downstream decision-making have been done through on-farm

networks but without IoT, smart sensors, ML, and other

communication technologies. Collecting field experiment data from

a network of interconnected farms can be more beneficial than

collecting high-precision sensor data from a single farm. On-farm

experiments allow for establishing cause-and-effect relationships

regarding important crop traits and developing a generalized

decision-making framework that can be applied to wider

geographical areas and varying growing conditions in subsequent

years. However, it is important to ensure that the technological tools

and solutions generated are practical for decision-making rather than

simply forming a dataset. This is particularly important for drone-

based imagery, which might be of little value unless it enables farmers

to act on the insights derived from image-based phenotyping.
FIGURE 1

Example of a smart and connected farm network: Smart Integrated Farm Network for Rural Agricultural Communities (SIRAC) that is designed to
tackle complex challenges to agricultural production including climate change. Such farms have advanced sensors and platform connectivity and
data analytics utilizing Internet-of-Things and Cyber-Agricultural Systems.
frontiersin.org

https://doi.org/10.3389/fagro.2024.1410829
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Singh et al. 10.3389/fagro.2024.1410829
Efforts have begun to create SCF, for example, Smart Integrated

Farm Network for Rural Agricultural Communities (SIRAC), that

aims to facilitate more effective data sharing, knowledge exchange,

and coordinated responses to production threats. Figure 1 provides

an overview of the SIRAC vision of connecting farms and gathering

and sharing information across regions and sensing capabilities.

Such SCFs will enable real-time monitoring of threats to farm

production at a landscape level, which is critical for dealing with

pests, diseases, weather, and management issues. SCFs will build on

currently successful on-farm research trials that ensure the research

and its outcomes are adapted to local farming environments and

cultural practices (Kyveryga, 2019). Technologies designed to create a

network of farms and share information among farmers offer

potentially numerous solutions to productivity and sustainability in

a changing world (Weiss et al., 2020). Furthermore, having a network

of smart farms that can share data with one another and utilize

remote sensing technologies provides the potential for discovering

the extent of climate change’s effect on a farmer’s crop and the

viability of growing that crop in areas that have historically supported

those crops, potentially meaning a change in land use (Weiss et al.,

2020). Another networked solution farms offer the balance they can

provide between profitability, productivity, and sustainability with

aggregated data to better use crop inputs.
3.1 High-speed connections for SCFs

While different regions in the world with IoT have varying

circumstances and infrastructure, we will focus on the U.S. farms to

illustrate the role of high-speed connections in the context of SCF.

Only 26% of rural households have broadband connectivity vs.

93.5% overall Americans have high-speed internet (LoPiccalo,

2021). Available options for rural households are often limited or

more expensive than available in urban areas when considering

Dollars/Megabits per second, although newer satellite-based

internet options are now available. Agricultural fields have lower
Frontiers in Agronomy 04
coverage because fixed wireless is unavailable, and mobile wireless

coverage is available only near highways or populated areas.

Several programs administered by the Federal Communications

Commission (FCC) target rural areas to increase the availability of

fixed and mobile broadband services for healthcare, schools, and

farming. Four such programs to increase the availability of voice,

fixed, and mobile broadband services in under-served and rural

areas include: Connect America Fund (CAF) for rural areas; Lifeline

for low-income consumers; E-rate for schools and libraries, and; the

Rural Health Care Program. The FCC initiatives have identified

high-speed connections with at least 25 Mbps downlink and 3 Mbps

uplink. According to the FCC, connections with high-speed

throughput are considered adequate to upload and download data

used in precision farming and field inspection/monitoring tools

using Unoccupied Aerial Vehicles (UAVs) or drones and remote

sensors (Herr et al., 2023). The downlink-to-uplink ratio of 8 to 1

assumes a standard Internet browser information exchange model.

The programs for increasing connectivity with high-speed

connections target family homes, offices, schools, and health centers

but not agricultural fields, so other approaches are needed to extend

coverage to these remote areas. As of December 2020, the FCC has

awarded $9.2 billion to Internet Service Providers (ISPs) to deploy high-

speed internet to unserved homes and businesses in rural areas, while

$6+ billion is still to be awarded for reaching rates of 100Mbps

downlink and 20 Mbps uplink (Shepardson, 2020). Extending the

high-speed connection to all the fields owned or rented by the operation

requires additional networking. Providing an internet access point

connection to each field fragment provides a considerable networking

challenge. Many farmers manage fields that are variable in size and are

dispersed over large areas. Most farming operations include personally

owned fields as well as leased fields. Providing ubiquitous coverage of

each field is yet another challenge once an internet access point can be

provided to each geographically disconnected field.

Solutions are available for connecting fields but require

investment to install new internet services or expand existing

ones. Figure 2 shows various methods that can be used to obtain
FIGURE 2

A motivating example of d-DSA paradigm: different bands are preferable depending on the traffic characteristics.
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an ISP connection. These include wired alternatives like a Digital

Subscriber Line or Fiber to the Home. Wireless alternatives include

mobile wireless provider service over LTE or 5G, Private fixed

wireless provider using unlicensed RF bands, or Satellite service.

The figure also illustrates connecting field sensors using WiFi

technology to create a Local Area Network with internet access

that allows sensor connectivity and supports Mobile phone and PC

internet service. One common model for accessing precision

farming information from agricultural equipment for fields with

no internet requires the user to first offload the data from the

equipment onto a tablet or PC, and then when they can reach a

location with broadband connectivity, the PC connects to a cloud

service and uploads the information and then processes and

provides analysis and feedback. This model works very well for

each equipment manufacturer but has drawbacks for the farmers.

