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Introduction: The flat mite Brevipalpus yothersi is the main vector of citrus

leprosis in South and Central America and Mexico, where vector suppression

using conventional acaricides is usually the only disease control method, leading

to problems with acaricide resistance. This mite is present in Florida, where

several viruses known to cause citrus leprosis were recently detected. This

research builds preparedness for managing emerging viral diseases and

mitigating potential problems associated with acaricide resistance by

addressing the compatibility of chemical and biological control strategies

against B. yothersi. The predatory mite Amblyseius largoensis has shown

promise as a biological control agent of B. yothersi. However, the effects of

acaricides used in citrus on this predator are unknown.

Methods: This study investigated the impact of different routes of acaricide

exposure on A. largoensis, including direct contact, pesticide-contaminated prey,

residual contact, and combined exposure routes in laboratory settings. Additionally,

the efficacy of A. largoensis in controlling B. yothersi, alone and in combination

with acaricide applications, was evaluated under greenhouse conditions.

Results and discussion: Commonly used acaricides like abamectin and

spirodiclofen were highly effective in controlling B. yothersi and only slightly

harmful to A. largoensis. Other acaricides were also effective against B. yothersi

but were less compatible with the predatory mite. In the greenhouse trial, all

acaricides, alone or in combination with the predators, and the predators alone,

effectively suppressed B. yothersi one month after treatment application.

However, B. yothersi populations significantly increased one month later in the

abamectin-alone and predator-alone treatments. At the same time, the

combination of abamectin and predators provided B. yothersi suppression

throughout the experiment. The fenpyroximate-predator combination also

provided better control than each treatment applied independently. All other

acaricides provided prolonged B. yothersi control, hindering biological control
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probably due to the lack of prey for A. largoensis. Research findings highlight the

potential for enhancing the selectivity of acaricides towards A. largoensis by

manipulating their exposure route. Combining predatory mites with acaricides

shows promise in improving B. yothersi management.
KEYWORDS

acaricide selectivity, Amblyseius largoensis, biological control, Brevipalpus yothersi,
exposure, integrated pest management
1 Introduction

Brevipalpus-transmitted diseases (BTDs) are caused by single-

stranded RNA viruses belonging to the families Kitaviridae (genera

Cilevirus andHigrevirus) and Rhabdoviridae (genus Dichorhavirus),

transmitted exclusively by flat mites in the genus Brevipalpus

(Locali-Fabris et al., 2006; Dietzgen et al., 2018; Quito-Avila et al.,

2021). Recently, three of seven viruses known to cause citrus

leprosis (CiL), one of the most damaging BTDs, were found

infecting multiple ornamental plants in Florida, different species

of orchids in California, and hibiscus, passionfruit, and citrus in

Hawaii (Melzer et al., 2012; Roy et al., 2013; Roy et al., 2018a; Fife

et al., 2021; Olmedo-Velarde et al., 2021a; Olmedo-Velarde et al.,

2021b; Alvarez-Quinto et al., 2022; Dey et al., 2022). The flat mite,

Brevipalpus yothersi Baker (Acari: Tenuipalpidae), is an important

pest of citrus in South and Central America and Mexico (Kitajima

et al., 2003; Rodrigues et al., 2003; Castillo et al., 2011; Roy et al.,

2015; Ramos-González et al., 2018) due to its ability to transmit

Citrus leprosis virus C (CiLV-C, Cilevirus leprosis) and citrus

leprosis virus C2 (CiLV-C2, Cilevirus colombiaense) which cause

severe yield losses and a reduction in the lifespan of trees, especially

in the sweet orange (Citrus sinensis L. Osbeck) (Bastianel et al.,

2010; Moreira et al., 2022; Ramos-González et al., 2023). A strain of

CiLV-C2 was recently detected in the US associated with B. yothersi,

where proactive integrated pest management programs (IPM) are

being developed to mitigate viral diseases transmitted by

Brevipalpus mites (Peña et al., 2015; Revynthi et al., 2019). This

research builds preparedness for managing BTDs by addressing the

compatibility of chemical and biological control strategies against

B. yothersi.

Acaricide sprays to suppress disease vectors are the main

strategy for managing citrus leprosis in South and Central

America (Amorim et al., 2006; Andrade et al., 2010; Silva et al.,

2012; Della Vechia and Andrade, 2022). In fact, about 10% of the

acaricide market worldwide is used to manage Brevipalpus spp. (Van

Leeuwen et al., 2015). Given the importance of controlling B.

yothersi, the high costs associated with acaricide applications

(Bassanezi et al., 2019), and problems associated with acaricide

resistance (Alves et al., 2000; Campos and Omoto, 2002; Rocha et al.,

2021), an integrated approach combining chemical and biological

control methods may be critical to managing these mites effectively

(Bielza, 2016; Bielza et al., 2020; Leung et al., 2020). Compatibility
02
between biological and chemical control methods is usually

overlooked but critical to the success of integrated pest

management (Duso et al., 2020). Several active ingredients are

used commercially to target Brevipalpus mites in citrus, including

abamectin, bifenazate, cyflumetofen, etoxazole, fenpyroximate,

hexythiazox, pyridaben, spirodiclofen, spirotetramat, and sulfur

(Della Vechia et al., 2022). Some of these compounds are

relatively selective to Phytoseiidae mites, killing the target pest

without killing the predatory mites (Cote et al., 2022; Assis et al.,

2013; Doker and Kazak, 2019b; Bajda et al., 2022; Barros et al., 2022).

