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The vulnerability of corn yield to high temperature and insufficient rainfall in the

US mid-west is widely acknowledged. The impact of extreme weather and

genetic development on corn yield is less well known. One of the main reasons

is that the multicollinearity in the variables can lead to confounding results.

Here we model the impact of climate and genetic development by employing

an elastic net regression model to address the multicollinearity issue. This

allows us to develop a more robust multiple regression model with higher

predictive accuracy. Using granular data for Iowa from 1981-2018, we find that

corn yield is vulnerable to high mean summer temperatures particularly in July,

a widening diurnal temperature range in June and dry summer conditions (due

to extremely low rainfall) from June-August. We find that overall climate impact

reduced average annual yield by 0.7%. We also find that genetic development

which led to earlier planting dates, widening duration of the reproductive

interval, higher growing degree day accumulation and larger net planted area

had a beneficial impact on the Iowa corn yield during 1981-2018 resulting in an

average annual yield improvement of 1.8% per annum. This provides a basis for

optimism that these genetic developments and management practices will

continue to adapt and improve in the future to counter the impact of climate

change on corn yield. We have also modelled the impact of future climate

change using the latest climate projections from the Sixth Assessment Report

of the Intergovernmental Panel on Climate Change (IPCC AR6). These climate

projections show that the average temperature during the growing season

(MayO-October) will increase by 2.4 -2.9 o C by mid-century while the average

spring temperature (March and April) will increase by a relatively slower 1.9 -2.3

o C by mid-century. Additionally, climate projections show that both

temperature and rainfall will also become more extreme in the future with

the changes varying from spring to summer. Our results show that, just due to

climate change alone in Iowa corn yield will decline between 1.4-1.7% per

annum until mid-century (or 1.2-2.1% per annum until the late twenty

first century).
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1 Introduction

Corn (Zea mays L.) is one of the three most important cereals

for global food security (Shiferaw et al., 2011). The US is one of the

largest producers of corn in the world with mainly rain-fed

production spread over the wide Corn Belt region in the US mid-

west. According to the USDA the US accounted for 36% of the total

global corn production in 2018 with a yield which is almost twice

the global average corn yield (USDA, 2019). Corn yield in the

mainly rainfed US mid-west is particularly vulnerable to climate

change therefore, understanding the impact of climate change on

corn is important to enable farmers and policy makers to devise

policies to adapt to climate change. To further the existing research

on the impact of climate change on corn yield, the state of Iowa (IA)

in the central US mid-west was chosen as the area of interest. IA was

selected for this study because it is consistently the largest corn

producing US state and accounted for 17% of the total corn

produced in the US in 2018. Importantly rich granular

phenological growth data is available at the IA district level which

is used in this study.

Previous studies show that temperature is the primary climate

variable impacting corn yield in the US mid-west. Other factors

such as rainfall have a second order impact (Stewart et al., 1998;

Streck et al., 2008; Partridge et al., 2019). Studies have shown that at

high temperature (beyond the optimal) the negative impact of

increasing temperature on yield becomes nonlinear (Rosenzweig

et al., 2014; Schlenker and Roberts, 2009). In terms of overall impact

global corn yields are projected to decrease on average by 7.4% per

1°C increase in global mean temperature (Zhao et al., 2017) which is

a significant global food security risk. The US corn yield is projected

to decrease on average between 8%-10% per 1°C rise for

temperature change up to 3°C (Lobell and Field, 2007; Schlenker

and Roberts, 2009; Mishra and Cherkauer, 2010; Hatfield and Takle,

2014; Ummenhofer et al., 2015; Lee and Durmaz, 2016; Hatfield and

Dold, 2018; Tigchelaar et al., 2018). For higher temperature change

US corn yield is expected to reduce by 46% for 4°C of warming

(Tigchelaar et al., 2018) and 55-60% yield reduction for a 6°C

increase in temperature (Schlenker and Roberts, 2009; Huang and

Khanna, 2010; Lee and Durmaz, 2016).

