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amendment in improving soil
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decomposition of oil palm
mulch and enhanced
nutrient availability
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1School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si
Thammarat, Thailand, 2Hermiston Agricultural Research and Extension Center, Department of Crop
and Soil Sciences, Oregon State University, Hermiston, OR, United States
Graphene has unique properties for improving soil health properties such as nutrient

availability, soil physical and chemical properties, and controlled release of essential

elements. This research aimed at determining the impact of graphene amendment

on the decomposition of oil palm frondmulching and on soil health status. The study

was conducted using a factorial experiment in completely randomized design with

two main factors: (i) covering conditions: cover with plastic sheet and no cover, and

(ii) graphene application that included T1 (control): oil palm frond mulching (OFM),

T2: OFM+ graphene (G), T3: OFM+G+ chemical fertilizer, and T4: OFM+G+ goat

manure. The results indicated that there were significant differences among

graphene applications, between cover conditions, and in interactions between

graphene applications and cover conditions for all soil characteristics in the most

observed month. In the third month of soil analysis, the treatment of graphene

applications showed higher electrical conductivity (T2: 151.7 ± 6.8 µS cm−1), available

phosphorus (T3: 9.0 ± 6.7 mg kg−1), exchangeable potassium (T2: 67.1 ± 24.9 mg

kg−1), and exchangeable calcium (T3: 95.4 ± 5.1 mg kg−1), compared to control. The

cover condition showed suitable soil pH (5.0 ± 0.2), higher soil available phosphorus

(7.1 ± 5.0 mg kg−1), and exchangeable calcium (599.1 ± 235.2 mg kg−1), but the no-

cover condition presented higher soil organic matter (0.7% ± 0.2%), exchangeable

potassium (60.3 ± 19.1 mg kg−1), and exchangeable magnesium (96.7 ± 11.4 mg

kg−1). Correlation results indicated that most soil characteristics were correlated

under graphene applications. Principal component analysis showed that the

treatments of graphene application dominated most soil characteristics. The

results suggest that graphene has potential for improving soil health properties

and can be applied as an alternative sustainable amendment to accelerate the

decomposition of oil palm frondmulch and enhance nutrient availability for oil palm.

In addition, the authors suggest that further investigations should consider more soil

health parameters in long-term field studies for a better understanding and to

provide recommendations to farmers.
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1 Introduction

Oil palm (Elaeis guineensis Jacq.) as a key economic oil crop in

Thailand and other tropical regions is famous for its high yield

potential, averaging 3.3 tons per hectare (Woittiez et al., 2017).

Initially, oil palm plantations were confined to tropical regions due

to their optimal growing conditions (Corley and Tinker, 2003).

However, driven by the increased demand for palm oil in both food

and non-food industrial sectors, its cultivation has expanded to

include marginal lands with poor soil fertility. As of 2023, Thailand

had approximately 1.03 million hectares of oil palm cultivation, with

86% located in the southern region (Office of Agricultural Economics,

2023). The soils in southern Thailand are generally less fertile,

compelling efficient nutrient management for successful crop

cultivation (Hussain et al., 2022). The perennial nature of oil palm

crops, with fruiting cycles extending up to 30 years, coupled with

improper fertilizer management, can adversely affect soil health

(Duangpan et al., 2022). Despite the desire for high yields,

associated management costs pose challenges. Soil health and

nutrient availability are crucial considerations, as they directly

influence yield potential. Although farmers apply fertilizers, seasonal

applications often lead to significant nutrient losses, particularly

during heavy rainfall intervals in the rainy season, impacting

fertilizer efficiency. Given these challenges, it is imperative to

explore alternative approaches to improve soil health and nutrient

status. Innovative methods such as an efficient utilization of oil palm

frond mulch and organic amendments may offer promising solutions.

Oil palm fronds are waste products obtained during pruning

and oil palm bunch harvesting (Ajayi et al., 2023). Typically,

farmers utilize these fronds as mulch in oil palm plantations,

where these fronds are decomposed to provide organic matter

(OM) and essential nutrients for plants (Pulunggono et al., 2019).