Amblyseius largoensis (Muma) (Acari: Phytoseiidae) is a

cosmopolitan and generalist predatory mite that inhabits citrus

orchards and other fruit crops around the world (Moraes et al.,

2004). This predator has been studied for its potential to control

tenuipalpid, eriophyoid, and tarsonemid mites (Galvão et al., 2007;

Rodrıǵuez et al., 2011; Carrillo et al., 2012a; Carrillo et al., 2012b;

Carrillo et al., 2014; Melo et al., 2015; Rodrıǵuez et al., 2015) and has

been reported as an efficient predator of Brevipalpus spp.

(Haramoto, 1969; Kamburov, 1971; Galvão et al., 2008; Argolo

et al., 2020).

A recent study suggests that A. largoensis could be an effective

biocontrol agent of B. yothersi in Florida (Argolo et al., 2020), where

this natural enemy has been the most abundant predator in

backyard and varietal citrus in multiple surveys conducted in the

last decades (Childers et al., 2022). This predator is also dominant in

other agricultural systems in Florida (Carrillo et al., 2010; Carrillo

et al., 2012), suggesting it must have been subject to continuous

exposure to pesticides used in the region. Predators can be exposed

to pesticides in different ways that can be more or less harmful

(Pozzebon et al., 2011; Bajda et al., 2022). Routes of pesticide

exposure include direct contact during spraying, contact with

contaminated surfaces during foraging, or feeding on

contaminated prey (Longley and Stark, 1996). Understanding the

effects of different routes of exposure of A. largoensis to acaricides

used to manage B. yothersi may be critical for its successful

integration into biocontrol augmentation or conservation

programs in the context of IPM.

We hypothesized that A. largoensis may be partially compatible

with chemical controls available for B. yothersi. Therefore, the

impact of multiple acaricides on A. largoensis administered via

different exposure routes (direct contact, pesticide-laced diet (prey),

residual contact, and a combination of all exposure routes) was
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examined under laboratory conditions. In addition, the ability of

A. largoensis to control B. yothersi alone and in combination with

acaricide applications was assessed under greenhouse conditions.
2 Materials and methods

2.1 Brevipalpus yothersi colony

A pesticide susceptible strain of B. yothersi obtained from citrus

plants has been maintained in the Tropical Fruit Entomology

laboratory (UF-TREC) for more than five years without pesticide

exposure. The mites were reared on common bean seedlings

(Phaseolus vulgaris L.) grown on floral foam, following the

methods described by Groot and Breeuwer (2006). The colony

was kept in environmental chambers (Panasonic MLR-352H-PA,

PHC Corporation of North America, Wood Dale, IL) at 27 ± 1°C,

70 ± 5% RH, and 12:12 h (L:D).
2.2 Predatory mite colony

A colony of A. largoensis was established with individuals

collected from coconut fronds in the spring of 2018. Standard

methods for rearing phytoseiid mites, described by Overmeer

(1985), were used to rear A. largoensis. Typha spp. pollen

(Nutrimite™, Biobest), Tetranychus urticae Koch (Acari:

Tetranychidae), and B. yothersi mites were provided thrice weekly
Frontiers in Agronomy 03
as food for the predatory mites. The colony was kept in an

environmental chamber under controlled conditions of 25 ± 1°C,

80 ± 5% RH, and 12:12 h (L:D).
2.3 Laboratory assays

2.3.1 Screening test
2.3.1.1 Screening adulticide and ovicide treatments
against Brevipalpus yothersi

Two separate trials were conducted to evaluate ovicides and

adulticides on B. yothersi using the bioassays described in Rodrigues

et al. (2007). The experimental units were prepared using lime

fruit collected from unsprayed trees at UF-TREC. Fruits were

submerged in paraffin, leaving a 5.0 cm diameter area without

paraffin, representing the experimental arena. The arenas were also

“ringed” with entomological glue (Tree Tanglefoot Insect Barrier®,

The Tanglefoot Company) to prevent mites from escaping.

For the ovicide assay, 15 B. yothersi adult females (2-3 days old)

were transferred to each arena and allowed to oviposit. After 48 h,

females were removed, and the number of eggs was adjusted to 15

per arena. Then, the part of the fruit with the experimental arena

was submerged in the pesticide (ovicide) solutions described in

(Table 1) or in water (control) for two seconds. Nine replicates

(fruit) were used for each treatment in the ovicide assay. Egg

mortality was determined by counting the number of larvae that
TABLE 1 Ovicide and adulticide treatments used against Brevipalpus yothersi.