Different companies’ software does not always integrate well with

each other, requiring farmers to use the same manufacturer for all

operations or lose the benefits of the data collected with each system

and complete farm data integration.
3.2 Sensors for data collection in SCFs

SCFs depend on timely and precise sensing (using sensors) of

the crop and environment to make informed decisions, for example,

when and where to irrigate or spray pesticides. Broadly, the sensors

fall into two categories: passive and active. Passive sensors acquire

data through light, radiation, heat, or vibrations generated by the

physical objects (e.g., crops), while active sensors sense the objects

by emitting a signal from their own radiation source and measuring

the strength of the reflected or refracted signal (Barmeier and

Schmidhalter, 2017).

These sensors can be deployed on a wide variety of scales, but

are most commonly used on the ground, typically, this would be

done by a handheld device at the plant level or field level using a

UAV. Further, at the farm and county level, a satellite imaging

system is commonly employed to monitor the crops. Depending on

farmers’ interest in the crop production problem, the resolution,

and type of sensor are decided, and appropriate phenotyping agents

(robots, drones, satellites) are chosen to allow an increase in

throughput as well as area covered (Guo et al., 2021). The most

commonly used remote sensing modality is a red, green, blue (RGB)

digital camera. This is the most easily interpretable data as it senses

what the human eye can see. It is also the least expensive sensor

when it is being mounted on a UAV. The ease of use both for data

collection and downstream processing has made this type of sensor

widely used in plant science, and its uses have ranged from biotic

(Tetila et al., 2017; Rairdin et al., 2022) and abiotic (Naik et al., 2017;

Zhang et al., 2017; Dobbels and Lorenz, 2019) stress detection, weed

detection (Lottes et al., 2017), maturity estimation (Trevisan et al.,

2020), and stand counts (Barreto et al., 2021).

The other commonly used sensor is a multispectral camera,

which typically has anywhere from 3–10 bands and usually has

bands in the RGB spectrum as well as the red-edge and near-

infrared bands. These additional bands can provide additional

information about crop health and development and have been
Frontiers in Agronomy 05
used for many use cases listed above (Lottes et al., 2017) as well as

yield prediction (Xu et al., 2021). The increased bands do typically

increase the cost of these sensors, but they are still moderately

priced and are easily integrated into a UAV. The additional bands

can add complexity to downstream analysis and increase the data

set size, but many farmers would be accustomed to planting health

maps, which are easily generated from this data that can also be

acquired via satellites.

Hyperspectral camera is more sophisticated and typically has 100

or more bands that range from the RGB spectrum to the near-

infrared spectrum, but the difference is that there is a much higher

spectral resolution with each band typically only being a few

nanometers wide. These sensors have been used on UAVs but have

had less use than multispectral cameras due to the high cost as well as

the complexity of analyzing the data sets. Hyperspectral images have

been used in conjunction with machine learning techniques to detect

plant stress early in soybeans (Nagasubramanian et al., 2018), as well

as for vegetation monitoring in barley (Aasen et al., 2015).

Finally, thermal imaging is another type of passive sensing that

uses wavelengths in the far infrared spectrum, typically in the

7,500–14,000 nm wavelengths. Thermal imaging has been used

on UAVs, and these sensors account for a moderate cost to

purchase but are highly affected by environmental variables.

Thermal cameras have been used for disease detection in soybean

(Hatton et al., 2018), and have been shown to have correlations with

biomass and seed yield in drybean (Sankaran et al., 2019), and also

shown for irrigation scheduling in almonds (Garcı ́a-Tejero
et al., 2018).

Light Detection and Ranging(LiDAR), an example of the active

sensor, emits laser pulses that it then uses to detect its distance from

an object. These pulses generate three-dimensional point clouds

that have been used for terrain mapping from satellites that are

utilized to map soil erosion (Gelder et al., 2018), and plant biomass

estimation from UAVs (Shendryk et al., 2020). Processing LiDAR

data requires different analysis pipelines than the other sensors

because it is no longer working in a 2-dimensional space.

Different types of sensors will have different time sensitivity.

Sensor types with very high time sensitivity, such as minutes or

hours, may need a persistent connection to reach their full potential.

Sensors with a low time sensitivity, measured in days, may do just

fine with periodic connections. Some sensors, such as moisture

sensors in the soil, may seem to have a fairly high time sensitivity.

However, if the data can be processed locally, instead of in the

cloud, this time sensitivity can be mitigated, with the decisions

being automated and made in the field.
3.3 Edge, fog and cloud computing in SCFs

Despite the advantages of IoT, it is hard to communicate a large

volume of sensory (time series or image) data from the agriculture

field to the operators or back-end servers (on the cloud). Such

communications not only consume considerable energy but also

incur significant communication delays and generate substantial

network traffic. A viable solution is edge computing, where the local

processing and storage are available close to the end devices or users
frontiersin.org
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(Sirojan et al., 2018; Li, 2019; Esfandiari et al., 2021a). Due to the

local processing of the tasks near the devices/users, edge computing

reduces communication delay and energy consumption for

transmitting the collected data. Recent advances in compression-

decompression techniques using ML and deep learning (DL)

models in Edge Computing can also help reduce the size of the

data at the edge devices (Jiang et al., 2017; Zhang et al., 2017; Wang

et al., 2020; Esfandiari et al., 2021b). The edge devices (e.g., sensors

deployed in the farmland) have limited resources and cannot

efficiently execute DL on them. Recently, for large-scale mobile

edge computing, an efficient online computation offloading

approach via deep reinforcement learning is proposed in (Hu

et al., 2022).

