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Influence of planting pattern
on peanut ecosystem
daytime net carbon uptake,
evapotranspiration, and
water-use efficiency using the
eddy-covariance method

Gengsheng Zhang1*, Monique Y. Leclerc1, Navjot Singh1,2,
Ronald Scott Tubbs3 and Walter Scott Montfort3

1Atmospheric Biogeosciences Group, Department of Crop and Soil Sciences, The University of
Georgia, Griffin, GA, United States, 2West Florida Research and Education Center, The University of
Florida, Jay, FL, United States, 3Department of Crop and Soil Sciences, The University of Georgia,
Tifton, GA, United States
Peanut is planted in a pattern of either single or twin rows in Georgia, USA. However,
limited attention has been paid to the impact of planting pattern on the carbon

footprint andhowthenet carbonuptake is intertwinedwith theamountofwaterused

to determine the ecosystemwater-use efficiency (WUE) in peanut. This paper reports

on the relationship between the amount of carbon produced to the amount ofwater

used inpeanut, carbondioxideflux, andcropevapotranspirationof peanut in a single-

or in a twin-row planting pattern measured using the eddy-covariance method. To

the best of our knowledge, the present study is unique in that it examines for the first

time the effect of planting pattern on the net carbon uptake andWUE. The two-year

study took place in contrastingweather conditionswith the 2016 year experiencing a

higher vapor pressure deficit and lower precipitation than in the 2018 year. In this

study, field-scale daytime net carbon ecosystemexchange (CO2 fluxes), ET andWUE

of single- and twin-row peanut were compared using the eddy-covariance

technique. Results showed that in 2018, both the net carbon uptake from the

atmosphere and the WUE of twin-row peanut were significantly greater than those

in the single-row peanut by 7-10% and ~9% respectively, for pod filling and seed

maturity growth stages (aGDD 1000-2000 and aGDD > 2000). In 2016, the net

daytime carbon uptake and WUE of peanut were similar for both planting patterns

during pod filling (aGDD 1000-2000). Higher precipitation and lower VPD in 2018

likely resulted in greater peanut yield in twin-row as compared to single-row with

abundant precipitation. Owing to the fast canopy growth rate in twin-row peanut,

results suggest thatduring thevegetative stage (aGDD<500) in2016,bothdaytimenet

carbonuptake from the atmosphere andWUEwere considerably greater in twin-row

than single-row by 32% and 27%, respectively. Given that in both years, the ET from

both planting patterns was similar, it appears that the determination of WUE in both

planting patterns was more impacted by changes in daytime net carbon uptake than

evapotranspiration.Theresultsof this studysuggest thepossibility that thehigherWUE

at the critical stages of twin-row peanut in 2018 are likely to lead to greater yield than

single-rowpeanut. This shouldbeconfirmedwith further year-to-year investigations.

KEYWORDS

eddy-covariance method, water-use efficiency, daytime net ecosystem, carbon uptake,
evapotranspiration, peanut planting pattern
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1 Introduction

The United States ranks fourth in the world in terms of peanut

(Arachis hypogaea L.) production after China, India, and Nigeria

(www.nationalpeanutboard.org). Peanut is commercially produced

in thirteen states of the USA, with Georgia producing about 52% of

total peanut production in the USA in 2020-2022 (USDA/NASS,

2023). In 2022, peanut was planted on 586, 916 ha across the USA

and 277,210 ha in Georgia (USDA/NASS, 2023).

Depending on growers’ preference or equipment availability,

peanut is planted in a pattern of either single or twin rows in

Georgia. Several studies have reported yield advantages of twin-row

over single-row peanut (Colvin et al., 1985; Baldwin et al., 2001;

Brown et al., 2003; Lanier et al., 2004; Tillman et al., 2006; Tubbs

et al., 2011). Twin-row peanut often expresses less incidence of

tomato spotted wilt virus (Tospovirus) (TSWV) and southern stem

rot (Sclerotium rolfsii) compared to single-row (Brown et al., 2003;

Lanier et al., 2004; Tillman et al., 2006; Culbreath et al., 2008).

Sorensen and Lamb (2009) and Sorensen et al. (2004) reported

improved market grade of twin-row over single-row peanut but no

such difference was reported by Jaaffar and Gardner (1988) and

Tubbs et al. (2011). The benefits of twin-row peanut over single-row

on yield, the reduction in TSWV, and the decrease in southern stem

rot are also recognized in Peanut Rx, a best management practices

guide for peanut production (Kemerait et al., 2018).

However, limited attention has been paid to the impact of

planting pattern on the carbon footprint and how the net carbon

uptake is intertwined with the amount of water used to determine

the ecosystem water-use efficiency (WUE) in peanut. Considering

the recent increase in frequency and severity of drought (IPCC,

2014), the impact of climate variability on crops (Solomon et al.,

2007; Ortiz et al., 2008), and the increasing competition for water

resources, quantifying the efficiency of the water use in peanut

production is necessary. WUE reflects the ability of the crop to

produce yield or biomass by using a unit amount of water and is

conventionally calculated as the ratio of the yield or biomass to the

consumed water. It can be in various scales from leaf to plant to

canopy or ecosystem to global scales (Sinclair et al., 1984; Tu et al.,

2008; Beer et al., 2009).

