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based on field histories
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Liederbach, Germany
Herbicide resistance has become a major issue in recent decades. Because

diagnostics is still expensive, prediction models are helping to assess risks of

resistance evolution. In this paper the influence of weed management on the

evolution of resistance of the grass Alopecurus myosuroides Huds to ALS-

inhibitors is investigated based on field history data from two regions,

Hohenlohe in Germany and Champagne in France respectively. Champagne

data also comprise information on Lolium spp. Using a random forest method

variable importance and performance measures were obtained for a large

number of single analyses allowing for a statistical analysis of the four

performance measures, type I error, type II error, AUC and accuracy. It could

be shown that acceptable predictions can be obtained for training data from

Hohenlohe applied to Champagne and vice versa. It turned out that in nearly all

analyses false negative classifications are more frequent than false positive

classifications. Based on a combined training set of A.myosuroides samples

from Hohenlohe and Champagne resistance status of Lolium spp. from the

Champagne dataset can be predicted with a good accuracy. This suggest that

resistance evolution to ALS-inhibitors of the two grasses are closely related. This

work is a first step to set a simple herbicide resistance prediction tool to the users

based on field history weed management data.
KEYWORDS

artificial intelligence, black-grass, herbicide resistance prediction, geographical
variation, rye-grass, resistance management
1 Introduction

In the last decades, herbicide resistance has become a major issue for many weeds

(Gressel, 2009; Powles and Yu, 2010; Heap, 2024). Weed population dynamics and control

is a complex process depending not only on the choice of appropriate herbicides but also on

cropping patterns, cultural techniques and other crop management practices (Lutman

et al., 2013; Massa et al., 2013; Hawkins et al., 2019). From an economical point of view,
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the costs of herbicide resistance management of A. myosuroides

were significantly higher than pro-active measures aiming to

mitigate the evolution of resistance (Gerhards et al., 2016).

Resistance development is a long-term process but can be

mitigated by the introduction of integrated weed management

(IWM) which combines agronomy and chemical weed control

(Moss, 2017). Weed population dynamics is influenced by

variables such as weather conditions, spatial inhomogeneity of the

seed bank, initial frequency of resistant biotypes and spray

distribution patterns in a random manner (Zwerger et al., 2017).

Therefore, it is not surprising, that with closely related, but not

similar, field history, some farmers observed resistant weeds in their

fields and others not. Modelling of herbicide resistance evolution

can be a very helpful approach in helping farmers to define the best

strategies to be adopted to control weeds in a given location and

environment. Nevertheless, reliable models are still very difficult to

define, in particular due to the multiple mechanisms involved in

weed resistance (Comont et al., 2020). The assumption that the use

of herbicide mixtures was mitigating the evolution of weed

resistance is mainly true when the resistance mechanism present

is target-site resistance (TSR) i.e. where the structure or/and the

expression of the chemical’s target is altered (Powles and Yu, 2010).

Most of the models are defined according to TSR evolution, which

provide a specific resistance (Bourguet et al., 2013; Comont et al.,

2020). Today there is increasing evidence that non-target site

resistance (NTSR) is more and more widespread (Bobadilla and

Tranel, 2024). NTSR involves several mechanisms such as herbicide

detoxification, inhibition of uptake and transport, or vacuole

sequestration. It usually involves multiple genes and can confer a

broad resistance spectrum to chemicals representing several modes

of action, a generalist resistance (Délye et al., 2013; Délye, 2013;

Comont et al., 2020; Bobadilla and Tranel, 2024). Modelling NTSR

is extremely difficult considering the number of different

mechanisms and the multiple genes involved. There are mainly

two ways to assess appropriate management schemes. One way is

based on mathematical process models (cf. Renton et al., 2014;