Oil palm fronds contain various substances that decompose into

plant-available nutrients, including cellulose (31.5% ± 0.3%), lignin

(14.0% ± 0.5%), hemicellulose (19.2% ± 0.1%), protein (9.4% ±

0.1%), and ash (12.3% ± 0.2%) (Hong et al., 2012). In current

management practices of oil palm plantations in Southern

Thailand, farmers often apply a bulk of fertilizers, including urea,

muriate of potash, and manure. This method requires less labor and

time compared to conventional broadcasting methods. Oil palm

trees receive nutrients and moisture through the dissolution of

fertilizers and decomposition of oil palm fronds. However, this

fertilization method leads to nutrient losses through leaching,

particularly during heavy rainfall in the region’s rainy season

(Hussain et al., 2021), with annual rainfall averaging 2,521 mm.

Nutrient losses, especially nitrate leaching, significantly impact the

sustainability of cropping systems, resulting in substantial losses in

southern Thailand (Hussain et al., 2023). Therefore, it is essential to

control these losses and improve nutrient use efficiency. Alternative

approaches, such as adding substances and amendments to

fertilizers, can enhance fertilizer absorption and maintain nutrient

levels in the soil for longer periods. According to Hossain et al.

(2020), substances with properties such as porosity, electrical

charge, high surface area, and controlled release of nutrients are

crucial for prolonging nutrient availability in the soil.
Frontiers in Agronomy 02
Graphene is considered a suitable material for maintaining and

enhancing nutrient levels in oil palm frond mulch. Some farmers

have begun to incorporate graphene into oil palm mulch for

prolonged nutrient availability and reduced fertilizer usage;

however, there is currently no specific research evidence available

on this matter which is the basis of this study. Graphene is a single

sheet of carbon atoms arranged in a honeycomb lattice and joined by

sp2 hybridization (Asif and Saha, 2023). Because of its outstanding 2-

D structure, large surface area, and exceptional mechanical, thermal,

optical, and electrical properties that make it useful for a variety of

applications, graphene has garnered a great deal of research interest

(Kabiri et al., 2017). Graphene can be utilized in agriculture to

increase soil clay content and improve soil texture, thereby

enhancing nutrient absorption capacity and nutrient storage (Wang

et al., 2023). This leads to reduced nutrient losses caused by

volatilization, surface runoff, and deep seepage (Andelkovic et al.,

2018; He et al., 2018), which are critical components of soil water and

nitrogen balance (Hussain et al., 2023). Additionally, graphene can

enhance soil physicochemical properties by increasing the

concentration of nutrient ions in soil colloids, reducing nutrient

loss, boosting the levels of ammonium nitrogen, effective phosphorus,

and fast-acting potassium in the soil after leaching, and improving the

stability of soil aggregates following leaching (Liu et al., 2023). It can

also enhance the soil’s electrochemical properties, promote the

absorption of nutrients by root systems, increase fertilizer

application rates, reduce agricultural surface pollution, and enhance

fertilizer efficiency and conservation (Wang et al., 2023), ultimately

leading to improved productivity and sustainability of

agricultural soils.

Keeping in view the importance of the above-mentioned

findings and the lack of scientific evidence on the impacts of

graphene application in oil palm mulch for prolonged nutrient

availability, the objective of this study was to evaluate the impact of

graphene amendment on the decomposition of oil palm frond

mulch and soil health status through enhanced nutrient

availability. The results of this study will provide scientific

evidence for long-term research studies and will help farmers to

revise the fertilizer management strategies for improved soil health

by optimizing fertilizer use and associated costs.
2 Materials and methods

2.1 Experimental details

The research experiment was conducted between March and

September 2023 at the School of Agricultural Technology and Food

Industry’s oil palm experimental field (8°38′43.9" N, 99°54′03.2" E),
at Walailak University, Thailand. The soil at the experimental field

is classified as Gleysols (IUSS Working Group WRB, 2022). Clay,

silt, and sand components of clayey soil were 62%, 28%, and 10%,

respectively, whereas soil pH was 4.7. The weather data were

recorded using the weather station installed at the experimental

site. During the experimental period, the average monthly rainfall

was 60 mm, and the highest and lowest rainfall were observed in
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May andMarch, respectively. The relative humidity ranged between