To address the computing limitation of edge devices, an edge-

fog architecture is introduced to process IoT data in an efficient way

while avoiding the communication delay that occurs in cloud

computing (Saha et al., 2020). Interested readers may refer

(Bellavista et al., 2019) for a state-of-the-art survey on fog

computing for IoT. Fog devices (e.g., laptops or low-end

computing machines) are usually equipped with more resources

than edge devices and are mostly located at a lesser communication

distance than the cloud. It means that DL with light configuration

(few layers and neurons) may be executed efficiently in fog.

However, it is not a replacement for the cloud and thus cloud

services are still preferable to perform heavy computational tasks in

IoT-based farming, e.g., big data (collected from a large number of

sensors deployed in the agricultural field) analysis and execution of

resource-intensive DL models (e.g., ResNet (He et al., 2016)) for

real-time crop monitoring. Therefore, harnessing the computing
Frontiers in Agronomy 06
capabilities of edge, fog, and cloud through a combined

architecture, as depicted in Figure 3, would be the mindful

solution to SCFs and smart agriculture.

Case example 1: Let us consider a scenario with this architecture

where several sensors are deployed across many acres of farmland to

gather real-time data on soil moisture, crop infection severity,

temperature, humidity, etc. Each sensor is attached to a controller

(e.g., Arduino or Raspberry Pi) to process the data and it acts as an

edge device that transmits this data to a nearby station (e.g., low-end

machine) acting as a fog device collecting data from multiple edge

devices over the wireless medium. Since the fog devices are capable

enough to run light weighted ML and DL models, the farmers may

be notified immediately to take necessary actions if any alerting

situation is occurred or is predicted. However, for better prediction,

historical and genetic information needs to be exploited by the

models (de Azevedo Peixoto et al., 2017; Shook et al., 2021a, Shook

et al., 2021b), which are usually stored in the cloud. The fog devices

also offload the data to the cloud in order to receive highly accurate

and precise results on insect population, yield prediction, the need

for pesticide spray, and so on. The three layers (edge, fog, and

cloud) architecture in smart agriculture reduces energy

consumption, network traffic, and communication delay (Alharbi

and Aldossary, 2021).

Case example 2: Another way to efficiently collect data from

agriculture fields is via participatory sensing or mobile

crowdsensing in which the farmers act as human sensors and

supply useful information with the help of smartphones. See Luo

et al. (2019); Roy et al. (2021) for an energy-aware fog-based

framework for data forwarding in mobile crowdsensing; and how
FIGURE 3

An overview of edge, fog, and cloud computing for smart connected farms.
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to improve IoT data quality in mobile crowdsensing, respectively.

Researchers have proposed an energy-efficient data forwarding

scheme in fog-based systems with deadline constraints (Saraswat

et al., 2020). Deep neural networks and compression techniques to

the edge devices for plant disease detection have been applied (De

Vita et al., 2020, 2021). A drone-based approach to efficiently

scouting bugs in orchards using multi-functional nets has been

proposed (Betti Sorbelli et al., 2022a, Betti Sorbelli et al., 2022b).
3.4 Innovative wireless technologies
for SCFs

A few recent studies aim to deliver limited Internet connectivity

to rural areas. These include DakNet (Pentland et al., 2004) and

JaldiMAC (Ben-David et al., 2010; Heimerl and Brewer, 2010;

Mehendale et al., 2011; Saha et al., 2015). These solutions utilize

either short-range technologies (e.g., WiFi, Bluetooth, ZigBee, and

6LowPAN) or long-range solutions (e.g., WiMax, GSM, 3G/4G,

LTE/LTE-A, wireless mesh) or a combination thereof. Short-range

technologies are generally not adequate for reliable rural

connectivity covering wide geographical areas. Conversely,

although cellular technologies provide larger transmission

coverage and offer promising solutions in the rural context,

limited business cases prohibit significant industry investments

despite government subsidies (Hasan et al., 2014).

The recently proposed Long Range Wide Area Network

(LoRaWAN) with its scalable star of stars network architecture

and simple medium access mechanism, fulfills some of the

requirements of providing connectivity in agricultural settings,

i.e., long-range communication with low energy consumption

(Shanmuga Sundaram et al., 2020). The LoRaWAN architecture

consists of LoRa Nodes (LNs), LoRa Gateway (LG), and Network

Server (NS). Each LG can be connected with a limited number of

LNs on a given Spreading Factor (SF) through unlicensed channels.

The SFs consume unequal energy and support uneven data

transmission rate, and communication range (Kumari et al.,

2022). Thus, the selection of appropriate SF for communicating

the time series data from LN to LG helps reduce energy

consumption and delay in smart agriculture applications.

Although LoRaWAN provides promising applications in the

agricultural domain, its very limited data rates make it unfit for

some agricultural applications that require large data volumes. As

an example, transferring large hyperspectral images collected by a

drone would be infeasible with a low data rate technology such as

LoRaWAN (Shah et al., 2017, 2018).