Richter et al., 2016). The advantages of process models are that they

are based explicitly on population dynamics and genetics and are

capable of analyzing underlying mechanisms. The disadvantage is

that these models request a large input of physiological parameters

like e.g., seed emergence rates, number of seeds, seed survival,

vertical transport parameters due to soil cultivation, competition

coefficients with respect to crops as well as parameters of statistical

distributions of environmental variables. The second approach is

based on statistical methods notably on techniques of artificial

intelligence. Crop protection can greatly benefit of random forest

approach. It was shown that a Markov random field model has the

potential to model the evolution of herbicide resistance in rye grass

in a spatial context (Ip et al., 2018). This was confirmed by Oliveira

et al. (2021) who applied a random forest approach to the analysis

of the evolution of glyphosate and PPO-inhibitor resistance in

Palmer amaranth. The advantage of machine learning methods is

that they are capable of detecting patterns in huge bodies of data

allowing to identify the driving forces for resistance development.

Disadvantages are that large data bases comprehending long term

field histories are needed requiring the compliance of the farmers
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partaking in the study. Furthermore, outcomes are frequently

difficult to interpret in terms of the underlying mechanisms.

Black-grass (Alopecurus myosuroides Huds) mostly occurs in

Central and Western Europe, where it has established as one of the

most problematic weed (Moss et al., 2007). It has fast evolved

resistance to acetyl-CoA carboxylase (ACCase, HRAC group 1)-,

acetolactate synthase (ALS, HRAC group 2)- and photosynthetic

(PSII, HRAC group 5)-inhibitors, all post-emergence herbicides

(Moss et al., 2007). This has a strong economic impact, impairing

the yield of cereal based cropping systems (Varah et al., 2020).

Today only pre-emergence herbicides, like HRAC group 15, remain

as an effective chemical tool in locations where high resistance has

evolved to post-emergence herbicides (Dücker et al., 2019a,

2019b, 2020).

In a previous study, blackgrass field samples were collected as

well as field history data comprising a period of 6 years in a region

of Southern Germany, region of Hohenlohe, and herbicide

resistance was assessed (Herrmann, 2016). A similar study was

performed in Northern France, region of Champagne (Lepke et al.,

2020). Based on this material, we performed extensive studies with a

random forest approach to assess the driving variables and their

rankings in both regions. The availability of data from two regions

with comparable crop management, prompted us to test, whether

the patterns found in Hohenlohe data are specific for this region or

whether they are transferable not only to another region, in that

case Champagne (and vice versa) but also to another grass weed, in

that case Lolium spp (rye-grass), important worldwide weed to be

controlled (Powles and Yu, 2010; Dücker et al., 2019b) and which

has evolved herbicide resistance (Heap, 2024). Descriptive data

analyses were presented and some results of single analyses were

already discussed (Lepke et al., 2020).

In this study, we report the results obtained by the application

of the random forest method, based on field history parameters, on

the evolution of herbicide resistance in black-grass. Variable

importance and performance measures were studied in a

systematic way for a large number of single analyses allowing for

a statistical analysis of the four performance measures, type I error,

type II error, AUC and accuracy. This is a first step showing that

reliable weed resistance management prediction can be based on a

random forest model approach. In addition, the model developed in

one region can be successfully used in another one (Hohenlohe

versus Champagne). Furthermore the model developed for black-

grass can be extended to another grass weed, in that case rye-grass.
2 Materials and methods

2.1 Field history data

Field history data from two earlier studies were used. A first data

set related to A. myosuroides Huds (blackgrass) includes the field

histories and resistance status of 98 fields from the Hohenlohe area

in Germany (Herrmann, 2016) and 131 from the Champagne area

in France (Lepke et al., 2020). For the Champagne area, a second

data set related to Lolium spp. (rye-grass) was obtained for

49 fields with resistance status and field history information.
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Predictor variables comprise in particular crop species rotation,