83% and 91% with the highest and lowest humidity observed in

May and June. The temperature ranged between 27.9°C and 28.9°C,

and the highest and lowest temperatures were observed in August

and April, respectively. The experiment was organized using a

completely randomized design with a factorial arrangement

having two factors. The first factor was a covering condition

including covering with black plastic sheet and no covering. The

second factor included the treatments of graphene application

including T1: oil palm frond mulching, T2: oil palm frond

mulching amended with graphene, T3: oil palm frond mulching

amended with graphene + 15-15-15 chemical fertilizer, and T4: oil

palm frond mulching amended with graphene + goat manure. Each

experimental unit consisted of three replications (oil palm frond

mulching). The mulching was prepared by approximately 10–12 oil

palm fronds. The ground of the mulching was prepared by fine river

sand. The experimental arrangement is illustrated in Figure 1.
2.2 Soil analysis

The soil samples were collected at 0–30 cm under the oil palm frond

mulching every 2 months (M1: May, M2: July, and M3: September).

The samples were then analyzed for the soil properties including pH,

electrical conductivity, OM, available phosphorus, exchangeable

potassium, exchangeable calcium, and exchangeable magnesium. The

OM was analyzed according to the in-house method (He et al., 2020).

The available phosphorus was extracted using Bray No II (Wuenscher

et al., 2015) and analyzed by spectrophotometer (Jasco V-630). The

exchangeable potassium, calcium, and magnesium were extracted with

1.0 MNH4OAc pH 7.0 and analyzed with ICP-OES (AVIO 200) (Food

andAgriculture Organization, 2020). All soil analyses were performed at

the Center for Scientific and Technological Equipment of Walailak

University, Thailand.
2.3 Statistical analysis

Data were analyzed and analysis of variance (ANOVA) was

performed. The assumption of normality was tested according to

Shapiro–Wilk test using the dplyr package (Wickham et al., 2023).
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Means of the data (± standard derivations) were compared

according to Duncan’s multiple range test and reported at p <

0.05. Statistical analysis and data visualization were carried out

using the R program (Version R 4.3.2) with the Agricolae package

(De Mendiburu, 2023). Correlation analysis and principal

component analysis (PCA) were performed to further evaluate

the association and their significance among studied attributes

using the ggbiplot package (Vu et al., 2024).
3 Results

3.1 Weight loss percentage of oil
palm frond

Weight loss percentage of oil palm frond under different

graphene applications is presented in Table 1. The highest weight

loss percentage was observed at T1 (32.1%) and T3 (32.1%) under

the cover condition, and the lowest percentage was obtained at T3

under the no-cover condition. As compared between both

conditions, the cover condition (31.2%) showed higher weight

loss percentage than the no-cover condition (27.6%). Statistical

results for soil characteristics are presented in Table 2. The ANOVA

revealed that there were significant differences (p < 0.05) among the

treatments of graphene application and cover conditions for all soil

characteristics in the most observed months, except for the soil pH

in May. In addition, there were statistical interactions between

graphene applications and cover conditions for all soil

characteristics in the most observed times, except for soil pH in

May and September. The coefficient of variation (CV) ranged

between 1.7% and 9.6%, with the highest and lowest CV observed

from soil pH in May and soil electrical conductivity in September.
3.2 Soil pH

Between the covering conditions and the four treatments of

graphene application, there were no significant differences in the

soil pH in May. T4 provided the highest pH of any treatment in July

(5.89 ± 1.1) and the appropriate pH level for plants (5.5–6.5). The

soil pH from the cover group (6.0 ± 0.6) was higher than that of the
FIGURE 1

Experimental arrangement having experimental treatments including (i) graphene applications and (ii) covering conditions. T1: oil palm frond
mulching, T2: oil palm frond mulching amended with graphene, T3: oil palm frond mulching amended with graphene + 15-15-15 chemical fertilizer,
and T4: oil palm frond mulching amended with graphene + goat manure.
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no-cover group (4.5 ± 0.3). While all pH values in September were

below 5.5, T4 yielded the plant-suitable levels closest to 5.1 ± 0.2,

which was also higher than other treatments. The cover group (5.0

± 0.2) had a higher value than the no-cover group (4.9 ± 0.2), like

July (Table 3, Figure 2).
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3.3 Soil electrical conductivity