To overcome the limitations of existing wireless technologies

and better utilize the under-utilized licensed spectrum resources,

Dynamic Spectrum Access (DSA) (Akyildiz et al., 2006; Song et al.,

2012) has emerged as an enabling technology. DSA networking is

allowed (or in memoranda) by the United States Federal

Communications Commission (FCC) in licensed channels such as

TV band (Bahl et al., 2009; Khalil et al., 2017), GSM band (Hasan

et al., 2014), LTE band (Tehrani et al., 2016), and CBRS Band.

Similar policies are being adopted in other countries, such as

Canada (Anonymous, 2024b) and South Africa (Anonymous,
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2024a). DSA technologies have been investigated for rural

connectivity, and most are based on TV whitespaces (TVWS)

(Liang et al., 2008; Bahl et al., 2009; Kumar et al., 2016; Khalil

et al., 2017), GSM whitespaces (Hasan et al., 2014) and LTE

whitespaces (Surampudi and Mohanty, 2011). Although existing

DSA architectures allow secondary devices to opportunistically

access an unoccupied channel, they are restricted to an individual

primary band only. Recent studies have shown that this is neither

efficient nor effective under heterogeneous traffic demands and

suffer from under- or over-provisioning of spectrum (Shah et al.,

2017, 2018).

Consider an example in Figure 2. If the objective is to provide

low end-to-end delay, for transmitting a certain text (a few

Kilobytes) at large distances (several KMs), a TV band is possibly

optimal because it offers high transmission coverage (several KMs)

and adequate bandwidth (6 MHz). Whereas, for transmitting a

large-sized video at very short distances (a few hundred meters), it

may be more efficient to communicate over the CBRS band, which

offers very high channel bandwidth (40 MHz) and low (yet

sufficiently large) transmission coverage. Similarly, owing to a

decent coverage and channel bandwidth, an LTE band is more

promising for transmitting a medium-sized image at relatively small

distances (a few KMs).

To address the heterogeneous traffic needs, we consider

applying DSA on both unlicensed channels used in LoraWAN

and licensed primary channels commonly used in the industry as

shown in Figure 4. This approach can improve the efficiency and

flexibility of channel selection according to generated data volume,

transmission time requirements, and available bands. If the volume

of generated data by LNs is small, offloading data to the network

server can be performed with unlicensed channels through

LoraWAN. Instead, large volume data such as images and videos

will be transferred through the free licensed channels to the network

server directly.
3.5 Data analysis and privacy

Data analytics is critical in precision agriculture, allowing

farmers to adopt data-driven solutions. With numerous benefits,

including better yield, reduced waste, and a greater yet precise

understanding of environmental factors, data analytics reveals

limitless future opportunities in agriculture. Profitable decisions

in agriculture could be made when appropriate data are collected

and analyzed timely, key stresses are identified, and prescriptive

management actions are efficiently executed (Naik et al., 2017, 2017;

Akintayo et al., 2018; Ghosal et al., 2018; Nagasubramanian et al.,

2019; Chiozza et al., 2021; Chiranjeevi et al., 2022; Kar et al., 2021;

Singh et al., 2021; Krause et al., 2022; Rairdin et al., 2022). These

days data has become one of the key elements of smart farms and

helps farmers in decisionmaking and maximizing productivity.

Farms can create a lot of data streams, creating a “big data”

situation. Big data has 10 dimensions (V’s): volume, velocity,

variety, veracity, value, variability, vagueness, validity, venue, and

vocabulary (Manyika et al., 2011; Kunisch, 2016; Kamilaris et al.,

2017; Bhat and Huang, 2021). Wolfert et al. (2017) and Bhat and
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Huang (2021) in their studies comprehensively reviewed the

application of big data in agriculture. Public and private

companies are building solutions on this platform intending to

solve crop production challenges faster, more accurately, and at a

larger scale (Ghosal et al., 2019; Parmley et al., 2019a, Parmley et al.,

2019b). Recent advances in data analysis methods such as computer

vision, ML, and DL have empowered both researchers and farmers

(Singh et al., 2016, 2018; Mahmud et al., 2021; Riera et al., 2021).

There are continual improvements in ML methods and their

applications, for example, self-supervised learning has shown

improvement in the classification of agriculturally important

insect pests in plants (Kar et al., 2023). For yield prediction,

genotypic-topological graph neural network framework built on

GraphSAGE has shown promise (Gupta and Singh, 2023). We have

two broad categories of SCF-generated data: Raw sensor data and

processed/refined data. The first pass of data analysis will turn the

raw data into processed data and will be unique for each type of

sensor. This is most likely to use some kind of ML approach. If the

raw data is preserved, alternative data analysis methods can be used

later, and results can be compared. For the refined data, data

analysis will vary by the type of data and could be a simple

statistical analysis that could use more complex ML methods for

predictions or even a combination of the two.

Data privacy is an important consideration, particularly in the

context of SCF, which heavily depends on analyzing and extracting

higher-value information from users’ raw data. It will be very

important to research all local legal obligations about managing

users’ private data and maintain a privacy agreement with all users

to clearly show how all data is used and/or shared. However, the main

focus is to invest in techniques that entirely eliminate sharing raw data

containing the exact value of data, statistical features, membership, and

certain properties (Liu et al., 2021). Recently, distributed Machine

Learning (DML), in particular, has had paradigm-shifting impacts on

preserving data privacy. In DML, different parties have their private

raw data and train a global model by transferring and aggregating the

metadata (model parameters or gradients). Therefore, DML can be

considered a privacy preserving technique when only metadata is

shareable (Antwi-Boasiako et al., 2021). Two general categories are
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defined for DML based on the architecture of ML systems; centralized

distributed learning and decentralized distributed learning.