Treatment Commercial name Rate (L ha-1) Rate (g a.i. L-1)1 IRAC2

Egg assay

Water – – – –

Etoxazole Zeal 2.5 4.5 10B

Hexythiazox Ax-hexythiazox 1.8 1.5 10A

Spirodiclofen Envidor 1.5 0.7 23

Spirotetramat Movento 0.7 0.3 23

Adult assay

Water – – – –

Abamectin Reaper 0.1 0.9 6

Bifenazate Acramite 0.1 0.2 25

Cyflumetofen Nealta 1.0 0.5 25

Fenpyroximate Portal 2.3 5.2 21A

Pyridaben Nexter 1.2 0.3 21A

Sulfur Microthiol Disperss 1.5 3.0 UN

Tolfenpyrad Apta 2.0 1.3 21A

Spirodiclofen Envidor 1.5 0.7 23

Spirotetramat Movento 0.7 0.3 23
front
1 g a.i.L-1 – grams of active ingredient per liter of water. 2IRAC - Insecticide Resistance Action Committee.
iersin.org
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emerged daily for ten consecutive days after treatment application.

Eggs that did not hatch were considered dead.

New fruits were used to prepare additional experimental arenas

with ten newly emerged adult B. yothersi females for the adulticide

trial. The infested arenas were dipped in the pesticide solutions

described in Table 1 for two seconds, using water as a control. The

number of live and dead adults was recorded daily for seven

consecutive days after treatment application. Twelve replicates

were used for each treatment in the adulticide trial.
2.3.1.2 Mortality of Amblyseius largoensis exposed to
acaricides via direct contact

The experimental arenas consisted of 2.5 cm diameter x 1.5 cm

height plastic cages with an opening in the lid covered with mite-

proof mesh (mesh opening: 0.0385 mm) to allow ventilation. A thin

layer of 1% agarose (Fisher Scientific) was placed on the bottom and

a bean leaf disk (~ 2.5 cm diam.) was placed on the agar. One A.

largoensis adult female (3-4 days old) was released onto the leaf disk

and treatments were sprayed directly onto the mites on the arenas

before placement of the lids. Acaricide solutions were applied with a

manual pressurized sprayer (Porter Cable Air Compressor),

delivering 0.8 mL of spray solution per leaf disk at the rates

included in Table 1; water was used as a control treatment. A

total of 15 replicates were used for each treatment. Predatory mite

mortality was recorded daily for seven consecutive days after

treatment. Every two days, mites were offered B. yothersi (eggs,

immatures, and adults) and Typha spp. pollen ad libitum as food.

Pesticide compatibility with A. largoensis was based on predator

mortality on the seventh day after application according to the

IOBC (International Organization for Biological and Integrated

Control) toxicity categories i.e., class 1 = E < 25% (innocuous); class

2 = 25% < E < 50% (slightly harmful); class 3 = 51% < E < 75%

(moderately harmful) e class 4 = E > 75% (harmful) (Hassan

et al., 1994).
2.3.2 Effect of acaricide exposure route on
predator survival

Abamectin, cyflumetofen, fenpyroximate, and spirodiclofen are

among the most used acaricides worldwide (Van Leeuwen et al.,

2015). These acaricides provided effective B. yothersi adult control

and were either innocuous (Cyflumetofen) or slightly harmful to A.

largoensis (abamectin, fenpyroximate, and spirodiclofen) in the

screening tests (Sect 2.3.1). Therefore, these acaricides were

selected to investigate A. largoensis’s survival after exposure to

them via four delivery routes: (i) residual contact, (ii) direct

contact, (iii) contaminated prey, and (iv) a combination of

residual contact, direct contact, and contaminated prey. Acaricide

solutions were applied at the rates in Table 1 and using the same

experimental arenas (plastic cages) and spray volumes as in the

previous assay.

In the residual contact treatment (i), experimental arenas were

constructed with bean leaf disks sprayed with individual acaricides

and allowed to dry for 30 minutes before one A. largoensis female

(3-4 days old) was released per arena. In addition, 50 B. yothersi
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eggs (less than 5 days old) were transferred from the stock colony to

each arena as a food source for the predators, which were

replenished every other day. For direct contact (ii), individual

predatory mite females were placed on untreated leaf disks and

then sprayed with an acaricide. Treated predators were also offered

50 B. yothersi eggs from the colony, which were replenished every

other day. For the acaricide-contaminated prey treatment (iii), B.

yothersi infested bean leaves from the colony were sprayed with

acaricides and allowed to dry for 30 minutes before transferring

groups of 50 treated eggs (less than 5 days old) to untreated arenas.

Then, one A. largoensis female was released per arena. Treated B.

yothersi eggs offered as food source were replenished every other

day. The combined effect of direct contact, residual contact, and

acaricide-laced prey (iv) was investigated by first releasing A.