The soil from the no-cover group (155.6 ± 11.0 µS cm−1) had a greater

electrical conductivity (EC) in May than the cover group (147.7 ± 8.4 µS

cm−1) and T3 produced the highest EC at 163.4 ± 7.67 µS cm−1. T4

produced the highest EC in July,measuring 171.0 ± 20.7 µS cm−1.Moreover,

soil from the cover group (161.5 ± 17.7 µS cm−1) produced EC that was

higher than that of the no-cover group (158.0 ± 13.9 µS cm−1). T2 yielded the

highest EC in September (151.7 ± 6.8 µS cm−1) but there were no significant

differences between EC from covering conditions (Table 3, Figure 3).
3.4 Soil organic matter

Treatment of oil palm frond mulching (T1) provided the most

OM in May, resulting in 0.6% ± 0.2%, while the soil from the cover

group (0.6% ± 0.1%) had more OM than the soil from the no-cover

group (0.5% ± 0.1%). T4 yielded the greatest OM in July, at 0.8% ±

0.2%, while the soil from the no-cover group (0.7% ± 0.2%)

produced more OM than the cover group (0.7% ± 0.2%). The soil
TABLE 1 Weight loss percentage of oil palm frond under different
graphene applications.

Treatment
Cover condition (%)

Average
Cover No cover

T1 32.1 28.8 30.5

T2 32.0 28.7 30.4

T3 32.1 25.3 28.7

T4 28.6 27.5 28.1

Average 31.2 27.6 29.4
T1: oil palm frond mulching, T2: oil palm frond mulching amended with graphene, T3: oil
palm frond mulching amended with graphene + 15-15-15 chemical fertilizer, T4: oil palm
frond mulching amended with graphene + goat manure.
TABLE 2 Mean squares of analysis of variance and significance for soil characteristics observed under various applied treatments.

Parameters Months
Graphene
(a)

Covering
(b)

a × b Error CV (%)

pH May 0.03ns 0.29ns 0.01ns 0.2 9.6

Jul 2.00** 12.21** 2.88** 0.1 7.5

Sep 0.07* 0.13* 0.01ns 0.0 4.3

Electrical conductivity May 495.90** 375.25** 112.80** 17.5 2.8

Jul 714.34** 71.76* 1,070.68** 12.8 2.2

Sep 13.66** 20.53ns 139.77** 6.8 1.7

Organic matter May 0.01** 0.02** 0.04** 0.001 5.1

Jul 0.05** 0.01** 0.12** 0.001 5.1

Sep 0.10** 0.01** 0.08** 0.001 5.1

Available phosphorus May 25.87** 5.94** 13.75** 0.0 6.3

Jul 325.71** 179.69** 227.39** 0.3 8.0

Sep 77.09** 89.87** 147.70** 0.2 6.8

Exchangeable potassium May 264.80** 3656.80** 570.50** 9.5 5.2

Jul 404.33** 18.99** 179.98** 6.9 5.1

Sep 416.68** 305.91** 1163.06** 8.5 5.2

Exchangeable calcium May 34,783** 306,015** 16,686** 496.0 5.3

Jul 811,438** 1,644,832** 765,223** 1,441.0 6.8

Sep 118,391** 504,104** 83,601** 631.0 5.5

Exchangeable magnesium May 670.11** 1,211.12** 200.33** 18.7 5.1

Jul 230.42** 1,170.55** 134.89** 18.4 5.0

Sep 613.33** 2,636.56** 302.52** 19.12 5.1
T1: oil palm frond mulching, T2: oil palm frond mulching amended with graphene, T3: oil palm frond mulching amended with graphene + 15-15-15 chemical fertilizer, T4: oil palm frond
mulching amended with graphene + goat manure. *, ** significantly different at p < 0.05 and 0.01, respectively. ns, not significantly different.
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from the no-cover group (0.7% ± 0.2%) had more OM than the