Transferring the higher-value information (metadata) in Federated

Learning (FL) (Konečnỳ et al., 2016; Bonawitz et al., 2019; Nguyen

et al., 2021), the most famous method in centralized distributed

learning, happens between the parties and a parameter server

(cloud). Then, the server aggregates the metadata to update the

global model (Li et al., 2021). There are two different settings for

federated learning; cross-device, which involves a large number of IoT

devices, and cross-silo containing a small number of reliable clients

(Kairouz et al., 2021). Due to the inherent feature of agriculture data

such as weather data, soil data, and crop management data, which are

scattered and siloed in different servers, Manoj et al. (2022) applied a

federated averaging technique to train a ML model for soybean yield

prediction. Similarly, using the federated learning-based method,

researchers could detect the intrusion securely in smart agriculture

(Friha et al., 2022).

On the other hand, in decentralized distributed learning, parties

have peer-to-peer communication to exchange metadata; each party

aggregates the received model parameters and updates the model.

Decentralized learning architectures recently attracted attention

and addressed the challenges in conventional centralized

techniques, such as server latency, single point on failure, and

traceability (Jiang et al., 2017; Nadiradze et al., 2021; Esfandiari

et al., 2021b). To visually present how DML can greatly reduce the

privacy risk, Figure 5A shows an instance of applying decentralized

ML in agriculture in which each party has its private data collected

from a specific IoT device and trains the model through

collaborative communication of metadata based on the defined

network topology (in this case a fully connected network).

Esfandiari et al. (2021a) used decentralized distributed learning to

train an autoencoder to find anomalies in maize data. This study

showed finding anomalies in private DML settings helps detect

plants with irregular growth and realize probable issues during the

data collection (e.g., tilted camera, rain on the lens).

Besides DML, which naturally gives a certain level of data

privacy, encryption and obfuscation are also well-known ML

schemes for privacy preservation. Encryption (cryptography-
FIGURE 4

DSA networking architecture in a farmer network.
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based method) and obfuscation can be applied to training data and/

or ML model (Gai et al., 2016; Juvekar et al., 2018; Mishra et al.,

2020) (in some cases, neither the data owner nor the ML model

provider does not wish to share their private parameters). In the

literature, the cryptographic and obfuscation protocols include

homomorphic encryption, additive secret sharing, differential

privacy, and garbled circuits (Dwork, 2008; Phong et al., 2017;

Hussain et al., 2020; Duan et al., 2022). However, all of these

methods are computationally heavy, making the training/inference

process several orders of magnitude slower. In agriculture, Cho et al.

(2021b) applied encryption by proposing novel deep neural

network architectures for plant stress phenotyping that were

geared towards preserving the privacy of both the user and

service provider. In this method, some neural network

architectures were redesigned by minimizing the number of

nonlinear operations (ReLu function) to increase the inference

time of encrypting model (Cho et al., 2021a). Their approach also

addresses data trustworthiness, empowering farmers for SCFs.

Figure 5B represents the encryption scheme where privacy

preserves for both the user and service provider.

Moreover, DML and encryption techniques together were

widely studied for privacy-preserving purposes (McMahan et al.,

2017; Hao et al., 2019; Mandal and Gong, 2019; Zhao et al., 2019;

Zhu et al., 2021). In this regard, homomorphic encryption and/or

differential privacy are commonly combined with FL. In the

agriculture setting, Durrant et al. (2022) show that the privacy

concern in the agri-food sector can be overcome by using federated

and model-sharing machine learning as well as applying differential

privacy methods. The intrusion could also be detected through an

FL-based gated recurrent unit neural network algorithm (FedGRU)

using the encoded data (Kumar et al., 2021). Overall, combining

DML and encryption methods would be a very interesting future

topic, especially in SCFs.
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4 The human dimensions (social
sciences, economics)

During the last two decades, on-farm research became popular

due to growing and intersecting interests among farmers,

agronomists, and the research community. Numerous farmer

networks were organized across the country for community-based

on-farm evaluations of new and existing agronomic practices

(Chapman et al., 2016). Organized groups of local farmers who

use GPS-enabled equipment and treatment protocols developed by

researchers to conduct on-farm trials/experiments on their farms,

apply treatments within their fields, and collect data (Kyveryga

et al., 2018). New analytical approaches were also developed to

enhance analyses and interpretations of on-farm research data and

develop dynamic decision aid tools (Kyveryga, 2019; Laurent et al.,

2019). In addition, new community-based engagement and

evaluation methods were adopted by public university extension

personnel and private industry agronomists (Thompson

et al., 2019).
4.1 Net-benefits of data-sharing platforms

Increased profitability and risk reduction are some of the

benefits of digital agricultural innovations to farmers. However,

there are also costs associated with adopting such new technologies.