number of crops used over a 6-year period, number of winter and

summer crops respectively, seeding date, soil cultivation like

ploughing or shallow tillage and herbicide applications. In total,

there are 20 predictors as described in Table 1. For each field

management data were recorded for a period of 6 years, e.g. crops,

plant protection products, and soil cultivation. This is denoted as

field history. From these data an input vector for the random forest

procedure was generated by allocating scores. For example, for

ploughing 1 or 0 was assigned depending on whether the tillage

method was plough or another respectively. The variable no. of

crops is the number of unique crops cultivated within the

observation period. All other variables were treated in the same

manner (cf. Table 1).
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The predictor variable management diversity considers the

number of different measures specific for weed control within a

year (Herrmann, 2016). These comprise delayed seeding,

ploughing, summer crops and the use of multiple modes of

action. If a measure is applied, the respective score takes the value

of 1 otherwise the value of 0. If all measures are applied, the

maximum value of management diversity is 4, if none is applied the

score is 0. The index ranges therefore between 0 and 4. For example

in a winter wheat field, using two modes of action (score 1) and

ploughing (score 1) results in a management diversity value of 2,

while shallow tillage (score 0) and only one mode of action (score 0)

give a management diversity value of 0. Management diversity

values are averaged for the time frame of the 6yrs being considered.

Descriptive data analysis showed that the data sets of both countries

have a similar structure. Details are described in Lepke et al., 2020.
2.2 Assessment of resistance status

Black-grass seed samples were harvested in 98 fields in

Hohenlohe and in 131 fields in Champagne region. In addition,

samples of rye-grass seeds were harvested in 49 fields in France

Champagne region. Resistance to mesosulfuron and iodosulfuron

(ALS-inhibitors) as well as to pinoxaden (ACCase-inhibitor) was

assessed in the greenhouse as described in details (Herrmann, 2016;

Herrmann et al., 2019; Lepke et al., 2020). In summary, herbicides

were applied at BBCH 11–13, at 0.5 kg/ha (Atlantis WG,

mesosulfuron/iodosulfuron) and at 1.2 L/ha (Axial 50, pinoxaden)

in a total volume of 200L water using a Teejet-8002-EVS nozzle and

a Track Sprayer Generation III. A visual assessment was done 21

days after spraying and the number of dead and living plants

counted. A population was considered sensitive when the

herbicide efficacy was higher than 90%. The resistance was

considered in development when the efficacy of the herbicide was

found between 50% and 89% and the resistance was considered as

established when the herbicide efficacy was below 50%.

Furthermore, when necessary, ALS- and ACCase-target site

mutations were determined by pyrosequencing as described

previously (Beffa et al., 2012). Detoxification of the herbicides was

analyzed by HPLC separation after incubating individual plants

using respectively C14 - radiolabeled mesosulfuron (ALS-inhibitor)

and fenoxaprop-ethyl (ACCase-inhibitor) (Beffa et al., 2012).

Fields were classified as resistant if target-site resistance or

metabolic resistance or both were detected in the samples and/or

survivals were observed in the greenhouse (Herrmann et al., 2016).
2.3 Data analysis

All calculations were carried out in R 1.1.456 (R Core Team,

2018). For the classification problem with 20 predictor variables the

random forest method (Breiman, 2001) was applied using the

randomForest package (v4.6.14; Liaw and Wiener, 2002). Unless

otherwise described, the data has been split into training data (75%)

and test data (25%) using the caret package (v6.0.81; Kuhn et al.,

2018). Importance measures were analyzed, to test which predictor
TABLE 1 List of predictor variables [based on Herrmann (2016)].

Variable Explanation

winter cereals The proportion of winter cereals in the crop rotation

summer cereals The proportion of summer cereals in the crop rotation

winter crops The proportion of winter crops in the crop rotation

summer crops The proportion of summer crops in the crop rotation

no. of crops Number of different crops used (winter wheat, triticale and
spelt were counted as one)

dicotCrops The number of dicot crops in the crop rotation

corn The amount of corn in the crop rotation

late seeding The proportion of delayed seeding events in the
crop rotation

ploughing The proportion of ploughing in the crop rotation

herbicides
against Alomy

The number of herbicide applications against A. myosuroides
divided by the number of years observed

no. of
herbicide
application

Total number of herbicide applications in the crop rotation
divided by the number of years observed

no. of
active
ingredients

The number of different active ingredients applied

products group
2 (B)