cover group (0.7% ± 0.1%) in September, with T1 producing the

highest OM at 0.9% ± 0.2% (Table 3, Figure 4).
3.5 Soil available phosphorus

The soil from the cover group (3.4 ± 3.2 mg kg−1) produced more

available phosphorus (P) than the soil from the no-cover group (2.4 ±

0.6 mg kg−1) in May, with T3 producing the maximum amount of P at

6.0 ± 3.0 mg kg−1. T4 produced the most P in July (15.7.0 ± 5.3 mg

kg−1), while the cover group (6.2 ± 5.8 mg kg−1) produced P that was

higher than that of the no-cover group (4.2 ± 2.4 mg kg−1). T3 yielded

the maximum P in September, measuring 9.0 ± 6.7 mg kg−1, while the

soil from the cover group (7.1 ± 5.0 mg kg−1) produced more P than

the soil from the no-cover group (4.2 ± 4.0mg kg−1) (Table 3, Figure 5).
3.6 Soil exchangeable potassium

Oil palm frond mulching amended with graphene (T2) yielded the

maximum exchangeable potassium (K) inMay, July, and September, at
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66.6 ± 20.2, 60.6 ± 8.3, and 67.1 ± 24.9 mg kg−1, respectively. The soil

from the no-cover group (71.8 ± 14.9, 54.2 ± 11.5, and 60.3 ± 19.1 mg

kg−1) had higher K levels than the cover group (47.1 ± 4.5, 49.5 ± 6.0,

and 52.6 ± 8.8 mg kg−1) in all the observed months (Table 3, Figure 6).
3.7 Soil exchangeable calcium

Oil palm frond mulching amended with graphene + 15-15-15

chemical fertilizer (T3) provided the highest exchangeable calcium (Ca)

in May (528.1 ± 115.7 mg kg−1). T4 produced the most Ca in July

(635.4 ± 362.1 mg kg−1). T1 produced the most Ca in September (607.1

± 287.7mg kg−1). Compared to the no-cover group (310.2 ± 77.2, 295.6

± 35.7, and 309.2 ± 26.7 mg kg−1), the soil from the cover group (536.0

± 93.8, 594.2 ± 284.8, and 599.1 ± 235.2 mg kg−1) had greater Ca levels

in all observed months (Table 3, Figure 7).
3.8 Soil exchangeable magnesium

Oil palm frond mulching (T1) and oil palm frond mulching

amended with graphene + 15-15-15 chemical fertilizer (T3)
TABLE 3 Mean comparison of soil characteristics under different treatment applications.

Soil
properties Months

Treatments
F-test

Covering
F-test

T1 T2 T3 T4 Cover No cover

pH May 5.6 ± 0.3 5.5 ± 0.2 5.4 ± 0.3 5.5 ± 0.2 ns 5.6 ± 0.3 5.4 ± 0.2 ns

Jul 5.4 ± 0.2ab 5.34 ± 0.6ab 5.3 ± 0.6b 5.9 ± 1.1a ** 6.0 ± 0.6a 5.0 ± 0.3b **

Sep 5.1 ± 0.2a 4.9 ± 0.2b 4.9 ± 0.2b 4.9 ± 0.3b * 5.0 ± 0.2a 4.9 ± 0.2b *

Electrical
conductivity
(µS cm−1)

May 144.7 ± 9.1b 144.3 ± 4.8b 163.4 ± 7.7a 154.2 ± 5.9b ** 147.7 ± 8.4b 155.6 ± 11.0a **

Jul 145.7 ± 2.6d 157.3 ± 2.3c 165.0 ± 16.1b 171.0 ± 20.7a ** 161.5 ± 17.7a 158.0 ± 13.9b *

Sep 150.9 ± 5.6ab 151.7 ± 6.78a 148.1 ± 3.8b 150.1 ± 4.3ab ** 149.3 ± 4.7 151.1 ± 5.4 ns

Organic
matter
(%)

May 0.6 ± 0.2a 0.5 ± 0.0b 0.5 ± 0.0c 0.5 ± 0.0b ** 0.5 ± 0.1b 0.6 ± 0.1a **

Jul 0.7 ± 0.2b 0.7 ± 0.0b 0.6 ± 0.0c 0.8 ± 0.2a ** 0.7 ± 0.2a 0.7 ± 0.1b **

Sep 0.9 ± 0.2a 0.7 ± 0.1b 0.6 ± 0.2c 0.6 ± 0.1c ** 0.7 ± 0.1b 0.7 ± 0.2a **

Available
phosphorus
(mg kg−1)

