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Herbicide resistance prediction:
a mechanistic model vs. a
random forest model
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Introduction: Herbicides are an important technology in the Integrated Weed

Management (IWM) tool box aiming to control weeds in modern agriculture.

Prediction tools to evaluate the risk of resistance evolution will greatly help to

choose the best IWM strategy adapted to the local field situation. These comprise

classical simulation models, mechanistic models (MMs), combining population

dynamics and genetics, and recently artificial intelligence (AI) methods such as

random forest. In this paper, both approaches are compared.

Materials and methods: Artificial data were generated by an MM and used as

training dataset for a random forest classifier. Field history information was taken

from two previous studies. The data include the field histories and resistance

status of Alopecurus myosuroides of 98 fields from the Hohenlohe area in

Germany and 131 from the Champagne area in France.

Results and discussion: With accuracies of approximately 80%, the results

obtained by the random forest method applied to model-generated data and

real field data, respectively, are well comparable. This concerns the ranking of

prediction variables and the prediction of the resistance status of a real field and a

“model field”. Predictions with model outcomes as training sets and, vice versa,

predictions of a “model field” with real data as training sets and predictions by

splitting of field data could be made with nearly the same accuracies.

Conclusion: Complementarity is shown between both approaches with the advantages

of AI such as random forest to avoid approximations inherent to complex MMs.
KEYWORDS

population dynamics, population genetics, resistance management, black-grass,
comparison AI and mechanistic models
Introduction

In the last decades, herbicide resistance in weeds has become a major issue (Gressel,

2009, Powles and Yu, 2010). Control of weed populations is a complex process depending

not only on the choice of appropriate herbicides but also on cropping patterns, cultural

techniques, and other crop management practices (Hawkins et al., 2019). The time scales
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involved in resistance evolution comprise several years. Weed

population dynamics is a multifactorial process. Variables such as

weather conditions, size and spatial heterogeneity of the seedbank,

initial frequency of resistant biotypes, and spray distribution

patterns exhibit a large variation (Zwerger et al., 2017). Therefore,

the evolution of resistance is not a pure deterministic process.

One way to assess appropriate management schemes is based

on mathematical process models (Colbach and Debaeke, 1998;

Holst et al., 2007; Renton et al., 2014). The advantages of

mechanistic models (MMs) are that they are based explicitly on

population dynamics and genetics and are capable of analyzing

underlying mechanisms. The disadvantage is that these models

demand a large input of physiological parameters such as

emergence rate, number of seeds, seed survival, vertical transport

parameters due to soil cultivation, competition coefficients with

respect to crops, and environmental variables. The second approach

to evaluate the factors for the emergence of resistance is based on

statistical methods notably on techniques of artificial intelligence

(AI). The advantage of these methods is that they are capable of

detecting patterns in huge bodies of data, allowing the identification

of the driving forces for resistance evolution. In addition, this

approach is based on empirical parameters, usually easy to

measure, like crop rotation, soil management, agronomic

practices, and herbicide management including application rates.

Disadvantages are that large data comprehending long-term field

histories are needed requiring the compliance of the farmers

partaking in the study. Furthermore, outcomes are frequently

difficult to interpret in terms of the underlying mechanisms. The

automatic learning methods (AI) are evolving fast and are

implemented in a wide range of fields. The traditional MMs,

depending on complex interdependent mechanisms (e.g.,

biological and genetic), are evolving towards statistical models

(AI) evaluated on their single ability of prediction (Gabrié and

Eickenberg, 2024). Our study focuses on the grass weed Alopecurus

myosuroides Huds. (ALOMY). This grass mostly occurs in Central

and Western Europe, where it has established itself as a noxious

weed. Furthermore, owing to the evolution of resistance to acetyl-

CoA carboxylase (ACCase), acetolactate synthase (ALS), and

photosynthesis (PSII) inhibitors, this weed has become one of the

most problematic weed species in Europe (Moss et al., 2007; Menne

and Hogrefe, 2012). Herrmann (2016) examined the evolution of

resistance to ALS and ACCase inhibitors and compared MM results

and the results obtained by a random forest (RF) classifier (AI)

applied to field history data of the Hohenlohe region in Germany.