Rainfall is also vital for agriculture particularly in the mainly

rain-fed US mid-west. Traditionally the region receives most of its

rainfall in the summer months. Annual rainfall in the region

increased by as much as 20% in some parts since the start of the

20th century (Easterling et al., 2017). However, climate projection

models show that in the future, summer rainfall in the US mid-west

will decrease by approximately 10% (Easterling et al., 2017). The

combination of higher projected temperature and decreased

summer rainfall is expected to deteriorate the soil moisture levels

resulting in an increased risk of hydrological stress in the region

(Ting et al., 2021) during the corn growing season.

Climate projections show that future climate will also become

more extreme. In fact, projections show that by the middle of the

21st century the US mid-west will experience an additional 5–20

days of temperatures above 35°C (Xu et al., 2016). Projections of

future rainfall indicate extreme rainfall will increase primarily in
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winter and spring months in the US mid-west (Easterling et al.,

2017; Ummenhofer et al., 2015; Baum et al., 2019). This is

important because extreme spring rainfall leads to delayed

planting and exposes the young seedlings to potential soil-borne

diseases leading to yield loss (Nearing et al., 2004; Sacks et al., 2011;

Hatfied and Takle, 2014; Hatfield, 2015). Meanwhile extreme

temperature inhibits plant growth and studies show that for corn

this starts declining at extreme temperatures above 30°C, slowing by

as much as 40-50% as the temperature reaches 35°C (Ben-Asher

et al., 2008; Hatfield and Takle, 2014).

After allowing for climate, US agricultural output is intimately

tied to genetic development. Duvick (2005) reports the vital role of

genetic development and corn management practices in the

improvement of US corn yields since the 1930s. As in the past, it

is expected that genetic development will adapt and improve to

counteract the impact of climate change. However, the

measurement of genetic development is challenging because of

the multicollinearity with others variables such as climate and this

can lead to conflicting results (Lusk et al., 2017). Nevertheless, at a

practical level the rapid adoption of genetically enhanced corn by

US farmers since 1996 demonstrates its perceived beneficial impact.

Lusk et al. (2017) using county data from 1980-2015, report that

after controlling for weather and soil characteristics, the adoption of

genetically enhanced corn was associated with a homogeneous 17%

increase in the US corn yield. Xu et al. (2013) also report the positive

impact of genetically enhanced corn on yield and expect yields in

the US mid-west central corn belt region (Iowa, Illinois and

Indiana) to increase by 19-31% during 2011-2030 due to the

adoption of genetically enhanced corn.

The objective of this study is twofold. We first fit an elastic net

regression model that uses IA district level data from 1981-2018 to

model the impact of climate and genetic development on corn yield

in IA. Next, we use this regression model to project the impact of

future climate change on future corn yield in IA. For this study we

have assessed the impact of future climate change using two future

greenhouse gas emissions scenarios known as Shared

Socioeconomic Scenarios (SSPs) scenarios (SSP2-4.5 and SSP5-

8.5) from the Coupled Model Intercomparison Project Phase

6 (CMIP6).

This paper is structured as follows: we describe the materials

and methods used in Section 2, followed by a discussion of the

results in Section 3. We conclude in Section 4.
2 Materials and methods

2.1 Data description

Wehave used historic and future climate data, historic corn growth

interval durations, yield and planted area for each of the nine IA

districts (Table 1). According to the USDA-NASS definition, “districts”

represent a group of counties in a state on the basis of “geography,

climate and cropping practices”. Hence it has been assumed here that

districts are a homogenous group of counties with respect to corn

growth conditions including weather and genotype.
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The historic daily minimum and maximum temperature and

rainfall data from 1981-2018 for each US county included in this

study were downloaded from the Parameter-elevation Regressions

on Independent Slopes Model (PRISM) daily dataset. The National

Climate Data Centre (NCDC) is commonly used as a weather data

source in the agronomic literature, however the PRISM data are

preferred here because the NCDC has data gaps for outlying (rural)

areas (Johnston and Matlock, 2011). The agricultural district level

temperature is derived as the weighted average of the

county temperatures.