largoensis on bean leaf disks arenas with 50 B. yothersi eggs, and

then spraying the leaf disks containing predators and prey. The

control treatment consisted of an arena with one A. largoensis

female and 50 B. yothersi eggs (replenished as before), which were

treated with water on the bean leaf disk. The experiment was kept in

a climate-controlled chamber at 25 ± 1°C, 80 ± 5% relative humidity

(RH), and a 12:12 h (L:D) photoperiod. Predator survival was

recorded daily for five days. Predatory mite eggs were counted

and removed from the leaf disk daily. Four assays were performed,

each with one acaricide. Each experiment comprised five exposure

routes (i, ii, iii, iv, and control) and 20 replicates, totaling 100

predatory mites per acaricide.
2.4 Greenhouse assay

The experiment was conducted in a glasshouse with controlled

temperature and relative humidity (25 ± 4°C and 75 ± 15% RH) at

UF-TREC from March to July 2022. Sixty orange plants (Valencia

variety, seeded 1 year before use, approximately 30 cm tall,

unsprayed, and pest-free) were used. Each plant was artificially

infested with one orange leaf containing 75 B. yothersi adults taken

from the colony. The infested leaf was attached to the abaxial

surface of a leaf in the center of the experimental plant using a paper

clip. Infested plants were then placed in individual cages (62.0 cm x

23.5 cm, 160 mm mesh size) and held for 45 days before being

randomly assigned to one of the following treatments: 1) Control

(water), 2) Water + predatory mite (A. largoensis), 3) Abamectin

(0.9 g a.i.L-1), 4) Abamectin + predatory mite, 5) Cyflumetofen

(0.5 g a.i.L-1), 6) Cyflumetofen + predatory mite, 7) Fenpyroximate

(5.2 g a.i.L-1), 8) Fenpyroximate + predatory mite, 9) Spirodiclofen

(0.7 g a.i.L-1), 10) Spirodiclofen + predatory mite. For the

treatments receiving predatory mites, five adult A. largoensis

females were transferred from the stock colony into Eppendorf

tubes (1.5 mL) that were hung to the experimental plants using a

hair clip. This predator-prey ratio effectively suppressed pestiferous

tenuipalpid mites in previous research with A. largoensis (Carillo

et al., 2014; Argolo et al., 2020). The tubes were then opened, and

the predators were allowed to colonize the plant freely. The

acaricide applications were made 15 days after the predators were

released. Each treatment was replicated on six plants.
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Brevipalpus yothersi populations were evaluated four times: 1)

before the pesticide application and predatory mite release, 2) 30

days after treatment (acaricide) application (DAT), 3) 62 DAT, and

4) 104 DAT. In the first evaluation, two leaves were randomly

removed from each plant, placed in a paper bag, and immediately

inspected under a stereomicroscope in the laboratory to record the

number of B. yothersi adults, immatures, and eggs. Four and six

leaves were collected for the second and third evaluations. The last

evaluation comprised the entire plant, which was destructively

sampled to record all B. yothersi individuals on the plant.
2.5 Statistical analysis

Abbott’s transformation was used to correct control mortality

(Abbott, 1925) in the ovicide and adulticide assays, which was less

than 10%. Egg and adult mortality after acaricide applications in the

screening test was analyzed using generalized logistic regression

techniques implemented in the JMP Fit Model Platform (JMP

Statistical Discovery LLC, Cary, NC) using a binomial data

distribution. Treatment least squares means were compared using

simple t-tests at a = 0.05 based on the recommendations by

Milliken and Johnson (2009) and Saville (2015). Least squares

means and confidence limits were back-transformed to the

data scale.

Survival data in the lab study were analyzed using generalized

linear model procedures as implemented in SAS® PROC

GLIMMIX (SAS/STAT 15.2; SAS Institute, Cary, NC) using a

binomial distribution function and the canonical logit link.

Because the control treatment (water) was the same for all

acaricides tested, we analyzed it separately to obtain the best

estimate for this treatment across all acaricides. The remaining

treatments were analyzed using the model Survived/Total =

Acaricides + Treatment + Acaricides * Treatment. Interaction

least squares means plus 95% confidence limits were calculated

and treatments were compared within acaricide using a simple t-test

(LSD) based on the recommendations by Milliken and Johnson

(2009) and Saville (2015). Least squares means and confidence

limits were back transformed to the data scale.
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For the greenhouse experiment, count data were analyzed using

generalized linear model methodology procedures as implemented

in SAS® PROC GLIMMIX (SAS/STAT 15.2; SAS Institute, Cary,

NC) with a negative binomial distribution function and the

canonical log link function. This factorial experiment consisted of

factors treatment (5 levels), predator (2 levels) and DAA (4 levels);

the generalized linear model contained all three main effects, all

possible two-way interaction effects, and the three-way interaction

effect. Least squares means comparisons followed the same

approach as described earlier.
3 Results

3.1 Screening adulticide and ovicide
treatments against Brevipalpus yothersi

The effects of ovicides and adulticides on B. yothersi varied

among the acaricides tested (Tables 2, 3). Etoxazole and

spirodiclofen had the highest acute ovicidal activity, causing 100%

egg mortality six days after application (DAA). Hexythiazox was

also highly effective, reaching 99% mortality 10 DAA. Spirotetramat

was the least effective ovicide, reaching approximately 70% egg

mortality at the end of the experiment.