In this paper, field data were taken from the field history data from

Hohenlohe and from Champagne in France (Lepke et al., 2024). In

addition, for this study, data were generated by an MM with the

objective to compare mechanistic modeling and AI separately and

in combination. To this end, model-derived data were used as

training dataset for an RF classifier. A time discrete model was

developed, which combines the population dynamics and genetics

of this grass independent of management schemes comprising

application of herbicides with different modes of action in spring

and autumn, selection of crops, seeding dates, and soil cultivation.

The algorithm produces time courses of the seedbank bank and

weed densities for each biotype and determines the resistance status
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of a field at the end of the simulation period. The model contains

stochastic features concerning the emergence of the weed, the

efficacy of herbicide treatment, and the detection of resistance by

random sampling of weeds. The questions addressed are as follows:

(1) is it feasible to obtain reliable predictions on resistance evolution

using a model generated database as training set? and (2) which

training database, field data or model data, yields the

best predictions?
Materials and methods

Field history data

Field history data were taken from two previous studies. The

data include the field histories and resistance status of black-grass of

98 fields from the Hohenlohe area in Germany (Herrmann, 2016;

Lepke et al., 2020) and of 131 fields from the Champagne area in

France (Lepke et al., 2024). Predictor variables comprise crop

rotation, number of crops, seeding date, soil cultivation, and

herbicide applications. There are 20 predictors (Table 1). The

Hohenlohe data include soil properties, which were not recorded

in the French study. An additional predictor management diversity

was devised, which is an index for the diversity of A. myosuroides

management (Herrmann, 2016). This variable considers the

number of different measures specific for weed control within a

year. These comprise delayed seeding, ploughing, summer crops,

and the use of multiple modes of action. If a measure is applied, the

respective score takes the value of 1; otherwise, the value of 0. If all

measures are applied, the maximum value of management diversity

is 4; if none is applied, the score is 0. The index ranges therefore

between 0 and 4. For example, in winter wheat, using two modes of

action (score 1) and ploughing (score 1) results in a management

diversity value of 2, while shallow tillage (score 0) and only one

mode of action (score 0) give a management diversity value of 0.

Management diversity values are averaged for the time frame of the

6 years (6 yrs) being considered.

A descriptive data analysis was performed to ensure that the

datasets of both countries have a similar structure (Lepke et al.,

2020, 2024). There are only slightly different management practices

concerning late seedings and summer crops. In France, herbicides

that are specific for A. myosuroides are applied more frequently than

in Germany. In both regions, non-inversion tillage is common. The

correlation structures of the predictor variables are similar for both

datasets of A. myosuroides (Lepke et al., 2020). Climatic conditions

are slightly different in the two regions; mean temperature and

precipitation are slightly higher in the Champagne than in the

Hohenlohe region.
Assessment of resistance status

The field data used in this paper were obtained from previous

studies (Herrmann et al., 2016; Lepke et al., 2024). A. myosuroides

samples were harvested by walking every second tractor track and

monitoring two borders of the field. It was ensured that only one ear
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per plant was sampled. Resistance status was established by

greenhouse biotests with collected seeds and subsequent genetic

analysis of the seedlings to determine target site resistance and

analytics to determine metabolic resistance when appropriate for

the samples from Champagne and Hohenlohe (Lepke et al., 2020,

2024; Beffa et al., 2012). Fields were classified as resistant if target-

site resistance or metabolic resistance or both were detected in the

samples and/or survivals were observed in the greenhouse. More

than 95% of the samples showed the presence of target site

resistance. Therefore, the model was focused on target site

resistance risk evolution. The stochastic process of the assessment

of the resistance status is part of the model.
Simulation model

Basic population dynamics
Notations:

The term “biotype” used in weed resistance (and in the paper) is

synonymous to the term “phenotype” in genetic literature. One

biotype represents the population of one field.

Si: number of seeds of biotype i.

PA: emergence rate.

Ki: number of seedlings of biotype i.
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Ji: number of young plants of biotype i.

Dmax: maximum density of seedlings.

L: half maximum seedling density.

h: herbicide dose.

Sui(h): survival probability of biotype i under herbicide dose h.

R=(R1,…,Rn): vector of adult plants.