These may include the cost of investing in the required

technological infrastructure; the cost associated with data

collection and management; the cost of analyzing the data; and

the cost of sharing the data output (Wysel et al., 2021). These are

non-trivial considerations for small scale and less technologically

developed farming enterprises, as the variations in risk-benefit are
A B

FIGURE 5

Privacy preserving techniques while using machine learning: (A) preserving data privacy by considering peer-to-peer communication of metadata
(instead of raw data) to train a machine learning model, (B) private inference by back-and-forth communicating encrypted information between data
owner and ML service provider.
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large. It is important to assess the overall cost of participating in a

socio-technical platform and compare it with the potential

economic gains.
4.2 Social barriers to data-sharing

The adoption of technologies is also impacted by various social

and ethical barriers. Despite the promise of digital agricultural

technologies and data-sharing platforms, farmers are often

reluctant to engage with these technologies due to issues

surrounding data ownership, control, and usage (Wiseman et al.,

2019). Among other concerns, some farmers may be worried that

technology providers could make profits off their data or share their

data with third parties; and in some cases, there may be a lack of

trust in the innovation itself in the context of change, such as

climate change (Jakku et al., 2019; Wiseman et al., 2019). Also, there

is a general lack of trust in data operators due to unequal power.

Potential causes for farmers’ uncertainty about their rights to data

ownership and usage is the lack of clarity in the terms and

conditions of the agreements with service providers—not to

mention the risk of potential data breaches (i.e., the risk that

confidential, protected or sensitive information could be stolen or

shared with third parties). Hence, there is a need for agricultural

innovations that are trusted, salient and actionable for farmers to be

willing to adopt them (Valdivia et al., 2018).
4.3 Agricultural community and the
practice of farming

The concept of the practice of farming encompasses clearly

defined values, institutions, and policies (Valdivia et al., 2012). This

concept has been used to understand farmers’ behavior and actions

in farming during times of policy changes to learn about how

farmers transition to a new context (Shucksmith, 1993; Shucksmith

and Herrmann, 2002). It has also informed the introduction of new

practices, like the case of agroforestry in the context of traditional

commodity farming (Raedeke et al., 2003; Valdivia et al., 2012), the

development of genetically modified crops (Oreszczyn et al., 2010;

Valdivia et al., 2014), and the creation of new technologies such as

remote sensing with drones for agriculture (Valdivia et al., 2018).

Values and motivations differ in the practice of farming

according to the types of crops, the nature of the market farmers

engage in, and the institutions in place that support the practice

(Valdivia et al., 2012). In commodities like corn and soybeans, the

field of farming has an established network of organizations and

institutions that support the practice. Within it, “habitus” consists

of the shared values in the practice (Raedeke et al., 2003; Glover,

2010; Valdivia et al., 2021). The development of new tools can

benefit from the understanding of these values, the role of existing

institutions that are part of the practice, and the adaptive capacity of

the decision-makers. It requires an understanding of the level at

which these happen and what we need to learn about the

characteristics of the decision makers (Ostrom, 2009) to inform
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how new tools can provide information in changing contexts that

can be trusted and acted upon (Duarte Alonso et al., 2018; Valdivia

et al., 2018).
4.4 Translational research and
communities of practice

According toWoolf (2008), a translational research process is one

that applies to advances in science toward the development of new

technologies and processes, as well as guarantees that the products of

research reach their intended population. By engaging the various

stakeholders in participatory activities and sessions, the translational

research process promotes learning, responds to challenges, and

identifies opportunities. There are advantages to engaging the

decision-makers from the onset of the innovation. This is critical in

contexts of change. For example, simulations of pests in the context of

climate change have shown that trusted and timely decisions increase

the probability of success in reducing the impact of climate change. In

the case of farming, the scale of the farm and that of the community

and landscape as the scale of analysis, are the framework for the study

of networks (Garrett et al., 2011, 2013). Participatory processes are

means to facilitate learning and the development of trust (Patt et al.,

2005; Gilles and Valdivia, 2009; Valdivia et al., 2009), as well as the co-

production of knowledge (Yager et al., 2019).

It is argued that learning occurs as a result of social processes,

and not merely through internalized cognitive processes; i.e.,

learning is the product of interactions between people, which lead

to sharing of experiences and the creation of new knowledge

(Oreszczyn et al., 2010). Therefore, communities of practice

(CoPs), defined as groups of people who share a common

activity, pursuit, or concern, are important in driving processes of

change (Oreszczyn et al., 2010; Valdivia et al., 2014). The literature

suggests that farmers’ own experience with innovation, as well as

the experience of their neighbors, help in decreasing the

unfamiliarity with that innovation—which often acts as a

significant barrier to adoption (Foster and Rosenzweig, 1995).

In essence, the gains of learning by doing and knowledge

spillovers are harnessed to a greater extent in an environment of

information sharing. A CoP can help maximize farmers’

understanding of the benefits, their trust in the information

source, and their eventual acceptance of the technology.

Furthermore, a CoP encompasses the innovation pathway

engaging all stakeholders—including feedback processes between

scientists and farmers, and to other stakeholders in the practice of

farming from both the public and private sectors (Garrett et al.,

2013; Valdivia et al., 2014, 2018).