Cyflumetofen, abamectin, fenpyroxymate, pyridaben, and

sulfur showed high acute activity, causing 100% B. yothersi adult

mortality 1-2 days after application. Spirotetramat, spirodiclofen,

and tolfenpyrad had a slower activity, reaching 100% mortality 4-7

days after application. Bifenazate had the lowest activity on B.

yothersi, causing significantly less mortality (~80% at the end of the

experiment) than other acaricides tested on every evaluation date.
3.2 Mortality of Amblyseius largoensis
exposed to conventional acaricides via
direct contact

Amblyseius largoensis survival decreased slightly after direct

contact with the tested acaricides relative to the water control
TABLE 2 Brevipalpus yothersi egg mortality after acaricide exposure.

Treatment
Rate

g a.i.L-1
Days after application

6 DAA 8 DAA 10 DAA

Etoxazole 4.5 1.00 [1.000,1.000] a 1.00 [1.000,1.000] a 1.00 [1.000,1.000] a

Hexythiazox 1.5 0.98 [0.937,0.996] b 0.98 [0.937,0.996] b 0.99 [0.957,0.997] b

Spirodiclofen 0.7 1.00 [1.000,1.000] a 1.00 [1.000,1.000] a 1.00 [0.975,0.999] ab

Spirotetramat 0.3 0.69 [0.451,0.863] c 0.69 [0.451,0.863] c 0.68 [0.426,0.859] c

Probability > c2 < 0.0001 < 0.0001 < 0.0001

Wald c2 388.1 280.1 302.8

Denominator degree of freedom 3 3 3
Least squares means [95% confidence limits in brackets] within each date, flowed by the same letter, are not statistically meaningfully different at a = 0.05. Data were analyzed using generalized
logistic regression techniques implemented in the JMP Fit Model Platform (JMP Statistical Discovery LLC, Cary, NC).
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(Figure 1). Abamectin, cyflumetofen, etoxazole, spirodiclofen, and

sulfur did not differ significantly from the control (water).

Fenpyroximate and pyridaben were also slightly harmful to A.

largoensis but caused significantly more mortality than the
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control. Tolfenpyrad and hexythiazox were the most harmful

acaricides, causing more than 50% of A. largoensis mortality.

According to the IOBC toxicity categories, cyflumetofen (21.4%

mortality seven days after application) can be considered innocuous
FIGURE 1

Survival of Amblyseius largoensis exposed to acaricides spirodiclofen (0.7 g a.i.L-1), cyflumetofen (0.5 g a.i.L-1), abamectin (0.9 g a.i.L-1), tolfenpyrad
(1.3 g a.i.L-1), fenpyroximate (5.2 g a.i.L-1), pyridaben (0.3 g a.i.L-1), sulfur (3.0 g a.i.L-1), etoxazole (4.5 g a.i.L-1), and hexythiazox (1.5 g a.i.L-1). The
shaded areas represent the 95% prediction interval. The asterisk (*) represents a statistically meaningful difference between water and acaricide
treatment (a = 0.05).
TABLE 3 Brevipalpus yothersi adult mortality after acaricide exposure.

Treatment
Rate Days after application

g a.i.L-1 1 DAA 2 DAA 3 DAA 4 DAA 6 DAA 7 DAA

Abamectin 0.9 1.00 [1.000,1.000] a 0.99 [0.980,0.994] a 0.98 [0.950,0.989] a 1.00 [1.000,1.000] a 0.99 [0.988,0.998] a 1.00 [1.000,1.000] a

Bifenazate 0.2 0.18 [0.116,0.267] d 0.39 [0.267,0.535] c 0.52 [0.369,0.673] c 0.62 [0.478,0.748] c 0.77 [0.619,0.874] b 0.80 [0.660,0.892] b

Cyflumetofen 0.5 1.00 [1.000,1.000] a 0.99 [0.980,0.994] a 0.98 [0.950,0.989] a 1.00 [1.000,1.000] a 0.99 [0.988,0.998] a 1.00 [1.000,1.000] a

Fenpyroximate 5.2 1.00 [1.000,1.000] a 0.99 [0.980,0.994] a 0.98 [0.950,0.989] a 1.00 [1.000,1.000] a 0.99 [0.988,0.998] a 1.00 [1.000,1.000] a

Pyridaben 0.3 1.00 [1.000,1.000] a 0.99 [0.980,0.994] a 0.98 [0.950,0.989] a 1.00 [1.000,1.000] a 0.99 [0.988,0.998] a 1.00 [1.000,1.000] a

Spirotetramat 0.3 0.48 [0.392,0.570] c 0.66 [0.550,0.761] b 0.76 [0.648,0.842] b 0.92 [0.830,0.964] b 0.99 [0.988,0.998] a 1.00 [1.000,1.000] a

Spirodiclofen 0.7 0.52 [0.346,0.693] c 0.80 [0.694,0.873] b 0.88 [0.723,0.950] b 0.95 [0.875,0.978] b 0.99 [0.988,0.998] a 1.00 [1.000,1.000] a

Sulfur 3.0 0.98 [0.932,0.992] b 0.99 [0.980,0.994] a 0.98 [0.950,0.989] a 1.00 [1.000,1.000] a 0.99 [0.988,0.998] a 1.00 [1.000,1.000] a

Tolfenpyrad 1.3 0.56 [0.382,0.727] c 0.80 [0.694,0.873] b 0.98 [0.950,0.989] a 1.00 [1.000,1.000] a 0.99 [0.988,0.998] a 1.00 [1.000,1.000] a