May 1.4 ± 0.4c 2.2 ± 0.2b 6.0 ± 3.0a 2.1 ± 0.5b ** 3.4 ± 3.2a 2.4 ± 0.6b **

Jul 1.3 ± 0.1d 3.7 ± 1.3c 5.0 ± 2.1b 10.8 ± 5.3a ** 6.2 ± 5.8a 4.2 ± 2.4b **

Sep 2.8 ± 1.4d 6.8 ± 4.4b 9.0 ± 6.7a 4.2 ± 2.6c ** 7.1 ± 5.0a 4.3 ± 4.0b **

Exchangeable
potassium
(mg kg−1)

May 50.7 ± 2.8c 66.6 ± 20.2a 58.7 ± 14.1b 61.7 ± 22.2ab ** 47.1 ± 4.45b 71.8 ± 14.9a **

Jul 40.8 ± 3.2c 60.6 ± 8.3a 52.3 ± 8.0b 53.8 ± 3.6b ** 49.5 ± 6.1b 54.2 ± 11.5a **

Sep 50.9 ± 11.8c 67.1 ± 24.9a 58.9 ± 2.9b 48.8 ± 5.3c ** 52.6 ± 8.8b 60.3 ± 19.1a **

Exchangeable
calcium
(mg kg−1)

May 349.7 ± 51.2c 422.8 ± 150.2b 528.1 ± 115.7a 391.8 ± 185.0b ** 536.0 ± 93.8a 310.3 ± 77.2b **

Jul 284.4 ± 25.0d 529.6 ± 220.0b 330.3 ± 96.4c 635.4 ± 362.1a ** 594.2 ± 284.8a 295.6 ± 35.7b **

Sep 607.1 ± 287.67a 268.8 ± 22.5d 449.1 ± 162.0c 491.8 ± 208.6b ** 599.1 ± 235.2a 309.2 ± 26.7b **

Exchangeable
magnesium
(mg kg−1)

May 93.7 ± 14.5a 87.7 ± 12.7a 90.7 ± 6.4a 70.1 ± 3.1b ** 78.4 ± 7.1b 92.7 ± 14.7a **

Jul 87.5 ± 11.0ab 91.8 ± 14.3a 77.1 ± 5.0c 84.1 ± 4.8bc ** 78.1 ± 4.4b 92.1 ± 10.3a **

Sep 93.3 ± 21.6a 74.7 ± 13.7c 95.4 ± 5.1a 82.5 ± 9.5b ** 75.8 ± 12.1b 96.7 ± 11.4a **
front
T1: oil palm frond mulching, T2: oil palm frond mulching amended with graphene, T3: oil palm frond mulching amended with graphene + 15-15-15 chemical fertilizer, T4: oil palm frond
mulching amended with graphene + goat manure. *, ** significantly different at p < 0.05, respectively. ns, not significantly different.
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provided the most exchangeable magnesium (Mg) in September

and May, at 95.4 ± 5.1 mg kg−1 and 93.7 ± 14.5 mg kg−1,

respectively. T2 produced the most Mg in July, 91.8 ± 14.3 mg

kg−1. Values of Mg in the soil from the no-cover group was greater

(92.7 ± 14.7, 92.1 ± 10.3, and 96.7 ± 11.4 mg kg−1) than that of the

cover group (78.4 ± 7.1, 78.1 ± 4.4, and 75.8 ± 12.1 mg kg−1) in all

observed months (Table 3, Figure 8).
3.9 Correlation and principal
component analysis