For future climate data we have used the downscaled climate

projections from the NASA Earth Exchange (NEX) Global Daily

Downscaled Projections (GDDP) dataset (Thrasher et al., 2022) for

25 Global Circulation Models (GCMs) from the Coupled Model

Intercomparison Project Phase 6 (CMIP6). We downloaded the

daily minimum, maximum temperature and rainfall data for the

period 2015-2099 data for each of the nine agricultural districts in

IA for two future greenhouse gas emissions scenarios: SSP2-4.5 and

SSP5-8.5, the “medium” and “high” twenty-first century greenhouse

gas concentration trajectories respectively (O’Neill et al., 2017; Riahi

et al., 2017).

Historic corn yield, corn planted area and growth interval data

for the IA districts from 1981-2018 was downloaded from USDA-

NASS website. The USDA-NASS defines yield as bushels of corn

produced per acre. USDA-NASS produces a weekly national Crop

Progress (CP) report during the growing season (April –

November) for selected crops including corn. For corn growth

interval data, it is not reasonable to assume that all the corn in a

district will grow concurrently as it is unlikely that all the corn in a

district will be planted on the same date. Following the difference in

planting date, the corn in a district is likely to be at different stages

of corn growth at anyone reporting date. It is assumed that corn in a

particular district attains a particular stage of corn growth when

50% of the crop in the district is reported to have attained that corn

growth stage. The CP reports do not report the date when 50% of

the crops attain a particular corn growth stage but instead report the

percentage of the total district corn crop at various corn growth

stages on the reporting day. We estimate the calendar date that

corresponds to 50% growth for each corn growth stage by

interpolating between the reported calendar dates bracketing the

50% attained phenological growth. The interpolation was carried

out using the logistic function which is a well-known plant growth

function (Yin et al., 2002). This interpolation process provided an

estimated calendar date when 50% of the corn crop in a ‘district
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attains a particular corn growth stage during each growing season

from 1981-2018.
2.2.1 Multiple regression model
In this section we discuss the empirical model used in the study

and the motivation behind it. We have used a multiple regression

model (baseline model) to measure the impact of climate and

genetic development effects on corn yield.

The multiple (baseline model) regression equation is set up as:

D ytd =  a +  DWt
d + DGt

d +   ϵtd (1)

where Dytd is the annual percentage change in yield for year t

and district d. DWt
d denotes the annual change in climate

explanatory variables, DGt
d is a measure of the annual change in

genetic explanatory variables and ϵtd represents the error term.

DWt
d captures the impact of climate explanatory variables such

as temperature and rainfall on corn yield. While the varying nature

of temperature (mean temperature (linear and quadratic terms),

extreme temperature and diurnal temperature range) and rainfall

(mean, extreme rainfall (both low and high), temperature and

rainfall interaction) impact is discussed in various previous

studies (Rosenzweig et al., 2014; Sunoj et al., 2016; Konduri et al.,

2020; Sadok and Jagadish, 2020; Niu et al., 2021; Porter et al., 2014;

Schlenker and Roberts, 2009; Ting et al., 2021; Ben-Asher et al.,

2008; Hatfield and Takle, 2014; Nearing et al., 2004; Sacks et al.,

2011) we attempt to capture these ideas in one model in this study.