The number of different group 2 (B) products applied in the
crop rotation

unique
MoA (grasses)

The number of different modes of action used against
A. myosuroides

Alomy group
2 (B)

The number of ALS-Inhibitor (group 2 (B)) divided by the
number of years observed

herbicides Number of different herbicides

glyphosate
(group 9 (G))

The number of Glyphosate Application in the crop rotation

products group
1 (A)

The number of ACCase application in the crop rotation

flufenacet The proportion of flufenacet (group 15 (K3)) used against
A. myosuroides

management
diversity

diversity of management (ploughing, delayed seeding,
herbicides, spring crops)
All predictors are normalized by the number of observed years (here 6).
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variables have a significant impact on the response. Usual

importance measures are the Gini index, the mean decrease

accuracy index and the area under the Receiver Operating

Characteristic curve (AUC) (Hastie et al., 2017). Note that as the

name already implies the random forest outcomes are random due

to random sampling of training data points when building trees and

the random selection of subsets of features considered when

splitting nodes. This intrinsic randomness affects the stability of

feature importance measures (Wang et al., 2016). Therefore, the

rating of features based on a single run is not robust especially if

predictor variables are correlated. To consider randomness, a

ranking of predictor variables was generated based on 50

repeated runs.
2.4 Missing values and sample size

The most common ways of handling missing values are: a)

delete cases with missing values b) fill in missing values with the

median (for numerical values) or mode (for categorical values)

obtained from all complete cases. In case of a) available information

is lost. The second method can cause significant losses of accuracy

for data sets with many gaps and significant structure. In the study

done in that report, alternative methods such as filling in missing

values by the median of k-nearest neighbours (Gupta, 2015) are

recommended. In our study, method b) was analyzed for the

common A. myosuroides dataset from both Hohenlohe and

Champagne (229 fields).

Data gaps were generated randomly and the missing values in

the new created datasets were replaced by the median of the

remaining data. Figure 1 shows several measures of performance

in dependence of the number of gaps. Accuracy is defined as the

number of true positives + true negatives divided by the total

number of predictions. AUC is the area under the receiver

operation curve (ROC). ROC is a plot of the positive rate (TPR)

versus the false positive rate (FPR) for different parameters of a

classification rule (Gareth et al., 2021). The AUC can assume values

between zero (worst classifier) and one (perfect classifier).
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One can see a significant drop of AUC and an increase of the

type I error (false positive classification) when a threshold of 40%

missing values is surpassed. Type II errors (false negative

classification) and accuracies are only slightly affected. The same

pattern occurs, if missing values are generated only for the 4

variables with the highest Gini rank. Figure 2 shows the

dependence of the accuracy on the sample size. The relationship

turns out to be linear.
2.5 Testing transferability

The transferability of the random forest model was analyzed in

three steps.
1. Champagn e and Hohen l oh e d a t a s e t s w e r e

analyzed separately.

2. Training and test data were interchanged, e.g. Hohenlohe

data were used to train the random forest and Champagne

data were predicted.

3. Champagne and Hohenlohe data were merged and used as

training data set. Test data sets were taken from

Champagne and Hohenlohe data, from Champagne data

only and from Hohenlohe data only respectively.
3 Results and discussion

3.1 Variable importance

To assess the importance of prediction variables analyses with

both datasets (Hohenlohe and Champagne) separately and in

combination a random splitting of training and test data, with a
FIGURE 1

Performance measures accuracy, AUC, type I error and type II error
in dependence of the percentage of missing values.
FIGURE 2

Learning curve for the random forest model.
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ratio of 75% and 25% respectively was used. Statistics of

performance measures were generated by 50 simulation

runs respectively.

