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Need for disease resistance
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Corynespora cassiicola (Cc) is a genetically diverse ascomycete found worldwide

in tropical and subtropical regions. Cc causes necrotrophic diseases in several

plant species, including important crops such as rubber tree, tomato, cotton, and

cucumber. Evidence suggests the involvement of one or more Cc host-specific

toxins in disease progression. Management of Cc crop diseases is based mainly

on pesticide sprays. However, the pathogen’s development of resistance to

commonly used fungicides is documented. Resistance breeding is an attractive

alternative or supplement to chemical control of Cc crop diseases, but research

on this topic is very limited. This review describes the current plant resistance

breeding efforts towards Cc resistance and discusses the potential influence of

host-specific toxins (HSTs) on such efforts. Although some reports of host

resistance exist in a few crops, resistant germplasm and knowledge about

resistance mechanisms are limited. Some studies have suggested the

involvement of HSTs in disease development, including the upregulation of

resistance-related proteins in susceptible reactions and the recessive nature of

resistance. In light of this, host resistance may not be achieved through

commonly used dominant R-genes.
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Introduction

The warm and humid climate of tropical and subtropical regions favors year-round

production of many annual crops but also favors the development of numerous plant

diseases. Among these are diseases caused by Corynespora cassiicola (Berk. & Curt.) Wei.

(Dixon et al., 2009; Farr and Rossman, 2017), an imperfect ascomycete fungus (Schlub

et al., 2009) with high intraspecific morphological and genetic diversity (Smith, 2008;

Sumabat et al., 2018a) and a very wide trophic habit that includes necrotroph, saprophyte

and endophyte (Dixon et al., 2009; Schlub et al., 2009). Corynespora cassiicola infects more

than 530 monocot and dicot plant species, including many important crops (Smith, 2008;

Chairin et al., 2017; Sumabat et al., 2018b; Qiu et al., 2020). Figure 1A shows a simplified
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disease cycle from tomato. Beyond plants, the fungus has been

isolated from nematode cysts and can cause opportunistic

infections in immunocompromised human patients (Carris et al.,

1986; Huang et al., 2010; Yan et al., 2016; Arango-Franco et al.,

2018). The incidence and severity of C. cassiicola crop diseases have

rapidly increased over the last two decades (Pernezny et al., 2005;

Schlub et al., 2009; Sumabat et al., 2018a) causing severe yield losses

in tomato (Pernezny et al., 1996; Schlub et al., 2009), rubber tree

(Silva et al., 2003; Barthe et al., 2007; Qi et al., 2007; Liu et al., 2014),

cotton, soybean (Fulmer et al., 2012; Hartman et al., 2016; Sumabat

et al., 2018a), and cucumber (Miyamoto et al., 2009).

Control of diseases caused by C. cassiicola can be difficult,

especially when the environment is conducive to disease

development. Over the years, chemical control has been the

primary means of disease management (Blazquez, 1967; Pernezny

et al., 2002). However, studies from diverse production regions and

several cropping systems have documented increasing issues with

fungicide resistance. Resistance to quinone outside inhibitors (QoI),
Frontiers in Agronomy 02
benzimidazoles, succinate dehydrogenase inhibitors (SDHI), and

other commonly used fungicides has been detected among C.

cassiicola isolates from tomato in Florida (Mackenzie and Vallad,

2017; MacKenzie et al., 2020), from cucumber and tomato in China

(Zhu et al., 2018; Duan et al., 2019; Sun et al., 2022), and from

cucumber in Japan (Miyamoto et al., 2009). Rondon and Lawrence

(2021) cited many other reports of the development of fungicide

resistance by C. cassiicola in different crops and regions in addition

to those mentioned above. Therefore, current chemical control

practices, alone, do not represent a sustainable disease

management strategy for C. cassiicola diseases. A search of the

PubMed database showed an exponential increase in scientific

publications related to C. cassiicola during the last few decades

with more than two-thirds of those related to some type of

characterization of the fungus or plant diseases caused by it,

disease management, or first reports; but only 11 (6%) of the 183

publications between 1969 and 2022 were related to plant

resistance (Figure 1B).
A

B

FIGURE 1

(A) Disease cycle of C. cassiicola in tomato, and (B) Number of scientific publications related to C. cassiicola in the PubMed database from 1969 to 2022.
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Although there has been an increase in disease issues caused by