Probability > c2 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

Wald c2 2770.2 392.4 54.5 1480.9 53.9 776.1

Denominator degree of
freedom

8 8 8 8 8 8
Least squares means [95% confidence limits in brackets] within each date, followed by the same letter, are not statistically meaningful different at a = 0.05. Data were analyzed using generalized
logistic regression techniques implemented in the JMP Fit Model Platform (JMP Statistical Discovery LLC, Cary, NC).
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(class 1) to A. largoensis, while abamectin (33.3%), etoxazole

(26.7%), fenpyroximate (40.0%), pyridaben (46.7%), spirodiclofen

(35.7%) and sulfur (28.6%) can be considered class 2, slightly

harmful acaricides. Hexythiazox (53.3%) and tolfenpyrad (80.0%)

can be regarded as class 3 (moderately harmful) and (class 4,

harmful), respectively.
3.3 Effect of acaricide exposure route on
predator survival

All the acaricides, independent of the exposure route, reduced

the mite survival rate relative to the water control (Figure 2).

Amblyseius largoensis survival decreased between 16% and 48%

due to abamectin exposure. This pesticide was significantly more

harmful via ingestion of contaminated prey and the combination

exposure routes (D+R+I) than through direct or residual contact

(Figure 2). Predatory mite survival was 45% to 51% after

cyflumetofen exposure, and no differences were observed among

the different exposure routes (Figure 2). By contrast, the route of

exposure to fenpyroximate significantly affected predator survival.

The combination of exposure routes was most harmful to A.

largoensis, causing nearly 100% mortality, followed by ingesting

fenpyroximate contaminated prey, causing a 93% reduction in

predator survival. Direct contact with fenpyroximate was

significantly less harmful than the combination of exposure

routes or ingestion of contaminated prey, but residual contact

was the least harmful of all exposure routes (Figure 2).

Spirodiclofen had a low impact on predator survival rates via

ingestion exposure and the combination of exposure routes
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followed by residual contact. Survival rates of predators subject to

the combination of exposures were similar to those exposed via

residual contact. Unexpectedly, direct exposure to spirodiclofen

resulted in the lowest survival rate of A. largoensis.
3.4 Greenhouse assay

Before treatment, all experimental plants had similar B. yothersi

infestation levels. Thirty days after treatment application, B. yothersi

populations had increased by approximately 5-fold in the water

control treatment (Table 4). By contrast, all acaricide treatments

alone or in combination with the predators, and the predators

alone, significantly suppressed B. yothersi. However, among the

acaricide-only treatments, abamectin and cyflumetofen provided a

faster knockdown effect than spirodiclofen and fenpyroximate

thirty days after treatment application (Table 4). The predators

alone caused a significant reduction in B. yothersi populations

relative to the water control. However, this reduction was

significantly lower than when predators were combined with any

of the acaricides, resulting in nearly 100% control.

Sixty-two days after treatment application, B. yothersi

populations continued to increase in plants subject to the water

control treatment. Mite populations on abamectin-alone treated

plants also increased at a lower extent than in those treated with

water, but significantly more than when other acaricides were

applied alone. The predators alone suppressed B. yothersi

populations relative to the water control, but B. yothersi

suppression by the predators was significantly low compared to

treatments that combined predators and acaricides. The abamectin-
FIGURE 2

Mean survival of Amblyseius largoensis five days after exposure to four acaricides via different routes (direct contact, acaricide-contaminated prey
(ingestion), a combination of exposure routes(D+R+I), and residual contact). Error bars represent 95% confidence intervals. Within acaricide, bars
sharing letters are not statistically meaningful different at a = 0.05 based on simple tests, following the recommendations by Milliken and Johnson
(2009) and Saville (2015).
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predator combination reduced B. yothersi populations significantly

more than when each treatment was applied separately. When

fenpyroximate, cyflumetofen, and spirodiclofen were combined

with predators, suppression was almost complete; however,

suppression can be attributed to the acaricides because the same

levels of B. yothersi suppression were recorded when these

acaricides were applied alone.

In the last evaluation, 104 days after treatment application, B.

yothersi populations in the water control and predator-alone

treatments were similar. Among the treatments involving

acaricides only, abamectin-treated plants had similar B. yothersi

numbers as the water control, and a slight but significant increase in

B. yothersi populations was recorded on fenpyroximate-treated

plants. By contrast, the complete B. yothersi suppression by

cyflumetofen and spirodiclofen persisted. In plants treated with

abamectin and fenpyroximate, the combination with predators

resulted in a significantly greater reduction of B. yothersi than the

acaricides alone. Treatments that combined cyflumetofen or

spirodiclofen with predators provided complete control. However,

suppression can be attributed to the acaricides rather than the

predators, as in the previous evaluation period.
4 Discussion

Our results suggest that chemical control could be a highly

effective tactic for managing viruliferous B. yothersi in the U.S.A.