To assess the importance of the soil variables an analysis with

the Hohenlohe dataset (with and without soil information) was

performed with random splitting of training and test data, with a

ratio of 75% and 25% respectively. Performance measures based on

50 runs showed only slight differences between the median values.

However, the variance of the accuracy obtained with soil

information is lower than the accuracy obtained without soil

information. Since no soil information was available for the

Champagne data set and it was shown in the Hohenlohe data set
Frontiers in Agronomy 05
that the soil did not have major influence, no soil features were

considered further.

Table 2 show the frequencies of prediction variables falling into

the group of the six highest ranked importance measures in 50

random forest runs with randomly split training and test data sets

for the Hohenlohe data (a), the Champagne data (b), and the

combined data set (c). Table 2 shows the frequencies of prediction

variables obtained by this data set falling into the group of the six

highest ranked importance measures. E.g., the variable management

diversity is in all runs among the six highest ranked, whereas the

variable Summer crops appears only once. The variables with the

highest importance in the Hohenlohe data set are management
TABLE 2 Frequency of prediction variables under the six highest ranked after 50 runs for the Hohenlohe data (A), Champagne data (B) and combined
Champagne and Hohenlohe data (C).

(a) Hohenlohe (b) Champagne (c) Champagne and Hohenlohe

variable frequency
percentage

[%]
variable frequency

percentage
[%]

variable frequency
percentage

[%]

management
diversity 50 100

Alomy group
2 (‘B’) 50 100

products group
2 (‘B’) 50 100

ploughing 49 98
management
diversity 50 100 herbicides 50 100

products group
2 (‘B’) 40 80

no. of
active
ingredients 43 86 late seeding 48 96

no. of
active
ingredients 36 72 ploughing 40 80

no. of
herbicide
application 32 64

late seeding 25 50
products group
2 (‘B’) 36 72

products group
1 (‘A’) 31 62

Alomy group
2 (‘B’) 19 38

no. of
herbicide
application 30 60 DikotCrops 29 58

winter cereals 14 28
herbicides
against Alomy 16 32

unique
MoA (grasses) 29 58

winter crops 12 24 herbicides 15 30

no. of
active
ingredients 18 36

glyphosate
(group 9 (‘G’)) 10 20 winter crops 12 24

management
diversity 7 14

no. of crops 10 20 late seeding 3 6 winter cereals 6 12

unique
MoA (grasses) 10 20 winter cereals 3 6

herbicides
against Alomy 7 14 no. of crops 1 2

corn 5 10 summer crops 1 2

products group
1 (‘A’) 5 10

no. of
herbicide
application 5 10

herbicides 2 4

summer crops 1 2
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diversity, ploughing, products group 2 (HRAC group 2), late

seeding and no. of active ingredients used during the 6 years.
3.2 Feature elimination

In a second step, the performance of RF was investigated under

omission of variables. The sequence of variable reduction was

guided by the Gini importance. Figure 3 shows the selection of

the variables for the Hohenlohe data set. The dashed lines mark

groups of variables, that were omitted subsequently. For each

reduction 50 runs of the random forest model were performed
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with fixed training and test data sets. Reduction 1 means that the

last group with lowest Gini importance was omitted, reduction 2

means that additionally group 2 was omitted, etc. The curves

represent the mean values for the performance indices accuracy,

AUC, type I and type II error. In addition, the standard deviations

are also shown. Up to reduction 2, the results remain stable. If more

variables are omitted, the results become more and more unstable

with increasing standard deviations. For the Champagne data set

(Figure 3B) the same pattern occurs. The analysis of the combined

data set shows, that the performance of the random forest model is

increased, when only variables with high Gini Index values are

used (Figure 3C).
FIGURE 3

Simulation results of Random Forest performance measures under omission of variables. The left column shows the Gini importance measures for
the Hohenlohe (A), Champagne (B) and the combined data set (C) respectively. The dashed lines mark groups of variables which were omitted. The
right column shows the corresponding measures accuracy, AUC, type I and type II errors. The colors on the left side of the figure correspond to the
colors on the right hand side. Legends of performance measure as in Figure 1.
frontiersin.org