DWt
d is represented in the model by:

DWt
d =  om∈Mb1,m DTmeantd,m + b2,m DTmeantd,m

� �2+b3,m DDiurnal :Rangetd,m

  + b4,mExt :Temptd,m + b5,m DPt
d,m + b6,m DPt

d,m � DTmeantd,m
� �

+

b7,m DExt : Pt
d,m   + b8,m DDry : Pt

d,m     

(2)

where Tmeantd,m is the average monthly mean temperature for

month m in set M, where M = {April, May, June, July, August,

September, October}; Diurnal.Range is the difference between average

daytime (Tmax) and night time (Tmin) temperature; Ext.Temp

measures the number of days with daytime temperature above the

historical extreme, where this extreme is defined as the 99th percentile

of the historical value for the month during 1981-2018; P is the

average monthly rainfall; Dry.P is an indicator variable which

measures extreme dry conditions when average monthly rainfall

falls below the historical extreme low, where this extreme low is

defined as the 5thpercentile of the monthly historic rainfall for the

month during 1981-2018; Ext.P is an indicator variable which

measures extreme high daily rainfall with the threshold for each

month set equal to the 90th percentile of the historic (1981-2018)

daily rainfall in the month. The percentile values for each extreme

variable represent the percentile which gave the best model fit during

1981-2018. The indicator variables (Dry.P and Ext.P) are binary and

take a value of 1 when the extreme conditions are met and 0

otherwise. The annual change (during 1981-2018) for temperature

variables in (Equation 2) is measured as a difference while for rainfall

variables the annual change is measured as a percentage change.

It is challenging to model the impact of genetic explanatory

variables ( (DGt
d) directly due to the confounding weather effect as
TABLE 1 Description of data used in this study along with the
data sources.

Data Source

Historic weather (1981-2018) PRISM daily dataset

Future climate (up to 2099) NASA Earth Exchange
Global Daily
Downscaled Projections

Historic corn planting date, growth interval, yield
and planted area in Iowa agricultural districts
(1981-2018)

USDA-NASS
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reported in previous studies (Lusk et al., 2017). In our model we

have used planting date, duration of the vegetative and reproductive

growth intervals and growing degree day (GDD) accumulation

during these intervals to measure the impact of genetic variables.

Additionally net planted area has also been included because this

has been found to interact with improved genetic practices (Chavas

et al., 2014). DGt
d in our model is represented by:

DGt
d =   g1 D p : datetd + g2 D p : std + g3 D s : htd + g4 DGDDp : std  

+g5 DGDDs : htd + g6 DGDDp : std

 � p : std +   g7 DGDDs : htd � s : htd + g8 D planted : areatd
(3)

Where p.date is the planting date (the calendar day when 50% of

the crops have been planted). p.s is the duration (in calendar days)

of vegetative growth interval (i.e., when 50% of the crops in the

district are at the silking stage). s.h is the duration of the

reproductive interval (from the end of the vegetative interval to

harvest). GDDp.s is the GDD accumulated during the p.s interval

while GDDs.h measures the GDD accumulated during the s.h

interval. The interaction between the GDD accumulation and the

duration of the respective intervals is allowed for in the model

because of the correlation between GDD accumulation and interval

duration (Zai et al., 2019). planted.area measures the net planted

area (acres) for corn in the district. The annual change in interval

durations (during 1981-2018) in (Equation 3) is measured as a

difference in days, while the changes in GDD accumulation and

planted area are measured as percentage changes.

2.2.2 Elastic net regression
It is quite normal for climate variables in the baseline model

regression model (Equation 1) to exhibit a large degree of

multicollinearity. To address this issue, we have used the elastic net

regression due to its ability to mitigate both multicollinearity and

model overfitting through regularization (Zou and Hastie, 2005).

Regularisation techniques such as ridge regression or lasso regression

introduce penalties on the size of the coefficients, preventing them

from becoming too large and preventing overfitting. The elastic net

regression model represents a balance between these two penalties. It

deals with multicollinearity among the explanatory variables while

simultaneously selecting the important features out of a large set of

explanatory variables such as the one we have.