The scatter plot with Pearson correlation coefficient showed that

the highly significant positive correlation coefficients were obtained

between soil P and EC (0.56), soil P and Ca (0.51), and soil pH and Ca

(0.47). Highly significant negative correlation coefficients were

obtained between soil pH and Mg (−0.31), soil OM and K (−0.24),

and soil Ca and Mg (−0.23) (Figure 9). In the principal component

(PC) analyses, the first three components were described by 29.5%,
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23.0%, and 18.6% variation. The biplot of PC1 and PC2 revealed that

the largest group was obtained from T4 under the cover condition

and the smallest group was obtained from T1 under the no-cover

condition. T3 under the cover condition dominated in soil OM, soil

pH, Ca, P, and EC. T4 under the cover condition dominated in soil

pH and Ca. T2, T3, and T4 under the no-cover condition dominated

in soil Mg and K (Figure 10A). From the biplot of PC1 and PC3, T4

under the cover condition was also the biggest group and T1 under

the no-cover condition was the smallest group. T2, T3, and T4 under

the cover condition dominated in soil EC, pH, P, and Ca. T4

under the no-cover condition dominated in soil K (Figure 10B).
4 Discussion

This study revealed that the application of graphene in oil palm

frond mulching resulted in higher electrical conductivity, available

phosphorus, exchangeable potassium, and exchangeable calcium

compared to conditions without graphene application. This
FIGURE 2

Variation in soil pH under different graphene applications (T1, T2, T3, and T4) observed at different months. M1, M2, and M3 refer to May, July, and
September, respectively.
FIGURE 3

Variation in soil electrical conductivity under different graphene applications (T1, T2, T3, and T4) observed at different months. M1, M2, and M3 refer
to May, July, and September, respectively.
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suggests that graphene can increase essential plant nutrients and

improve soil properties. Graphene amendment alone yielded high

values of soil electrical conductivity and exchangeable potassium,

while graphene combined with chemical fertilizer (15-15-15)

exhibited high values for available phosphorus and exchangeable

potassium. Cover conditions also played a significant role and

influenced soil characteristics. Previous investigations into

graphene’s structure have highlighted its unique 2-D structure,

large surface area, and extraordinary mechanical, optical, thermal,

and electrical capabilities (Wang et al., 2011). These features have

led to its utilization in agriculture for various purposes, including

stimulating plant development, removing contaminants from

pesticide and insecticide applications, serving as a component of

fertilizer, nano-encapsulation, and providing controlled release

(May et al., 2021). When placed around plant roots, graphene,

with its negative charge, absorbs cations and aids in the roots’

adsorption and transport of essential cations required by plants (Hu

et al., 2017). Moreover, evidence suggests that graphene has the

potential to regulate the soil microenvironment and has a specific
Frontiers in Agronomy 07
activating influence on soil enzyme activity, both of which

contribute to improved nutrient availability (Lin et al., 2022).

The findings of this study are supported by recent reports. Kabiri

et al. (2017) investigated the loading capacity, release properties in

soil and solution, and plant availability of unique graphene-based

micronutrient fertilizers. Their results demonstrated that graphene

oxide sheets slowly and continuously delivered micronutrients such

as zinc and copper. Hammerschmiedt et al. (2023) evaluated the

combined impact of elemental nano-sulfur and graphene oxide on

the pH, biological characteristics, and dry biomass of lettuce plants in

controlled environments. They found that graphene usage did not

significantly affect soil pH, above-ground plant biomass, or the root

system. Graphene oxide alone notably enhanced soil respiration and

arylsulfatase activity, and when combined with nano-sulfur, it

increased arylsulfatase, urease, and phosphatase activity in the soil.

Wang et al. (2023) assessed the effect of varying amounts of graphene

amendment on soil physicochemical parameters, nutritional

content, and maize seedling development. They observed an

increase in the proportion of large agglomerates in the soil due to
FIGURE 4

Variation in soil organic matter under different graphene applications (T1, T2, T3, and T4) observed at different months. M1, M2, and M3 refer to May,
July, and September, respectively.
FIGURE 5

Variation in soil available phosphorus under different graphene applications (T1, T2, T3, and T4) observed at different months. M1, M2, and M3 refer
to May, July, and September, respectively.
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graphene, leading to a considerable increase in geometric mean

diameter and mean weight diameter. Water-stable agglomerates also

showed increased concentration, enhancing soil nutrient availability.