https://doi.org/10.3389/fagro.2024.1407422
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Lepke et al. 10.3389/fagro.2024.1407422
A further analysis with the combined dataset was performed

with random splitting of training and test data. Here, the

performance for the following cases was compared
Fron
a. all prediction variables

b. highest ranked variable

c. four best ranked variables
Figure 4 shows box plots for several performance measures

based on 50 runs. If the set of prediction variables is reduced to the

variable with the highest rank (case b), the performance scores show

large variances compared to case a, when all prediction variables are

employed. With the exception of the type I error, median values do

not change much. It is interesting that the performance obtained

with the four best ranked variables only slightly differs from the

results obtained for case a both with respect to the median values

and the variation.
3.3 Discrimination between Hohenlohe/
Champagne field histories

An interesting question is if RF is able to differentiate between the

field histories of Hohenlohe and Champagne regions. Although both

data sets are similar at a first glance (cf. section 3.2), it is surprising

that the random forest produces a clear-cut distinction between field

histories of both regions with an accuracy of about 93%. The four

highest ranked predictor variables are late seeding, products HRAC

group 2 (ALS-inhibitors), products HRAC group 1 (ACCase-

inhibitors), and number of dicot Crops in the 6 years rotation.

It is important to note that high ranked variables for the

prediction of resistance, e.g. management diversity, have only a

low rank concerning the differences between the two regions.
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3.4 Transferability of predictions
between regions

Separate analyses of the data sets of both regions as described in

material and methods (1. step) gave similar results for both the

accuracy as well as the type I and type II errors. In the second step

we found that prediction accuracies are more different than in step

one, if training and test data between Champagne and Hohenlohe

are exchanged. However, when merging the data sets as described

above (3. step) all combinations yielded similar results comparable

to those obtained in step one. Two general features are apparent. In

all combinations, type I are larger than type II errors. These results

indicate that in both regions a closely related patterns of weed

management are likely to develop resistance. This confirmed

preliminary data obtained by using the random forest model

under different combinations of training and test data (Lepke

et al., 2020).

The most striking feature of the Gini index is the high rank of

the variable management diversity (Figure 5). Large differences in

ranking occur for the variable summer cereals (proportion of

summer cereals in the crop rotation). However, for all data sets, 4

variables out of the first six places are identical. These are the

number of ALS-Inhibitor applications against A. myosuroides

[ALOMY group 2 (B)], management diversity, the number of

different group 2 (B) products used [products group 2 (B)], and

the number of different active ingredients which were applied (no.

of active ingredients). The mean decrease of accuracy measure gives

similar results (Figure 6): the variables ALOMY group 2 (B) and

products group 2 (B) and variables pertaining to crop rotation are

highly ranked.

For A. myosuroides the results show that in most combinations

type II errors are lower than type I errors, i.e. false positive

classifications are more frequent. There are two possible explanations:
B

A

FIGURE 4

Box plots for four performance measures, type I error, type II error, AUC and accuracy obtained from 50 runs on the basis of all prediction variables
(A) and highest ranked variable (B).
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FIGURE 6

Mean decrease accuracy and Gini importance measures for the prediction for both regions.
B

C D

A

FIGURE 5

Comparison of the Gini importance measure for the four training data sets. (A) Training data set consists of 75% of the Hohenlohe data set.
(B) Training data set consists of 75% of the Champagne data set. (C) The Hohenlohe data set was combined with the Champagne data set and 75%
of the data was used in the training data set. (D) The training data sets from a and b were combined to a new training data set. Note that 4 variables
out of the first six places are identical: Alomy group 2, management diversity, no. of active ingredients, products group 2.
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Fron
i. The misclassified sensitive field has features similar to the

features of resistant fields, but resistance has not developed

as yet or has not been found in the plant samples.