For the elastic net regression, the underlying regression process

starts with a general baseline multiple regression model defined as

follows:

y =  Xb + error (4)

The regression coefficients (b 0s) for a multiple regression model

(Equation 4) are determined by minimizing the traditional sum of

squared differences i.e. least sum of squares (Equation 5):

  jy − Xbj2 (5)

On the other hand, the estimated regression coefficients (bEN )

in the elastic net regression model are determined by minimizing a

penalized sum of squares (Equation 6). The penalised sum of
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squares (L) for any fixed non-negative g1 and g2, is defined as:

L(g1,   g2,   b
EN) =   jy − XbEN j2 +   g2jbEN2 +   jg 1bEN j (6)

We have applied the elastic net regression process to the

baseline model defined in Equation 1. The elastic net regression

coefficients are determined by using 10-fold cross validation

repeated five times. We calculated the root mean squared error

(RMSE) for both the baseline model and elastic net regression

model to verify the predictive accuracy of the elastic net model

relative to the baseline model. In addition to RMSE, R2 is also

calculated for both the elastic net and baseline models to verify the

elastic net’s ability to mitigate model overfitting.
3 Results and discussion

In this section we discuss the results of the model fitting

exercise. The fitted elastic net regression model has a RMSE of

13.5% (baseline model 13.4%) and a R2 of 77.5% (baseline model

77.4%). Overall, the RMSE and the R2 for elastic net model are only

slightly better than the baseline model in this case. A possible

explanation for this is that individually the explanatory variables in

the baseline model have low regression coefficients and there is little

need for aggressive penalised regularisation, thus yielding similar

results to the baseline multiple regression model.

Table 2 shows the regression coefficients for selected variables in

the fitted elastic net regression model. Traditional statistical

inference using p-values is not possible with elastic net regression

models as standard errors for the estimated coefficients are not

computed. It is possible to use bootstrapping to carry out statistical

inference however this is time consuming for large data sets with a

high number of independent (predictor) variables as in our case

(Chatterjee and Lahiri, 2011). Therefore, the variables selected in

Table 2 have been prioritised in terms of the strength of their

correlation with yield. The selected variables have a correlation

which is significantly different from zero at the 5% significance level.
3.1 Historical impact of climate and genetic
variables on corn yield from 1981-2018

The results in Table 2 show that historically corn yield in IA was

negatively impacted by high average monthly temperature during

July – September (Rows 3-4, Table 2). This is in line with the

relationship between yield and high growing season temperatures

reported in previous studies (Lobell and Field, 2007; Schlenker and

Roberts, 2009; Mishra and Cherkauer, 2010). Our results highlight

the yield sensitivity to the July mean temperature in particular, when

a 1°C increase in temperature reduced yield by 6.3% on average

(regression coefficient of -6.3% in Row 3, Table 2). The sensitivity to

the August mean temperature is slightly lower when a 1°C increase in

temperature reduced yield by 4.6% on average (Row 4, Table 2).

In terms of the diurnal temperature range, we find that the historical

yield was most sensitive to the June diurnal range with a regression

coefficient of -4.1% (Row 8, Table 2) implying that and a widening of
frontiersin.org
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the June diurnal range by 1°C reduced yield by 4.1% on average. The

negative impact of widening diurnal range on yield is well recorded

(Sunoj et al., 2016; Sadok and Jagadish, 2020; Niu et al., 2021).

However, the April diurnal range had an opposite impact (Row 7,

Table 2) where a widening of the April diurnal range increased yield

by 1.5%. As expected, the positive coefficients (Rows 10 and 11,

Table 2) confirm that the average monthly rainfall during the

growing season had a beneficial impact on the historical yield.

Rainfall in June/July has been particularly important and a 1%

increase in average June/July rainfall contributed to a 0.04% (Rows

10 and 11, Table 2) increase in the average yield historically. Rows 12-

14 in Table 2 measure the impact on yield of dry conditions brought

on by abnormally low monthly rainfall (below the 5th percentile)

from June – August. The negative coefficients in Rows 12-14 of

Table 2 show that historically the yield declined respectively by 4.2%

and 4.0% due to abnormally low rainfall in June and July respectively,

while abnormally low August rainfall had the biggest impact reducing

yield by 8% on average.