C. cassiicola in the last two decades, few resistance breeding efforts

have been reported. The main goal of this review is to address the

status of resistance breeding efforts against C. cassiicola, and the

potential role of host-specific toxins in such efforts. Reviews

discussing the morphology, host range, and diversity of C.

cassiicola, as well as the etiology, epidemiology, and management

of associated diseases are available (Pernezny and Simone, 1999;

MacKenzie et al., 2018; Rondon and Lawrence, 2021; Edwards

Molina et al., 2022).
Host-specific toxins and resistance
to necrotrophs

The plant immune system consists of two layers: the pathogen-

associated molecular patterns (PAMP)-triggered immunity (PTI), and

the effector-triggered immunity (ETI) defense systems (Chisholm et al.,

2006; Jones and Dangl, 2006; Wang et al., 2014). PTI results in a weak

broad-spectrum defense response (Wang et al., 2014). To interfere with

PTI, pathogens evolved effectors, which are proteins secreted into the

plant cell that target specific sites involved in resistance pathways

(Chisholm et al., 2006; Jones and Dangl, 2006). In ETI, pathogen

effectors are detected by protein receptors encoded by plant resistance

genes (R-genes), triggering a rapid and strong resistance reaction

(Chisholm et al., 2006; Jones and Dangl, 2006; Wang et al., 2014).

Resistance through either pathway typically behaves as a dominant

genetic trait (Joosten and De Wit, 1999; Gomez-Gomez and Boller,

2000 ). ETI often leads to the hypersensitive response (HR), involving

the rapid production of reactive oxygen species and programmed cell

death at the site of pathogen ingression (Glazebrook, 2005; Wang et al.,

2014; Balint-Kurti, 2019).

Resistance to some necrotrophs appears to involve the PTI

system, which is triggered when plant pathogen recognition

receptors (PRRs) detect PAMPs such as chit in and

endopolygalacturonases (Wang et al., 2014). Although ETI is

generally effective against biotrophic and hemibiotrophic

pathogens which require living cells for successful infection, it is

rarely effective against necrotrophic pathogens which actually

benefit from the HR (Glazebrook, 2005; Wang et al., 2014). In

fact, R-gene-mediated susceptibility to necrotrophs has been

demonstrated (Lorang et al., 2007; Faris et al., 2010).

Many necrotrophic pathogens produce host specific toxins

(HST) that manipulate the plant ETI system to induce the

HR. This is referred to as effector triggered susceptibility (ETS),

R-mediated susceptibility, or the inverse gene-for-gene model

(Glazebrook, 2005; Lorang et al., 2007; Faris et al., 2010; Oliver

et al., 2011; Wang et al., 2014). Resistance to necrotrophic

pathogens is thus more commonly achieved in a recessive

manner. ETS has been well-studied in a few host-pathogen

systems. Southern corn leaf blight, caused by Cochliobolus

heterostrophus (or Bipolaris maydis) race T, was a major epidemic

in the US in the 1970’s, affecting Texas male-sterile cytoplasm corn
Frontiers in Agronomy 03
(Ullstrup, 1972; Inderbitzin et al., 2010). In this system, the HST T-