ii. There are other factors not considered e.g. soil properties

and weather patterns.
The results clearly show that the main factors promoting the

evolution of A. myosuroides resistance are frequent use of herbicides

of HRAC group 2 (ALS inhibitors), and low diversity of

management. The importance of these factors is seen in all

combinations of the data sets. For the Hohenlohe data, the factor

ploughing turned out to be most important. Here, we see a possible

conflict between soil conservation and avoidance of resistance. In

the analysis based on the Champagne data and also on the

combined data ploughing has only a minor importance. This

could be explained by higher use of conservation cropping in

Champagne. Finally for the Champagne data, the variable

ALOMY group 2 (B, ALS inhibitors) is most important.
3.5 Champagne data set for Lolium spp.

Employing the Champagne data set and the merged dataset of

Champagne and Hohenlohe respectively, a random forest model

was applied to Lolium spp. data from Champagne. Note that this

data set comprises only resistant cases so the results have to be

interpreted with caution. With the combined Hohenlohe-

Champagne data as training set only one case was misclassified as

sensitive (Lepke et al., 2020).
4 Conclusions

In our study it is shown that a machine learning algorithm to

predict the risk of herbicide resistance evolution established in a certain

region for black-grass, in that case Hohenlohe in Germany, is valid in

another region belonging to another country, i.e. Champagne in

France. Moreover, the same algorithm can be successfully extended

to another grass species i.e. rye-grass. This strongly suggests that the

same main parameters (agronomical and chemical) are of importance

in the evolution of weed resistance for both grass species.

In conclusion, machine learning based approaches enable the

identification of decisive factors for the evolution of resistance.

Based on this knowledge, management schemes can be

recommended for resistance mitigation. Although AI based

approaches act as a black box, but with early understanding of

the importance of the different parameters, their results help to

formulate hypotheses on the underlying mechanisms, which might

be captured in comprehensive mechanistic models. Even if

additional parameters such as temperature, precipitation, etc

could improve the random forest algorithm, our study shows that

the prediction of resistance evolution is accurate in a majority of

cases. In addition it corroborates the recommendations issued by

many authors: to prevent resistance development it is important to

define an overall integrated weed management approach by

combining as many management practices comprising the use of
tiers in Agronomy 09
different herbicides, diversity in crop rotations and cultivation as

possible including cover crops, false seed bed, delayed sowing date,

seed destruction, and other non-agronomic practices when

appropriate (i.e. Beckie, 2006, Norsworthy et al., 2012; Byrne

et al., 2018). A key advantage of a machine learning based

approach to predict herbicide resistance risk evolution is that it

does not require to develop specific mechanistic models based on

parameters difficult to assess or requiring time consuming

experiments, like e.g. soil seed bank, or soil composition analyses

(Metcalfe et al., 2019). In addition once established, field history

data, easy to determine, are enough to run the random forest model.

It does not require tedious measurement of the TSR mutation

frequencies and/or the analyses of the herbicide(s) detoxification in

the plant (Bobadilla and Tranel, 2024). The evolution of specialist

and generalist resistance (Comont et al., 2020) and the increasing of

resistance cases (Heap, 2024) requires more and more to define pro-

actively the adequate strategies to use herbicides (Bobadilla and

Tranel, 2024) and to provide Integrated Weed Management

solutions to farmers, applicators, retailors and advisors. Modelling

will be an essential tool to contribute to that. Our study showed also

that related species, in our cases, rye-grass and black-grass can be

assessed with the same model as well as different locations, in that

case two regions in two different countries. Finally, our results of the

current study showed that few parameters, 4 to 6, related to

agronomic and chemical practices can be useful to develop a

random forest prediction tool for resistance evolution which can

facilitate the decision of the farmers on the best IWM strategy to

sustainably control weeds and mitigate the evolution of resistance.

This will help to mitigate herbicide resistance evolution which

impact farmer’s benefit (Staples, 2021) and increase the

sustainability use of herbicides in IWM strategies (Moss, 2017).
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