In terms of the genetic variables included in our regression

model DGt
d , we find that historically a 1% increase in the GDD
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accumulation during the vegetative interval increased the historic

yield by 1.7% on average (Row 17, Table 2) whereas a 1% increase in

the GDD accumulation during the reproductive interval increased

yield by 0.9% (Row 18, Table 2). Our results further show that

planting a 1 day earlier increased the historic yield by 1.3%

(regression coefficient -1.3% in Row 15, Table 2); increasing the

length of the reproductive interval by 1 day increased the yield by

0.6% (Row 16, Table 2). Additionally, our model shows that the

increase in net planted area in IA historically also led to an

improvement in the yield with a 1% increase in net planted area

resulting in a 0.2% improvement in the historic yield on average

(Row 19, Table 2).

We next combine the impact of the climate and genetic

variables to summarise the historic impact of climate and genetic

variables for IA in Figure 1. There are 9 districts in IA: 3 northern, 3

central and 3 southern districts. Instead of showing the results for

each of the 9 individual districts, the results in Figure 1 are shown

for the combined northern, central and southern districts to remove

the noise within the districts and observe trends in the results. The

results in Figure 1 show that the impact of the combined climate
TABLE 2 Identification of the main variables impacting corn yield in Iowa and their elastic net regression coefficients (column 5).

Variable Description (Annual
change in):

Coefficient Elastic net regression coefficient
Estimate (%)

correlation
p-value

1 (Intercept) 3.5

2 DTmean.Apr Average monthly Tmean.Apr b(1,1) 0.1 0.0023

3 DTmean.Jul Average monthly Tmean.Jul b(1,4) -6.3 0.0000

4 DTmean.Aug Average monthly Tmean.Aug b(1,5) -4.6 0.0000

5 DTmean.Sep Average monthly Tmean.Sep b(1,6) -0.7 0.0000

6 DTmean.Oct Average monthly Tmean.Oct b(1,7) 1.0 0.0000

7 DDiurnal
Range.Apr

Diurnal range (Tmax-Tmin).Apr b(3,1) 1.5
0.0000

8 DDiurnal
Range.Jun

Diurnal range (Tmax-Tmin).Jun b(3,3) -4.1
0.0000

9 DJuly.Tmax.q99 Number of days in July with Tmax above
99th percentile

b(4,4) -0.2
0.0000

10 DPPT.Jun Average Monthly Precipitation Jun b(5,3) 0.04 0.0438

11 DPPT.Jul Average Monthly Precipitation Jul b(5,4) 0.04 0.0001

12 DpptInd.q05.Jun Monthly Jun Precipitation below
5th percentile

b(8,3) -4.2
0.0000

13 DpptInd.q05.Jul Monthly Jul Precipitation below
5th percentile

b(8,4) -4.0
0.0024

14 DpptInd.q05.Aug Monthly Aug Precipitation below
5th percentile

b(8,5) -8.0
0.0206

15 Dp Planting date g1 -1.3 0.0000

16 Ds.h Reproductive interval duration g3 0.6 0.0000

17 DGDD.ps GDD vegetative interval g4 1.7 0.0000

18 DGDD.sh GDD reproductive interval g5 0.9 0.0000

19 Dplanted.area Net planted area (acres) g8 0.2 0.0000
The main variables have been identified on the basis of the strength of correlation with the change in annual yield. The main variables in the table have a correlation significant at the 5% level ((p-
value in column 6).
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variables during 1981-2018 on the average yield was noticeably

worse in the northern districts (-1.3% per annum) relative to the

southern districts (0.1% per annum). On the other hand, the

average yield improvement due to the genetic variables in the

northern districts (2.3% per annum) was noticeably higher than

in the southern districts (1.2% per annum) during 1981-2018.