toxin targets the product of the mitochondrial gene T-urf13, leading

to disease (Levings Iii et al., 1995). Wheat-Stagonospora nodorum

(causing Stagonospora wheat leaf and glume blotch) and

Pyrenophora tritici-repentis (causing tan spot of wheat) are also

model systems for ETS (Oliver et al., 2011; Liu Z. et al., 2017). Here,

a few specific interactions between HSTs and host susceptibility

factors dictate a disease reaction. For instance, the combination of

the pathogen HST ToxA and the wheat dominant Tsn1 gene results

in susceptibility to tan spot (Oliver et al., 2011). Cochliobolus

victoriae (victoria blight of oats) produces the HST victorin which

targets the oats R gene Pc2, thereby triggering disease (Navarre and

Wolpert, 1999). In each of the host-pathogen systems mentioned

above, the absence (or mutation) of the host protein targeted by the

pathogen HST led to plant resistance which is a recessive

genetic state.
Cassiicolin

Cassiicolin is a necrotrophic toxin produced and diffused by C.

cassiicola during infection (Onesirosan et al., 1975; Breton et al.,

2000; Barthe et al., 2007; de Lamotte et al., 2007; Déon et al., 2012;

Lopez et al., 2018; Ribeiro et al., 2019). Although its exact mode of

action remains unknown, a study using a rubber tree isolate

suggests that cassiicolin behaves as an HST (Barthe et al., 2007;

Déon et al., 2012). To date, eight cassiicolin isoforms have been

identified (Cas1 to Cas7, and Cas2.2) (Déon et al., 2014; Lopez et al.,

2018; Wu et al., 2018); although, pathogenic isolates with no

cassiicolin gene (Cas0), such as tomato isolates, have also been

identified (Déon et al., 2012; Déon et al., 2014; Dacones et al., 2022).
Other pathogenicity factors produced by
C. cassiicola

The C. cassiicola genome encodes for 2870 putative effectors

including CAZymes, lipases, peptidases, secreted proteins, and

enzymes associated with secondary metabolism (Lopez et al.,

2018). Among those, 92 genes (including 45 secreted effectors)

were differentially expressed in susceptible and resistant rubber tree

clones, supporting their involvement in disease progression (Lopez

et al., 2018). The composition and number of encoded effectors

agree with the wide host range and multi-trophic habit (Lopez et al.,

2018). Cell wall-degrading enzymes including polygalacturonase,

cellulase, neutral xylanase and laccase also play a role in

pathogenicity in C. cassiicola (Jia et al., 2021).

Although C. cassiicola isolates infecting tomato in the

southeastern US do not code for a cassiicolin isoform, they likely

employ other effectors. Interestingly, among other putative

necrotrophic effectors, a complete set of the genes necessary to

encode a T-toxin-like compound was detected in isolates collected

from tomato in the southeastern US (Dacones et al., 2022).
frontiersin.org

https://doi.org/10.3389/fagro.2023.1275906
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Sierra-Orozco et al. 10.3389/fagro.2023.1275906
Resistance breeding efforts in crops

Table 1 presents a summary of the current status of breeding

efforts in different crops. Although C. cassiicola plant diseases have

been reported since the 1960s (Ramakrishnan and Pillay, 1961;

Blazquez, 1967), breeding for resistance to C. cassiicola diseases has

not been a primary focus (Pernezny and Simone, 1999; Edwards

Molina et al., 2022), and disease management has relied on the use

of fungicide sprays (Chee, 1990; MacKenzie et al., 2018; de Castro

Costa et al., 2023). Disease resistance has been identified in tomato,

rubber tree, soybean and cucumber (Bliss et al., 1973; Narayanan

and Mydin, 2012; Wen et al., 2015; de Castro Costa et al., 2023).

Bliss et al. (1973) reported on resistance in tomato conferred by a

single recessive gene in inbred line (PI 120265) derived from S.

pimpinellifolium accession PI 112215. New data support the

recessive nature of resistance in tomato to C. cassiicola (Sierra-

Orozco et al., 2022), which is in line with the ETS resistance model.

Unfortunately, PI 120265 demonstrated poor resistance in

subsequent disease screenings conducted in 2010-2011 using

recently collected C. cassiicola isolates from Florida (G. Vallad,

personal communication).