Eggs of Florida populations of B. yothersi were highly susceptible to

common mite ovicides used in citrus, such as etoxazole,

hexythiazox, spirodiclofen, and spirotetramat. Moreover,

abamectin, bifenazate, cyflumetofen, fenpyroximate, pyridaben,
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sulfur, spirotetramat, spirodiclofen, and tolfenpyrad showed high

efficacy in controlling B. yothersi adults. However, overreliance on

chemical pesticides may lead to the selection of B. yothersi resistant

populations, and the integration of nonchemical strategies

like biological control could be fundamental to resistance

management (Omoto et al., 2000; Campos and Omoto, 2002;

Rocha et al., 2021). One acaricide classified as innocuous

(cyflumetofen) and three acaricides classified as slightly harmful

to A. largoensis (abamectin, fenpyroximate, and spirodiclofen) were

used to study the effects of different pesticide exposure routes on A.

largoensis (Hassan et al., 1994). These acaricides are the most

commercialized worldwide and have different modes of action

(Van Leeuwen et al., 2015). Cyflumetofen showed low to

moderate toxicity to A. largoensis regardless of the exposure

route. The available literature suggests that cyflumetofen has a

low impact through direct and residual contact on several

phytoseiids including Neoseiulus fallacis German, Neoseiulus

californicus McGregor, Phytoseiulus persimilis Athias-Henriot,

Amblyseius eharai Amitai and Swirski, Amblyseius tsugawai

Ehara, Euseius sojaensis Ehara, and Typhlodromus vulgaris Ehara

(Lee and Kim, 2015; Kishimoto et al., 2018; Bergeron and Schmidt-

Jeffris, 2020).

Fenpyroximate has been reported as selective to populations of

A. largoensis on coconut (Assis et al., 2013; Barros et al., 2022) and

to other phytoseiid mites in other systems (Kim and Paik, 1996;

Ghasemzadeh and Qhreshi, 2018). However, we found that this

selectivity can vary depending on the exposure route. Direct

contact, feeding on fenpyroximate-laced prey, and the

combination of exposure routes were highly toxic to A. largoensis

(61.1% to 100.0% mortality). Surprisingly, residual contact with

fenpyroximate was only slightly harmful to A. largoensis (47.1%
TABLE 4 Influence of acaricides and their synergy with Amblyseius largoensis on controlling Brevipalpus yothersi infestations in greenhouse citrus
plants.

Treatment Before application Contrast 30 DAA Contrast

No Predator Predator No Predator Predator

Water 24.8 [9.4,65.6] a 23.7 [8.9,62.6] a ns 187.2 [71.6,489.0] a 15.0 [5.6,40.0] a *

Abamectin 13.8 [5.2,37.0] a 11.5 [4.3,30.9] a ns 0.0 [0.0,0.0] c 0.0 [0.0,0.0] b ns

Cyflumetofen 18.7 [7.0,49.5] a 13.5 [5.1,36.1] a ns 0.0 [0.0,0.0] c 0.0 [0.0,0.0] b ns

Fenpyroximate 17.7 [6.6,47.0] a 13.8 [5.2,37.0] a ns 0.3 [0.1,1.9] b 0.0 [0.0,0.0] b ns

Spirodiclofen 17.7 [6.6,46.9] a 31.3 [11.9,82.6] a ns 0.5 [0.1,2.4] b 0.0 [0.0,0.0] b ns

62 DAA 104 DAA

No Predator Predator No Predator Predator

Water 314.5 [120.5,821.1] a 72.8 [27.8,190.8] a * 273.7 [104.8,714.6] a 353.0 [135.2,921.5] a ns

Abamectin 58.7 [22.2,155.1] b 0.2 [0.0,1.4] b * 415.3 [157.8,1093] a 2.0 [0.7,6.1] b *

Cyflumetofen 0.0 [0.0,0.0] c 0.0 [0.0,0.0] c ns 0.0 [0.0,0.0] c 0.0 [0.0,0.0] c ns

Fenpyroximate 0.0 [0.0,0.0] c 0.0 [0.0,0.0] c ns 29.5 [11.1,78.7] b 1.3 [0.4,4.4] b *

Spirodiclofen 0.0 [0.0,0.0] c 0.0 [0.0,0.0] c ns 0.0 [0.0,0.0] c 0.0 [0.0,0.0] c ns
Means [95% confidence limits in brackets] within a column and date followed by the same letter are not statistically meaningful different (a = 0.05). The contrast column presents the results from
the contrast comparing predator vs. non-predator within each treatment, where an * represents a statistically meaningful difference (a = 0.05).
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mortality). Similarly, Sato et al. (2002) recorded a high survival inN.

californicus released on fenpyroximate-contaminated leaves. On the

other hand, direct contact with fenpyroximate resulted in 100%

Galendromus occidentalis (Nesbitt) mortality (Irigaray and Zalom,

2007). These differences in toxicity among fenpyroximate exposure

routes can be related to the amount of pesticide uptake by the

predators (Van Leeuwen and Dermauw, 2016). The higher toxicity

of fenpyroximate through direct exposure suggests a role of

integumental absorption of this pesticide by A. largoensis.