Overall, for IA (averaged across all districts), the combined

climate variables accounted for a decline of 0.7% per annum,

while the combined genetic variables accounted for an increase of

1.8% per annum in yield from 1981-2018.
3.2 Projected impact of climate change on
future corn yield

In this section we use the climate change predictions to model

the future impact on corn yield at the state level in IA. The GCMs

used in this study show that the average growing season

temperature in IA is projected to increase by 2.4 – 2.9°C by mid-

century and 3.4–6.3°C by late-century. On the other hand, the

average spring temperature (March-April) is predicted to increase

by 1.9– 2.3°C by mid-century (3.0 – 5.0°C by late-century) which is

less than the predicted increase in the average growing season

temperature. The relatively slower spring warming is significant

because this will mean that farmers might not be able to plant as

early as they would like to (with the current technology) to escape

the much hotter temperature in the growing season. The GCMs

further predict that the growing season temperature will also

become progressively more extreme as we move further towards

the end of the century. Climate projections show that future average

monthly rainfall in IA is expected to increase in the spring months

and reduce slightly in the summer by mid-century. Spring rainfall

will also become more extreme as we approach mid-century which

could lead to delayed planting. The growing season rainfall is also

projected to become more extreme. Using the regression coefficients

from our model and multiplying these by the projected change in

future temperature and rainfall variables, we find that IA corn yield

will decline by 1.4% to 1.7% per annum by mid-century (1.2% to
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2.1% per annum by late century) for medium/high emissions

scenarios relative to the historic average yield. (Figure 2).
3.3 Projected impact of future genetic
development on corn yield

It is not known how genetic development and will adapt to

counteract the impact of climate change on yield in the future.

Indeed, some studies report that the historic gains in agricultural

yield improvement appear to be slowing down (Rizzo et al., 2022).

For the purpose of projecting the impact of genetic variables on

future yield in IA, we have considered three scenarios for future

development in genetic variables: base, optimistic and pessimistic.

The base scenario is a constant 1.8% per annum average yield

improvement (this is the average historic improvement across IA),

the optimistic scenario is a constant 2.3% per annum average yield

improvement (this is the historical improvement for the northern

IA districts) and the pessimistic scenario is a constant 1.2% per

annum average yield improvement (this is the historical

improvement for the southern IA districts).

Table 3 shows the projected impact of climate change and genetic

variables on IA corn yield for the base, optimistic and pessimistic

genetic development scenarios. The projections are shown for mid and

late 21st century under both the medium and high emissions scenarios.

Instances where the impact on yield of genetic variables is not sufficient

to offset the negative impact of future climate change are highlighted

red in the table. The results in Table 3 show that improvement in

genetic variables will not be able to offset the projected impact of future

climate change in IA under the pessimistic scenario. Even under the

base genetic development scenario, if we continue with high emissions,

by late 21st century the improvement in genetic variables will not be

able to offset the negative impact of climate change on yield.

Worryingly even for instances where the climate impact is

completely offset by genetic development, food security is likely to be

challenged by the growing demand driven by the projected human

population growth of 50% by mid-century (relative to the start of the

21st century) (United Nations, 2019).
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Impact on average annual yield from 1981-2018 due to climate and 
gene�c variables

Climate variables

Gene�c variables

FIGURE 1

Historic impact of combined climate and genetic variables on corn yield in Iowa during 1981-2018. The results are shown for the southern, central
and northern Iowa districts as well the average across Iowa districts.
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FIGURE 2

Projected impact of climate change on average annual corn yield for IA (combined for all districts). The projections are for mid and late 21st century
for medium and high emissions scenarios.
TABLE 3 Projected impact of climate and genetic variables on future annual yield.