In rubber tree, studies have identified resistant clones but with

inconsistent results across studies or even between different

experiment settings within the same experiment (i.e., greenhouse

and field) (Chee, 1988; Narayanan and Mydin, 2012). Some clones

that were previously found resistant were later identified as

susceptible; additionally, two pathogenic races were reported

(Narayanan and Mydin, 2012). The fact that in both tomato and

rubber tree, there have been reports of germplasm which

demonstrated resistance in earlier screens but susceptibility in

later screens, suggests that the pathogen is evolving new

mechanisms of infection or a shift in pathogen population with

more aggressive isolates becoming more prevalent.

Resistant soybean cultivars released in the 1950s were associated

with negative agronomic traits, and only susceptible soybean

cultivars were thereafter used (Edwards Molina et al., 2022). More

recently, some soybean varieties have shown resistance or moderate

resistance in greenhouse (Patel et al., 2022) or field settings (de

Castro Costa et al., 2023). Genetic analysis based on greenhouse

inoculations suggested that soybean resistance is quantitative,
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involving both additive and epistatic effects, and is largely

influenced by the environment (Soares and Arias, 2020). In

cucumber, earlier work suggested that resistance was conferred by

a single dominant gene (Abul-Hayja et al., 1978), but a later study

suggests a single recessive gene (Wen et al., 2015). Three different

studies have indicated the location of a resistance QTL in

chromosome 6, but it is unclear if these have mapped the same or

different QTLs (Wen et al., 2015).

The molecular mechanisms of resistance have not been well

investigated. Cassiicolin is a primary determinant of pathogenicity

and resistance in rubber tree infections (Breton et al., 2000). Pure

toxin inoculation of detached leaves demonstrated that resistance in

rubber tree appears to be dependent on the concentration of

cassiicolin secreted into the plant tissues, with higher cassiicolin

concentration producing symptoms in resistant rubber tree clones

(Breton et al., 2000). Transcriptome profiling suggested that genes

involved in defense and stress response, including disease resistance

and leucine-rich repeat genes, were significantly upregulated in the

resistant clone GT 1 compared to the susceptible RRII 105 in

response to C. cassiicola inoculation (Roy et al., 2019). Fortunato

et al. (2017) described a link between disease resistance in soybean

and the phenylpropanoid pathway. Histopathology analysis in

soybean showed accumulation of phenolic-like compounds in

infection sites in resistant cultivars contributing to fungal cell

death and conservation of plant cell integrity (Fortunato

et al., 2017).

The molecular basis of resistance in cucumber has also been

investigated in three separate works. In the first, the ERF

transcription factor CsERF004 was involved in resistance to C.

cassiicola infection via salicylic acid and ethylene pathways (Liu D.

et al., 2017). In the second, resistance was linked to genes and

miRNAs involved in secondary metabolism, especially with the

phenylpropanoid pathway (Wang et al., 2018) which agrees with

the findings from Fortunato et al. (2017). The third points to a

NB-LRR (nucleotide binding site- leucine rich repeat) domain

gene on chromosome 6 as a potential candidate for resistance

(Wen et al., 2015). Together, these studies point to the

involvement of cassiicolin, the phenylpropanoid pathway,

resistance genes, and gene transcript reprogramming in the

host’s response to infection.
TABLE 1 Summary of breeding efforts against C. cassiicola in different crops.

Crop Gene action Type of genes involved Observations Source

Rubber
tree

Unknown
Defense and stress response genes, including
disease resistance and leucine-rich repeat

Inconsistent results across
studies and experiment
settings

Breton et al., 2000; Roy et al., 2019;
Narayanan and Mydin, 2012

Soybean
Quantitative, additive
effect, influenced by the
environment

Unknown Soares and Arias, 2020

Cucumber
Dominant (early works),
recessive (later works)

CsERF004, genes and miRNAs involved in
secondary metabolism, phenylpropanoid
pathway genes