Additionally, graphene increased the aboveground levels of total

nitrogen, total phosphorus, and total potassium in maize plants,

improving their nutrient absorption capacity and resulting in higher

aboveground fresh weight, dry weight, plant height, and stalk

thickness. In a recent study, Alessandrino et al. (2023) examined

three differently textured soils that were amended with traditional

soil conditioners (compost, biochar, and zeolites) along with

graphene, which provided interesting results. The conditioners

were applied at two different doses: 10% and 5% dry weight for

compost, biochar, and zeolites, and 1.0% and 0.5% dry weight for

graphene. Their findings suggested that an increase in drainage

porosity due to the conditioner application might be accompanied

by a reduction in storage porosity. This implies that the use of

graphene to improve soil aeration and drainage conditions is feasible,

particularly in fine soils. The enhancement of soil fertility retention

was the primary manifestation of graphene’s promoting effect. In

comparison to soil amended with graphene, which facilitated
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nutrient uptake and utilization, the experiment revealed that soil

lacking graphene experienced greater soluble nutrient runoff

following rainfall and washing. Additionally, the soil’s structure

underwent alterations during leaching. Graphene, when added to

the soil, strengthened the soil’s agglomeration structure and

microagglomerates. This bolstered the soil’s resistance to erosion

and increased soil fertility. Consequently, graphene contributes

significantly to soil fertility preservation (Liu et al., 2023).

Our findings revealed that the application of graphene

accelerated the decomposition of oil palm frond mulch, as

evidenced by the weight loss percentages of the frond mulches

and changes in nutrient status over time. This research provides

initial scientific evidence on the impact of graphene amendment on

the decomposition of oil palm frond mulch and soil health status,

demonstrating enhanced nutrient availability. The results of this

pilot study are valuable for planning long-term research

experiments and offer practical insights for farmers to efficiently

utilize graphene for managing oil palm waste, such as frond

mulches, to improve soil health. Depending on the availability of

frond biomass, farmers can adjust their fertilizer management plans
FIGURE 6

Variation in soil exchangeable potassium under different graphene applications (T1, T2, T3, and T4) observed at different months. M1, M2, and M3
refer to May, July, and September, respectively.
FIGURE 7

Variation in soil exchangeable calcium under different graphene applications (T1, T2, T3, and T4) observed at different months. M1, M2, and M3 refer
to May, July, and September, respectively.
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by incorporating graphene and oil palm fronds, thereby reducing

fertilizer input costs. However, further research is needed to explore

the long-term effects of graphene on nutrient cycling, microbial

activity, and the economic implications for farm management.
5 Conclusions

Different graphene amendments in oil palm frond mulching

and cover conditions affected soil properties throughout the
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observed months. Graphene alone in oil palm frond mulching

resulted in higher soil electrical conductivity and exchangeable

potassium. Combining graphene with chemical fertilizer led to

increased soil available phosphorus and exchangeable calcium.

Cover conditions influenced soil pH, available phosphorus, and

exchangeable calcium, but did not significantly affect soil OM,

exchangeable potassium, or exchangeable magnesium. Correlation

results indicated significant relationships among soil characteristics

under graphene applications. Principal component analysis

revealed that graphene treatments dominated most soil property
FIGURE 8

Variation in soil exchangeable magnesium under different graphene applications (T1, T2, T3, and T4) observed at different months. M1, M2, and M3
refer to May, July, and September, respectively.
FIGURE 9

Scatter plot with Pearson correlation coefficients among soil characteristics. The distribution of each variable is presented diagonally. The upper
triangular matrix shows the Pearson correlation coefficient with significance. 0.05 (*), 0.01 (**), and 0.001 (***). The lower triangular matrix shows
the bivariate scatter plots with a fitted smooth line.
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characteristics, including OM, pH, electrical conductivity,

phosphorus, potassium, calcium, and magnesium. Graphene

emerges as a sustainable soil amendment, enhancing nutrient

availability and accelerating frond decomposition. This study

provides scientific evidence supporting graphene’s positive impact

on soil health properties, suggesting its adoption for sustainable soil,

nutrients, and frond waste management in oil palm farms.

Furthermore, the authors suggest long-term experimentation to

assess graphene’s effects on crucial soil properties in oil palm

farm soils.
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