Projection
term

Emissions
Scenario

Impact (%) of future
climate on yield (DW)

Impact (%) of future genetic
variables on yield (DG)

Impact (%) of climate + genetic
variables on future yield

(DY = DW + DG)

Base improvement in genetic variables

Mid century
Medium
(SSP2-4.5) -1.4% 1.8% 0.3%

Mid century High (SSP5-8.5) -1.7% 1.8% 0.1%

Late century
Medium
(SSP2-4.5) -1.2% 1.8% 0.6%

Late century High (SSP5-8.5) -2.1% 1.8% -0.3%

Optimistic improvement in genetic variables

Mid century
Medium
(SSP2-4.5) -1.4% 2.3% 0.9%

Mid century High (SSP5-8.5) -1.7% 2.3% 0.6%

Late century
Medium
(SSP2-4.5) -1.2% 2.3% 1.2%

Late century High (SSP5-8.5) -2.1% 2.3% 0.3%

Pessimistic improvement in genetic variables

Mid century
Medium
(SSP2-4.5) -1.4% 1.2% -0.2%

Mid century High (SSP5-8.5) -1.7% 1.2% -0.5%

Late century
Medium
(SSP2-4.5) -1.2% 1.2% 0.1%

Late century High (SSP5-8.5) -2.1% 1.2% -0.8%
F
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The table shows the projected impact (climate + generic variables) on yield at mid and late 21st century separately for medium and high emissions scenarios. The projected impact is shown
individually for the base, optimistic and pessimistic genetic improvement scenarios. Under the base, optimistic and pessimistic scenarios the yield is expected to increase by 1.8%, 2.3% and 1.2%
per annum respectively. Instances where the impact on yield of genetic variables is not sufficient to compensate for the negative impact of future climate change are highlighted red in the table.
frontiersin.org

https://doi.org/10.3389/fagro.2024.1339410
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Zai et al. 10.3389/fagro.2024.1339410
4 Conclusion

We have modelled the impact of climate and genetic variables

on the historic corn yield in IA from 1981-2018. We use an elastic

net regression model to address the multicollinearity within the

climate and genetic variables. Our regression results show that as

expected, historically the IA corn yield depended primarily on the

growing season temperature with high temperatures during the

growing season reducing yield. We find that historically the July

mean temperature has been pivotal, more so than any other month

during the growing season. In terms of the impact of the diurnal

temperature range, we find that the diurnal range in June has had

the most impact on yield with a widening range resulting in reduced

yield. As expected, rainfall during the growing season had a

beneficial impact on yield. In terms of extremes, and dry summer

conditions (due to low rainfall) from June-August had the most

impact historically. In terms of genetic variables, we find that

historically earlier planting, widening duration of the reproductive

interval, higher GDD accumulation and larger net planted area

increased the historic yield. This is a significant finding and

provides optimism that genetic development can counter the

impact of future climate change.

In order to predict the impact of future climate change, we have

used the most up-to-date temperature and rainfall predictions from

the CMIP6 climate projection models. Our results show that due to

future change in temperature and rainfall alone, the average corn

yield in IA will reduce between 1.4-1.7% per annum until mid-

century (or 1.2-2.1% per annum until the late twenty first century)

for medium/high emissions scenarios.

We find that historically development in genetic variables has

significantly improved corn yield by an average of 1.8% during

1981-2018. We analysed three different future genetic development

scenarios to analyse the impact of genetic variables on future corn

yield. Our results show that by late 21st century for high emissions

scenario even if we continue with the historic development in

genetic variables, the resulting 1.8% per annum improvement in

annual yield will not be sufficient to offset the negative impact of

climate variables.

The focus of this study is IA and this can be extended to include

other states in the Corn Belt as part of future research. Another

aspect of this study is that our results are impacted by the genetically

enhanced corn adoption phenomenon which has been high in the

US relative to other major corn producing countries. As part of
Frontiers in Agronomy 08
future research, the analysis in this study can be extended to include

corn growing areas outside the US where the adoption of genetically

enhanced corn has been less aggressive.
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