Abamectin was only slightly harmful to A. largoensis via

residual or direct contact. Feeding upon abamectin-contaminated

prey was more harmful but still allowed more than 50% survival of

the predator populations. Abamectin is regarded as harmful to

predatory mites of the family Phytoseiidae (Lima et al., 2013;

Fernández et al., 2017; Doker and Kazak, 2019a). However, in

Florida abamectin is commonly used in citrus and other tropical

and subtropical fruit production systems. Therefore, A. largoensis

populations may have repeated exposure to this pesticide and likely

developed some tolerance/resistance. Our results suggest that A.

largoensis can survive on plants treated with abamectin or colonize

plants recently treated with this pesticide. In addition, A. largoensis

releases after abamectin applications could help maintain B.

yothersi populations suppressed longer than when the pesticide is

used alone.

Spirodiclofen showed low toxicity to A. largoensis

independently of the delivery route, corroborating the results

obtained by Assis et al. (2013) on predator populations associated

with another tenuipalpid mite, Raoiella indica (Acari:

Tenipalpidae). Other phytoseiid species (i.e., Amblyseius swirskii

Athias-Henriot and N. californicus) also have reported tolerance to

spirodiclofen (Kaplan et al., 2012; Doker and Kazak, 2019a). Our

results suggest that spirodiclofen is compatible with A. largoensis

and useful for the integrated management of B. yothersi because it

effectively controls the pest mite and shows low toxicity to its

biocontrol agent. However, direct contact with spirodiclofen

resulted in significantly more mortality than ingestion of

contaminated prey and the combination of exposure routes,

which suggests that spirodiclofen detoxification enzymes or other

unknown mechanisms may be present in A. largoensis.

In the greenhouse trial, all acaricides, alone or in combination

with the predators, and the predators alone, effectively suppressed

B. yothersi one month after treatment application. Abamectin alone

showed the shortest control period among the acaricides

(approximately 30 days). However, when combined with A.

largoensis, the pest mite control was extended throughout the

experimental period. Combining abamectin and A. largoensis

provided better control (99.9% B. yothersi population reduction)

than each control method alone (76.8% and 81.3% B. yothersi

population reduction, respectively). Furthermore, plants treated

with fenpyroximate in combination with A. largoensis exhibited

fewer mites at 104 DAA than plants treated only with this acaricide.

Our results suggest that A. largoensis can improve B. yothersi

control after abamectin and fenpyroximate applications. All other

acaricides were highly effective and provided prolonged B. yothersi

control throughout the experiment, hindering biological control by

A. largoensis, probably due to the lack of prey. In the predator-alone
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treatment, A. largoensis initially suppressed B. yothersi, but after 62

days, the pest population increased. This result suggests that

periodic releases may be necessary for effective and prolonged

biological control by this predatory mite. An alternative

explanation relies on the controlled experimental conditions

without access to alternative prey. Under natural conditions, A.

largoensis utilizes multiple arthropod prey, including other mites

and insects inhabiting citrus plants and other tropical and

subtropical plants. This predator is classified as a type III

generalist phytoseiid mite that feeds on insects and mites as well

as alternative food sources like pollen and nectar, allowing them to

survive in the field even when pest populations are low (McMurtry

and Croft, 1997; Reis and Alves, 1997; Sarmento et al., 2011; Carrillo

and Peña, 2012; Gerson and Weintraub, 2012). The presence of

alternative prey, or/and the provision of alternative foods (i.e.,

pollen) in the context of conservation biological control, may play

an important role in the ability of A. largoensis to persist on citrus

plants and provide long-term B. yothersi suppression.

Research findings highlight the potential for enhancing the

selectivity of acaricides towards A. largoensis by manipulating the

way predators are exposed to them. For instance, direct and residual

contact with abamectin had little effect on A. largoensis; therefore,

the predator can be released before or after applications with this

pesticide. By contrast, direct contact was the most harmful exposure

route for A. largoensis to spirodiclofen. Therefore, predator releases

should be done after the spirodiclofen applications. In addition,

residual contact with fenpyroximate was slightly harmful to A.

largoensis, suggesting that predators can be released safely after

fenpyroximate application. The exposure route appears less relevant

when applying cyflumetofen, which was moderately harmful to A.

largoensis via the different exposure routes.

The results of this study provided an outline to design

conservation biocontrol strategies in areas infested with B.

yothersi and its associated viruses. In Florida, a strain of citrus

leprosis virus C2 infecting hibiscus is highly associated with B.

yothersi (Roy et al., 2018b; Roda et al., 2022). In the same area, A.

largoensis is the most common predatory mite in backyard-grown

citrus, hibiscus, and other plants in the landscape infested with B.

yothersi, making it a promising biological control strategy for

managing this pest (Argolo et al., 2020. Childers et al., 2022). The

present study suggests potential compatibility between acaricides

and A. largoensis depending on the route of exposure. Spirodiclofen

and abamectin appear safer for A. largoensis than fenpyroximate

and cyflumetofen. However, it is essential to highlight that the

effects of sublethal concentrations of pesticides can be significant

(Desneux et al., 2007), and these are unknown for A. largoensis.

Assessing sublethal effects of acaricides on the physiology and

behavior of A. largoensis may be crucial for establishing IPM

programs combining chemical and biological control strategies to

manage citrus leprosis vectors.
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