Moreover, there is a need to understand the types of incentives

that farmers will respond to. There is evidence that farmers who

state that privacy is important to them could still be incentivized to

participate in data-sharing platforms (Turland and Slade, 2020). As

a result, it is important to investigate various factors that could

potentially boost participation rates in socio-technical platforms, as

well as better understand the issues that influence the adoption and

overall utilization of digital agricultural technologies.
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4.5 Behavioral factors influencing
agricultural technology adoption

Traditionally, agricultural adoption research has sought to

explain adoption behavior in relation to extrinsic factors such as

economic, institutional, and household-specific factors (Mwangi

and Kariuki, 2015). A more recent strand of literature has included

social networks, learning, and other behavioral forces (e.g., beliefs,

risk, and trust) as determinants of adoption (Marra et al., 2003;

Chavas and Nauges, 2020). For example, farmers belonging to a

social group or organization are more likely to share information

and engage in social learning about the technology (Katung and

Akankwasa, 2008), hence increasing their likelihood to adopt the

technology. However, social learning may also impact technology

adoption negatively by increasing the likelihood of free-riding

behavior among farming neighbors (Bandiera and Rasul, 2006).

In the context of agricultural technology adoption, different

types of learning can occur simultaneously as the technology is

being developed and deployed (Rosenberg and Nathan, 1982).

Figure 6 shows the technology adoption loop. First, the

developers can learn how to improve their technology through

feedback from potential end-users (i.e., farmers). Second, the end-

users (farmers) can improve their mastery of the adopted

technology over time through personal user experience and

through information acquired from various sources, including

established social networks, extension specialists, and other

farmers with previous experience using the technology. This

creates a feedback loop process encompassing all actors in the

agriculture ecosystem, from scientists and developers to potential

end-users.

While social learning has received some attention in the

agricultural adoption literature, the social preferences discussed

extensively in other behavioral fields, including behavioral

economics, have received little attention. In this regard,

behavioral evidence demonstrates that other-regarding

preferences, such as altruism and social norms about fairness,

impact decision-making regarding technology adoption

(Chouinard et al., 2008; Sheeder and Lynne, 2011). Modeling the

influence of social networks on agricultural adoption decisions,

beyond simple information diffusion, holds significant potential to

improve the effectiveness of the deployment and adoption of

agricultural innovations (Streletskaya et al., 2020). For instance, it

can help technology developers understand to what extent farmers

would conform to social norms as they see other farmers adopt new

technology, and which are characteristics of the social networks

they are more likely to join.

Cooperative behavior is another factor that impacts technology

adoption, especially in settings that require collective action. In this

regard, the behavioral literature has studied how beliefs, trust, and

risk preferences shape cooperative behavior. The motivation to

study the relationship between cooperation and trust is that, for a

conditional cooperator, the decision to contribute to the formation

of a public good (a technological platform in our context) requires

some trust in the cooperativeness of others (Anderson et al., 2004;

Gächter et al., 2004; Leonard et al., 2010). Such trust is obviously
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related to the individual belief held about others’ cooperativeness. In

the context of agricultural technology adoption, for a farmer who is

not a free rider, contributing to the creation of the technological

platform (by sharing farm data) without knowing how many other

farmers are going to contribute can be viewed as a decision under

risk. Thus, each farmer’s expectations about the behavior of others

is a crucial determinant of contribution outcomes (Cárdenas et al.,

2017). Farmers who are more risk averse may choose to contribute

less to compensate for the risk of others, not contributing (Charness

and Villeval, 2009; Teyssier, 2012; Dannenberg et al., 2015). For

example, Liu (2013) elicits risk preferences from Chinese cotton

farmers and finds that risk-averse and loss-averse farmers tend to be

late adopters of Bt-cotton. Modeling cooperative behavior in the

context of technology adoption is important as farmers are

heterogeneous in terms of their risk aversion and trustworthiness

and are more likely to join trust-supporting social networks

(Attanasio et al., 2012). This is more so when the resolution of

the product depends on how many contribute to the platform.
4.6 The economics of learning with SCFs

The foundation for the economics of SCFs are models of

learning (Lucas, 1988; Foster and Rosenzweig, 1995; Acemoglu,

2009; Conley and Udry, 2010). Farmers face risks and uncertainty

attached to new farming practices or technologies because the

suitability of the new farming methods depends on the farmer’s

experience, knowledge, skill, and area-specific climate and

agronomic conditions. The lack of reliable and persuasive sources

of information about new technologies, their expected benefit, and

how to apply them efficiently impedes changes in farming behavior

(Moore, 2008). As a result, farmers’ adoption decision requires

learning, and unfortunately, learning can be costly. Acquiring,

validating, analyzing, and applying new information requires time

and expertise not always available to farmers. SCFs can accelerate

technological adoption by reducing learning costs (Foster and

Rosenzweig, 1995; Conley and Udry, 2010; Carvalho and

Voigtländer, 2014; Krishnan and Patnam, 2014). For example, in

a recent prominent social learning analysis, economists show that

network-based technology diffusion is cheaper than extension

programs (BenYishay and Mobarak, 2019). SCFs can outperform

traditional agricultural extension programs if the information

disseminating nodes are incentivized to transfer information

about the new technology. When leading farmers were given a

small incentive to distribute information to others through the

network, farmer-to-farmer learning programs outperformed the

government extension program in increasing farmer knowledge

of new technologies. The advantage of SCFs can be significantly

large if the traditional extension program requires the agents to

regularly visit rural areas, especially when the extension position

is remote.

Figure 7 illustrates the basic structure of a learning model for

assessing the benefits of SCFs for adopting novel pest management

technologies. We compare two settings with different learning

mechanisms. On the left side, Figure 7A shows the setting for the
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traditional pest management technique where there is no farmer

network. Pest management involves uncertainty about the amount

of pesticide and the timing of the application, and farmers manage

uncertainty based on their prior beliefs and their limited knowledge

about the new technology. This lack of expertise leads to high

uncertainty and high variability in yields and profits. The different

sizes of circular shapes in the figure represent this heterogeneity in

agricultural productivity.