Amax: maximum number of seeds per plant.

a,b: competition coefficients with respect to weeds and crop.

gi (R): offspring rate of biotype i (cf. also Equation 11).

ps,pw: seed survival in summer and winter, respectively.

The model simulates the population dynamics and genetics of

A. myosuroides with target site resistance against ALS inhibitors.

The model structure and the parameterization were taken from

Herrmann (2016). It is assumed that resistance is conferred by one

locus. The model is capable of taking into account multiple target

site resistance. In this study, only target site resistance against ALS

inhibitors was considered in accordance with our field data (Lepke

et al., 2020, 2024).

The weed population is composed of six cohorts representing

different seasonal phases (Table 2). The structure of the model is

shown in Figure 1. In each cohort, the population dynamics and

genetics evolve according to a time discrete model comprising the

stages seedling, juvenile plant, and adult plant. At the beginning of a

cycle, K seedlings germinate from the seed bank (Equation 2).
TABLE 1 List of predictor variables (Lepke et al., 2024).

Variable Explanation

Winter cereals The proportion of winter cereals in the crop rotation

Summer cereals The proportion of summer cereals in the crop rotation

Winter crops The proportion of winter crops in the crop rotation

Summer crops The proportion of summer crops in the crop rotation

No. of crops Number of different crops used (winter wheat, triticale, and spelt were counted as one)

dicotCrops The number of dicot crops in the crop rotation

Corn The amount of corn in the crop rotation

Late seeding The proportion of delayed seeding events in the crop rotation

Ploughing The proportion of ploughing in the crop rotation

Herbicides against Alomy The number of herbicide applications against A. myosuroides divided by the number of years observed

No. of herbicide application Total number of herbicide applications in the crop rotation divided by the number of years observed

No. of active ingredients The number of different active ingredients applied

Products group 2 (B) The number of different group 2 (B) products applied in the crop rotation

Unique MoA (grasses) The number of different modes of action used against A. myosuroides

Alomy group 2 (B) The number of ALS-inhibitor [group 2 (B)] divided by the number of years observed

Herbicides Number of different herbicides

Glyphosate [group 9 (G)] The number of glyphosate application in the crop rotation

Products group 1 (A) The number of ACCase application in the crop rotation

Flufenacet The proportion of flufenacet [group 15 (K3)] used against A. myosuroides

Management diversity Diversity of management (ploughing, delayed seeding, herbicides, and spring crops)
All predictors are normalized by the number of observed years (here six).
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The index “i” denotes the biotype.

Ki = pASi (1)

The survival of the seedlings is density dependent. The number

of seedlings that develop to juvenile plants is limited by Dmax.

Ji =
DmaxK
K + L

Ki

K
(2)

The development to mature plants depends on the survival

probability Sui under herbicide dose h, which is given by a dose–

response function with biotype-specific parameters.
Frontiers in Agronomy 04
Ri = JiSui (h) (3)

The portion of seeds with biotype i is derived via the hereditary

transmission matrix Wi (Equation 10) as.

gi(R) =
RtWiR
R2
total

(4)

The number of seeds per weed plant depends on crop and weed

densities.

SHi =
Amax

(1 + a Rtotal + b DCrop)
g  gi(R) (5)

At the beginning of the next cycle, the seed bank adds up to.

SF(t+1)i = (SFti(1 − pA)ps + SHi)pw (6)

where ps and pw denote the seed survival probability over

summer and winter, respectively.

K =om
i=1Ki

R = (R1,⋯,Rm)
t

Rtotal =onbio
i=1 Ri
Multiple resistance
Under the assumption that multiple resistance is conferred

independently by one locus for each herbicide, rates of offspring
FIGURE 1

Model structure. The cohorts represent different seasonal phases that are associated with typical events such as herbicide application or seeding.
TABLE 2 Germination cohorts of A. myosuroides.