Abul-Hayja et al., 1978; Wen et al., 2015;
Fortunato et al., 2017; Liu D. et al., 2017;
Wang et al., 2018

Tomato
Single or quantitative,
recessive

Unknown Bliss et al., 1973; Sierra-Orozco et al., 2022
frontiersin.org

https://doi.org/10.3389/fagro.2023.1275906
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Sierra-Orozco et al. 10.3389/fagro.2023.1275906
Possible role of HSTs and
considerations in resistance
breeding efforts

Corynespora cassiicola belongs to the order Pleosporales, which

includes many necrotrophic pathogens known (or believed) to

produce HSTs (Friesen et al., 2008). As described above, C.

cassiicola produces cassiicolin with is an HST. NB-LRR genes are

typically involved in plant disease resistance (Chisholm et al., 2006).

Interestingly, a susceptible reaction in cucumber was associated

with an increased expression of a candidate gene containing a NC-

LRR domain (Wen et al., 2015). A recessive gene action of resistance

was found which is in line with an ETS model involving HSTs (Wen

et al., 2015). Thus evidence suggests that one or more HSTs are

likely involved in C. cassiicola pathogenicity. One or more HSTs

from C. cassiicola (including cassiicolin) interact with still-

unknown host susceptibility factors, thereby triggering

susceptibility in a dominant fashion. Because of this, resistance

will most likely be achieved through recessive gene action.

The necrotrophic behavior of C. cassiicola, including the

involvement of HSTs and thus the potentially recessive action of

resistance, presents challenges in finding durable and simple

resistance to diseases caused by this pathogen. Additionally,

resistance against some necrotrophic pathogens is quantitative

(Chaerani et al., 2007; Pogoda et al., 2021), including resistance

against C. cassiicola in soybean (Soares and Arias, 2020). Whereas

breeding with one or a few recessive genes is feasible, quantitative

resistance would be more challenging to adopt using traditional

marker assisted selection – especially in vegetable crops which often

rely heavily on multiple R-genes for resistance to various

pathogens. Instead, genomic selection of resistance may be a

better alternative, provided that resistance is not linked to

negative marketability traits.

The host-C. cassiicola interaction likely involves toxins. Breton

et al. (2000) suggested that host resistance may be based on

insensitivity to the toxin driven by a detoxification process.

Alternatively, the susceptibility factor targeted by the toxin may

be missing in resistant germplasm.
Conclusion

Corynesporacassiicolahasbecomeanincreasinglyrelevantpathogen

inthe last twodecades.Formerly,diseasemanagementthroughfungicide

sprays was effective, and resistance breeding was not a central focus.

However, recent worldwide reports on fungicide resistance in several

cropshavewarnedof the ineffectivenessofcommonlyusedfungicides for

managementofC.cassicola.Additionally, societypressurestomoveaway

from reliance on pesticides in crop disease management. Despite this,

breeding for resistance againstC. cassiicola diseases has been scarce, and

active breeding efforts are only reported in rubber tree, soybean and

cucumber. Increasing researchon resistance breeding is expected tohelp

substantially in themanagement of diseases caused by this pathogen.
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Evidence points the involvement of HSTs from C. cassiicola in

disease progression. Because HSTs target susceptibility factors

thereby resulting in ETS, and given the necrotrophic nature of C.

cassiicola diseases, it is likely that resistance will not be achievable

through a typical dominant R-gene. Rather, evidence suggests, that

resistance is more likely be achieved in a recessive manner, as is

typical for diseases involving HSTs.

Studies focused on finding durable and reliable resistance

against C. cassiicola may consider investigating ETS models by

identifying host targets of the fungal HSTs. Once identified, those

targets may be modified using gene editing tools to develop resistant

cultivars. Resistance may also be achieved through traditional

breeding techniques by introducing natural mutations in the ETS

pathway. In the long term, the adoption of C. cassiicola-resistant

crops together with integrated disease management programs,

should result in improved crop productivity and quality, and a

reduction of pesticide usage.
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