Traditionally, lysimeters and calculating water applied

throughout the growing season have been used for the WUE

research (Wright et al., 1988; Hatfield et al., 1990). However,

Wright et al. (1993) pointed out that accurate measurements of

WUE using lysimeters is difficult. Discrepancies may occur in the

estimation of the exact amount of water from irrigation and

precipitation. Another widely used method is the carbon isotope

discrimination method (Farquhar et al., 1982; Hubick et al., 1986;

Wright et al., 1994; Rowland et al., 2012). This method correlates

the WUE with the isotopic discrimination of 13C during the

photosynthetic pathway in peanut.

Water-use efficiency has also been estimated using the ratio of

CO2 gained to water lost through evapotranspiration (ET)

(Baldocchi, 1994). With the development of the eddy-covariance

technique that was originally described by Wesely et al. (1970), the

fluxes of CO2 and water vapor and thus WUE can be estimated at
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the ecosystem scale and continuously throughout the growing

season (Law et al., 2002; Beer et al., 2009; Wang et al., 2018;

Zhang et al., 2022). Ecosystem WUE can be estimated as the ratio

of gross primary productivity (GPP) to evapotranspiration (ET)

(Wang et al., 2018), gross ecosystem productivity (GEP) to ET (Law

et al., 2002; Niu et al., 2011), or net carbon uptake to ET (Baldocchi,

1994; Scanlon and Albertson, 2004; Niu et al., 2011; Zhang

et al., 2022).

In this paper, the latter definition of WUE is used. This

approach confers the ability to identify WUE characteristics for

different accumulated growing degree days (aGDD). The aGDD or

thermal units is an efficient method to predict peanut maturity

(Mills, 1964; Emery and Gupton, 1968; Rowland et al., 2006). The

objectives of the study were to examine the differences in the CO2

flux, ET, and WUE of peanut measured between single- and twin-

row planting patterns in different aGDD periods using the eddy-

covariance method.
2 Materials and methods

2.1 Site description and experiment design

A two-year study (2016 and 2018) was conducted in irrigated

fields of the Southwest Georgia Research and Education Center

located in Plains, Georgia, USA (32° 2’ 48.912” N 84° 22’ 14.3178”

W) (Figure 1). Soil was Greenville sandy loam (fine, kaolinitic,

thermic Rhodic Kandiudults) (USDA/NRCS, 2019). Both single-

and twin-row peanut were used as two treatments. In 2016, single-

and twin-row peanut were planted in two adjacent fields in an area

of 3.8 ha and 4.0 ha, respectively. In 2018, both single- and twin-row

peanut were planted in two adjacent 4.0 ha fields. Different fields

were used each year for crop rotation.

The runner-type peanut cultivar Georgia-06G (Branch, 2007)

was used for its high yield potential and resistance to TSWV. Peanut

was planted in the single-row (91 cm inter-row spacing) and twin-

row patterns (15 cm spacing between the twins and 91 cm between

centers of rows) set to industry standard. The single-row was
FIGURE 1

Research site at Plains, GA for 2016 and 2018.
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planted with 20 seeds m-1 and twin-row with 10 seeds m-1 per

furrow, to maintain the same planting density for both planting

patterns. Both single- and twin-row peanut were managed

according to the University of Georgia Cooperative Extension

service recommendations and applied the same irrigation

scheduling (University of Georgia Cooperative Extension, 2022).

In 2016, single- and twin-row peanut were planted on May 05, dug

on September 15, and harvested on September 20. In 2018, peanut

in both planting patterns were planted on May 14, dug on October

15, and harvested on October 22. The digging and harvesting were

delayed because of unexpected heavy precipitation.
2.2 Measurements

2.2.1 Eddy-covariance flux measurements
The eddy-covariance method was used to measure CO2 and

water exchange between the peanut canopy and the atmosphere,

i.e., CO2 flux (Fc) and evapotranspiration (ET), respectively. One

eddy-covariance system was installed in each single- or twin-row

peanut field. Each system consisted of an omnidirectional sonic

anemometer (CSAT3, Campbell Scientific, Logan, UT, USA) and a

fast response open-path CO2/H2O gas analyzer (LI-7500, LI-COR

Inc., Lincoln, NE, USA) mounted at 1.5 m from the ground on a

tripod (Figure 2). The CSAT3 anemometer was installed towards

the prevailing wind direction. Both height and location of the eddy-

covariance systems were chosen to measure fluxes from within the

footprint of the flux tower.