Cohort Time frame Targeted event

Co After harvest to mid-August

C1 Mid-August to mid-September Oilseed rape seeding

C2 Mid-September to mid-October Barley and early
wheat seeding

C3 Mid October till end of
vegetation period

Late wheat seeding

C4 Begin of vegetation period to
mid-March

Spring application

C5 After mid-March Sugar beet and
corn planting
“Time frame” indicates approximate periods rather than accurate time points. Cohorts are
associated with typical events.
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are derived by tensor products of heredity matrices [7,8,9]. Biotypes

Ri are ordered lexicographically with respect to the alleles Xj and xj
occurring in the gene. Elementary heredity transmission matrices

for single genes can be represented by.

V1 =

1 1=2 0

1=2 1=4 0

0 0 0

0
BB@

1
CCA (7)

V2 =  

0 1=2 1

1=2 1=2 1=2

1 1=2 0

0
BB@

1
CCA (8)

V3 =  

0 0 0

0 1=4 1=2

0 1=2 1

0
BB@

1
CCA (9)

and they can be written as the tensor products in the multi-loci

case transmission matrices Wi are obtained from the Kronecker

product of the single transmission matrices.

Wi = Vi1 ⊗Vi2 ⊗⋯⊗Vim (10)

with the numberm of gene loci and with biotypes ordered again

lexicographically with respect to multiple gene loci. The fraction of

biotype i in the population after random mating is termed normed

heredity function and is derived via the hereditary matrices as

gi(R) =
RtWiR
R2
total

(11)

Equation 11 gives the rates of offspring of each biotype, and

thus, it is the basis for dynamic population genetic models.

Seedbank
The soil is divided into four layers (0–5 cm, 5–10 cm, 10–15 cm,

and 15–20 cm). Seed emergence takes place from the upper layer. For

the mixing of the layers by soil cultivation, the model of Cousens and

Moss (1990) was taken. The mixing of soil layers is accomplished via

matrix operators applied to soil layer vectors. For each soil cultivation

technique ploughing, rigid tine cultivation and minimal cultivation-

specific matrix elements apply. P is the soil cultivation matrix for four

soil layers. For each soil cultivation technique ploughing, rigid tine

cultivation and minimal cultivation-specific matrix elements apply.
Stochastic features
In the model seed emergence, number of seeds per plant, herbicide

efficacy, and the initial fractions of resistant seeds in the seedbank are

considered as random. For each of the respective parameters, a plausible

range was chosen. In a simulation run, the value of the parameter was

determined by a uniformly distributed random variable.

The assessment of the resistance status is a two-stage stochastic

process. In the first step, nf plants are randomly sampled. In the

second step, mixed seedling samples from these plants are grown

and nlab samples are taken. A field is classified as resistant if at least
Frontiers in Agronomy 05
2 weed plants out of 8 grown from seeds of 10 plant samples from

the field are resistant. The effect of sampling on resistance detection

was studied in Herrmann et al. (2022).

Management schemes
The management schemes comprise the selection of herbicides

out of seven herbicides with different modes of action, application

rate, application period (spring or autumn), soil cultivation such as

ploughing, cultivation with tine and direct seed, and the growing of

11 crops (Herrmann et al., 2022).
Random forest

For a classification problem with 20 predictor variables, partly

correlated samples, and small sample sizes, the RF method (Breiman,

2001) is the most convenient. All calculations were carried out by the

R Project for Statistical Computing (R Core Team, 2018; R-package‚

‘random forest’, 2018). In all analyses, the data were split into training

data (75%) and test data (25%). To test which predictor variables have

a significant impact on the response, importance measures were

analyzed. Usual importance measures are the Gini index, the mean

decrease accuracy index, and the area under the receiver operating

characteristic curve (AUC) (Hastie et al., 2017). RF outcomes are

random due to random sampling of training data points when

building trees and the random selection of subsets of features

considered when splitting nodes. Therefore, the evaluation of

feature importance based on a single run is not reliable especially if

predictor variables are correlated. To assess the importance of

prediction variables, RF analyses were performed for each dataset

separately with the usual random splitting of training and test data

with a ratio of 75% and 25%, respectively. Statistics of performance

measures were generated by 50 simulation runs respectively.
Results and discussion