The second setting illustrated in Figure 7B has a network of

farmers with three clusters represented by different colors. In this

setting, farmers use a new pest detection technology, digital cameras

that continuously monitor selected farms for the degree of pest
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infestation. These digital cameras replace traditional scouting.

Farmers can then learn from their peers through communication

signals sent through the network. The critical parameters in this

model are the precision or learning value of the signals, represented

in panel b by the thickness of the connecting lines. For example,

thicker lines, such as in the green cluster, mean that the signals

among this homogeneous group of neighboring farmers are very

informative. Using the distance between farmers to measure

homogeneity and signal precision is common. For example, a

receiving farmer may not trust the informational signal received

from a distant farmer. The value of the SCF in the learning model

illustrated in Figure 7 is measured by the reduction in uncertainty
A B

FIGURE 7

Size of the circular shapes indicates heterogeneity in agricultural production. The different colors stand for similar farms located in the same
geographic cluster. In panel (B), the lines indicate the connections between farmers. The lines’ thickness indicates the precision of the signals. (A)
Traditional Scouting; No network; (B) New pest management technology; with network.
FIGURE 6

Translational research process within the farmer network, such as SIRAC community of practice. FIgure adapted from Bekee et al. (2024).
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and the increase in farm profitability resulting from the higher

frequency of precise network signals.

Finally, learning models can also capture the flow of unreliable

information. For example, in the absence of network-based learning

and expert advice, farmers may obtain information on the farming

practices through word of mouth, generic broadcast programming,

or agricultural input dealers, who may be poorly informed or have

incentives to provide misleading information on the product, time

of application, and efficiency. External agents such as pesticide

retailers and commercial companies can shape the farmers’ pest

management decisions (Moore, 2008). Moore (2008) shows that the

flow of information from the retail network often plays the

dominant role in pest management decisions and may negatively

impact the farmers’ awareness of and willingness to adjust the input

use or to adopt the new farming technology. Digital monitoring and

SCF networking technology have the potential to enhance the

accuracy of the information.
5 Conclusion - transferability,
scalability, and adoptability of SCFS

In this review, we provided a comprehensive listing of

technology tools and networking and communication

infrastructure that enables the creation of SCFs. Currently, these

conditions are not universally present in all countries. However, a

SCF network has a high potential for transferability and scalability

to regions where farmers have access to sensors, platforms for data

collection, and internet connectivity at a minimum. In more

industrialized economies, SCFs can be more easily created. SCFs

can be established amongst farmers who are geographically

neighbors. However, the network can have the flexibility to

expand to dissimilar cropping systems, management practices,

soil and climate conditions, and community members.

Communities can become involved through local cooperatives

and/or farmer organizations within and across states. This will

lead to data sharing across farms, improving their ability to engage

in farm management strategies to improve productivity and

broader adoption. Scalability can be facilitated with better cellular

connectivity or rural broadband access to cover more significant,

not necessarily contiguous, areas. The sustained usage of the SCF

network will depend on buy-in from its participants and centralized

community resources to support such networks’ implementation

and extended life cycle. There will be a need for continued

education and awareness programs to ensure that the entire

community is well-versed in the network’s capabilities and

appreciates such a network’s benefits. SCFs offer varying benefits

to farmers, for e.g., in early and effective pest management and

mitigation of crop loss disasters. Networks are particularly helpful

for vulnerable farmers with limited resources and experience. SCFs

provide valuable expertise to farmers with limited access to other

sources. Network design should consider farmer characteristics to

optimize information sharing using ML and simulations, ensuring

benefits for all farmers. SCFs have significant policy implications,

such as complementing agricultural insurance policies and reducing
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losses and premiums. Since network participation benefits vary

among farmers, differentiated pricing strategies and subsidies may

be necessary. Policymakers can use network simulations to optimize

participation costs and extend network benefits to a wide range

of farmers.

There is a need for research in the area of new/improved

technologies for rural connectivity and community decision-making,

integrated with translational social research to address issues of

adaptability, trust, and risk preferences, and economics research to

justify the benefits to farmers. The research focusing on assessing social

and economic incentives for farmers and other stakeholders will

facilitate participation in the network, possibly through new

partnerships with cooperatives, while ensuring farmer data privacy

and the development of data use agreements. These SCF networks

enabling rural communication technologies, including privacy-

preserving distributed data analytics and machine learning tools, can

apply to a broad range of cyber-physical systems applications, such as

IoTs, transportation networks, and smart grids. In alignment with these

technologies, the integration of Cyber-agricultural systems (CAS) offers

a vision of ultra-precision agriculture, integrating improved

sustainability, profitability, and technology by employing efficient

sensing, AI, and robotics to address crop issues at the individual

plant level (Sarkar et al., 2023). These research topics will require a

trans-disciplinary team of researchers from multiple domains,

including agronomy, computer science, plant pathology, behavioral

science, economics, sensing and machine learning, and precision

agriculture, along with integral participation of farmers to define and

conduct these research, so the benefits of SCF network is immediate

and useful. The usefulness of citizen science data sets (iNaturalist, 2023)

for deep learning-powered real-time identification of insects is an

example of bridging the gap in the development of SCF (Chiranjeevi

et al., 2023; Saadati et al., 2023).
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