Model performance

Figure 2 shows the graphical user interface of the model. The

user may select among seven herbicides or group of herbicides,

application rates, and application period among 14 crops and soil

cultivation for each year. In addition, parameters for the random

feature of such random seeds and variation coefficients can be

chosen. The model output comprises time series of the portion of

resistant seeds, weed density, and others (see Figure 3). Figure 3B

presents the results of a sampling for resistance (0: no resistance

detected, 1: resistance confirmed). The figure shows what can

happen in the worst case, when always the same herbicide (here

ALS inhibitor) and the same crop are chosen. Until year 6 to 7, the

seedbank is decreasing. From year 7 onward, a sharp rise in resistant

weeds occurs. Resistance is confirmed only in year 9. Under a

management scheme with a high degree of diversity, i.e., frequent

change of mode of action and crop rotation (Figure 4), resistance

development is delayed during the simulation period.
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FIGURE 3

Weed dynamics under subsequent applications of an ALS inhibitor, no crop rotation, no change of mode of action. Resistance emerges after 4 to 5
years (C) and is detected only in year 9 (B). Because of ploughing, resistant seeds emerge in all soil layers (E). Weed densities are increasing after 8
years (A) causing crop losses (D). The seedbank, which is decreasing in the beginning, increases after 6 to 7 years (F).
FIGURE 2

Graphical user interface. The simple management scheme of this example [always ALS inhibitor, always the same crop (Triticum aestivum winter)]
favors fast emergence of resistance as shown in the next figure.
Frontiers in Agronomy frontiersin.org06
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Predictions of resistance of field data
based on model data

The field data are taken from previous studies (Lepke et al., 2024).

The MM data were obtained from the model described above. These

were generated in accordance with the field history data over a period

of 6 years. In addition, simulations were performed with time

horizons greater than 6 years, showing that under some

management schemes, resistance in development was too low to be

detected after 6 years but only later. Therefore, some datasets were

generated with a simulation time of 8 years. Because of the random

features in the model, identical management scenarios were repeated

several times. Resistance status was determined by taking a random

sample offive weed plants at the end of the simulation period and the

field was classified as resistant if at least one of the plants was found to

be resistant. Further datasets were generated with the pure

deterministic model and on the model with all stochastic features

described above. As usual, model data were split into a training

sample (75%) and into a prediction sample (25%). It turned out that

the model dataset obtained for an 8-year simulation period with

stochastic features gave the best results. Further analyses were

therefore performed with this dataset.

The final question remains: which predictions are better, those

based on real datasets only or those based on model data. This
Frontiers in Agronomy 07
question is answered in Figure 5 where performance criteria are

compared for five combinations of training and test data: test data

model generated (1); training data model generated (2); training data

model generated and test data GER and FRA combined (3); training

data model, test data FRA, training data model, and test data GER (4);

and finally test and training data combined GER and FRA data (5).

With the exception of combination (1), mean accuracies range

between 75% and 80%. It is interesting to note that all predictions

based on model data have lower variations than predictions based on

real data. AUC values exhibit large variation for all combinations. In

those combinations with real data as test sets, type II errors are lower

than type I errors, i.e., false-positive classifications are more frequent.

There are two possible explanations:

The misclassified sensitive field has features similar to the

features of resistant fields, but resistance has not developed as yet

or has not been found in the plant samples.

There are other factors not considered, e.g., soil properties and

weather patterns.
Variable importance

Statistics of performance measures were generated by 50

simulation runs respectively (cf. methods). Table 3 shows the
FIGURE 4

Weed dynamics under a management scheme comprising frequent changes of modes of action and crop rotation corresponding to a high value of
variable management diversity, which is an index for the diversity of management. The development of resistance is delayed (C). Resistance is not
detected (B). The seedbank decreases and stabilizes at low values (F). Weed densities stay at a low level (A) and no crop losses occur (D).
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frequencies of prediction variables falling into the group of the nine

highest-ranked importance measures in 50 RF runs with randomly

split training and test datasets for the two cases considered. It turns

out that the prediction variables Alomy group 2 (B), the index

management diversity, ploughing, and the proportion of late

seeding are among the most frequent common ranks for

combinations of training and datasets.
Frontiers in Agronomy 08
Discussion and conclusions

This paper is a synthesis of previous studies and combines field

surveys, data analysis, and modeling. In a first study (Herrmann

et al., 2016), an RF procedure was trained with data from Germany

(Hohenlohe). Later, data from France (Champagne) were added to

investigate transferability (Lepke et al., 2024). In parallel, a detailed
FIGURE 5

Performance criteria for five combinations of training and test data.
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MM to predict the emergence of resistance was developed

(Herrmann et al., 2022). Our study presents the latest version of

this model. The model is able to predict resistance for different

management systems such as tillage and herbicide application

schemes. This makes it possible to compare datasets from France

and Germany and datasets generated by the model in different

combinations in terms of variable importance. Since the RF

procedure is a two-stage random procedure, the ranking of the

predictor variables cannot be based on a single analysis but must be

based on statistics from a large number of runs. The most important

result is that the predictor variables Alomy group 2 (B), the index

management diversity, ploughing, and the proportion of late-
Frontiers in Agronomy 09
seeding are among the most frequent common ranks for

combinations of training and datasets.

We have shown that the results of the RF method applied to

model generated data (MM data) and real field data respectively are

well comparable. This concerns the ranking of prediction variables

and the prediction of the resistance status of a real field and a “model

field”. Predictions with model outcomes as training sets and, vice

versa, predictions of a “model field”with real data as training sets, and

predictions by splitting of field data could be made with nearly the

same accuracies.

This motivates a reflection of what is an MM in contrast to an AI

algorithm. First, there exists no general rule let alone an algorithm for
TABLE 3 Importance of prediction variables for each dataset.

German data French data

Variable Frequency Percentage Variable Frequency Percentage

Management diversity 50 100 Alomy group 2 (B) 50 100

Ploughing 47 94 management diversity 50 100

Alomy group 2 (B) 34 68 No. of herbicide application 50 100

Late seeding 29 58 Ploughing 42 84

Herbicides against Alomy 23 46 Herbicides 39 78

No. of herbicide application 21 42 Herbicides against Alomy 29 58

Herbicides 21 42 Late seeding 19 38

Glyphosate [group 9 (G)] 17 34 Winter crops 11 22

Products group 1 (A) 16 32 Summer cereals 8 16

Winter cereals 15 30 Products group 1 (A) 1 2

Winter crops 13 26 Winter cereals 1 2

No. of crops 9 18

Corn 2 4

Summer crops 2 4

Summer cereals 1 2

French and German data Model data

Variable Frequency Percentage Variable Frequency Percentage

Alomy group 2 (B) 50 100 Alomy group 2 (B) 50 100

Management diversity 50 100 Management diversity 50 100

Ploughing 47 94 Products group 1 (A) 50 100

No. of herbicide application 45 90 Ploughing 47 94

Late seeding 39 78 Late seeding 43 86

Herbicides against Alomy 34 68 Winter cereals 34 68

Herbicides 30 60 DicotCrops 24 48

Corn 2 4 Corn 2 4

No. of crops 1 2

Summer cereals 1 2

Summer crops 1 2
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the development of a mathematical model. A model is based on expert

knowledge derived from a variety of sources—own experience,

exchange with other experts, literature, and population dynamics—

and genetic theory and not least on intuition. The formal structure of a

mathematical model allows its adaptation to other herbicides and crops.

In contrast, an AI algorithm is capable of identifying structures in large

bodies of data and making good predictions without “being aware” of

the underlying mechanisms. A further advantage of this method is that

the performance of the algorithm is improving with increasing number

of cases. Our studies have shown that both approaches are in a way

complementary to each other. AI offers the possibility to generate a

correct prediction and avoid to generate very complex equations and

calculations. Furthermore, each time that new data are generated, the

algorithm is improving. However, one basic problem of AI models is

that it is very difficult to anticipate errors generated by the model itself

(Gabrié and Eickenberg, 2024). Therefore, it is reassuring that human

intuition and calculations (MMs) and AI give the same results when it

comes to the prediction of resistance evolution. Such prediction allows

the customers, particularly the farmers, to evaluate the risks of resistance

evolution and, taking into account the local conditions, proactively

adapt the strategy of weed control tomitigate resistance evolution. It also

allows farmers to not depend on complex diagnostics, especially related

to non-target-site resistance (Lowe et al., 2024). This will contribute to

develop the best Integrated Weed Management strategies combining

chemical and agronomical measures.
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