The LI-7500 was calibrated following the manufacturer

instructions using CO2 and H2O free gas (for zero calibration),

500 ppm CO2 gas ( ± 1% uncertainty), and a Li-610 dew-point

generator (LI-7500, LI-COR Inc., Lincoln, NE, USA). 10 Hz data

from the eddy-covariance system was logged to a memory card in a
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datalogger (CR1000, Campbell Scientific, Logan, UT, USA). Each

system was powered by two 12 V DC deep cycle batteries which

were charged by a 120 W solar panel. The eddy-covariance data was

processed using EddyPro (2019) and MATLAB R2018b

(Mathworks, Inc.)

2.2.2 Meteorological measurements
Weather data were collected from a weather station located

450 m and 350 m away from the experiment site during 2016 and

2018, respectively near the research site (Figure 1). The weather

station was installed and maintained by the University of Georgia

Climate Network Solar radiation was measured with a pyranometer

(CS301, Apogee Instruments, Logan, Utah, USA), air temperature

and relative humidity with a humidity and temperature transmitter

(HMP60, Vaisala, Vantaa, Finland), wind speed and direction with

a wind sensor (034B, Met One, Grants Pass, Oregon, USA), and

precipitation was measured with a data-logging rain gauge (TB4,

HyQuest Solutions, Liverpool NSW, Australia). The vapor pressure

deficit was calculated as the difference between the vapor pressure in

the air and the saturated vapor pressure with the air temperature at

that time. The prevailing wind direction during the study was

predominantly easterly during spring and fall and westerly

during summer.

2.2.3 Leaf area index measurements
Peanut leaf area index (LAI) was measured weekly with a plant

canopy analyzer (LI-2000, LI-COR Inc., Lincoln, NE, USA). In each

field, LAI was measured at ten locations spaced at an interval of

0.5 m. At each location, one reading above the peanut canopy

and four readings at positions located equally between two rows

beneath the canopy on the ground were taken to determine the LAI.

In the meantime, the peanut plant height and width were

also measured.
A B

FIGURE 2

(A) Eddy-covariance system consisting of the omnidirectional sonic anemometer (CSAT-3) and the fast-response open-path CO2/H2O gas analyzer
(LI-7500) and (B) the eddycovariance system installed in a single-row peanut field.
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2.2.4 Yield measurements
Peanut was dug with a KMC inverter (Kelley Manufacturing

Co., Tifton, GA, USA) at the harvest maturity according to the

peanut maturity profile (Williams and Drexler, 1981) and left in the

field for seven days to dry before harvesting. The harvesting of

peanut in 2018 was delayed due to heavy precipitation after the crop

was dug. Six representative locations in each field were randomly

selected for the yield measurements. Each location was 12.2 m long

and 1.8 m wide and peanut were harvested with a KMC two row

peanut picker (Kelley Manufacturing Co., Tifton, GA, USA). Pod

yield was adjusted to 7% moisture.
2.3 Signal processing and flux calculations

The eddy-covariance data was processed and CO2 flux and

evapotranspiration were calculated using EddyPro (2019) and

MATLAB R2018b (Mathworks, Inc). Low-quality data points, i.e.

those characterized by abnormal “automatic gain controls (AGC)”

values from the gas analyzers, were removed. These points originate

due to rainwater or dew or dust on the sensor’s optical paths. Any 30-

min period withmore than 10%missing data was discarded. Spikes in

time series of data were detected and removed according to Vickers

and Mahrt (1997). The planar-fit method (Wilczak et al., 2001) was

applied to the sonic anemometer data to correct tilt errors. Linear

trend in time series of data was also detected and removed. Density

fluctuation corrections due to heat and water vapor transfer were

made following the Webb-Pearman-Leuning (WPL) method (Webb

et al., 1980). A footprint analysis, using the method by Kormann and

Meixner (2001), was performed in each field to make sure that the

fluxes originated from the desired area of the field.
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2.4 Fetch and footprint analysis

Due to the limited fetch of the field, the eddy-covariance system

was installed at the edge of each field in the prevailing wind

direction. The fetch was calculated by measuring the distance

from the eddy-covariance system to the edge of the field at 10°C

intervals using the Google Earth Pro (2019) (see Figure 3 as an

example). During 2018, the eddy-covariance systems in both fields

were relocated on September 24 to reflect the change in the seasonal

prevailing wind.

The footprint is defined as the spatial extent of the source area

of fluxes measured at the eddy-covariance system location (Leclerc

and Thurtell, 1990; Leclerc and Foken, 2014). In this study, the

analytical solution of the footprint calculations of Kormann and

Meixner (2001) was used to ensure that the measured CO2 flux and

evapotranspiration reflect the peanut field of interest. In this model,

the contributing distances towards the fluxes are calculated using

the equation:

fx =  
1

G(m)
xm

x(1+m)
e−

x
x (1)

where fx is the flux contribution from the area between the

anemometer and the point source at x, x is the distance in the upwind

direction from the sonic anemometer, x = x( z−dz0 ) is the flux length

scale that depends on the height above the ground z, zero plan

displacement height d and canopy roughness height z0 of the peanut

canopy where d = 0:67hc and z0 = 0:15hc, where hc is peanut canopy

that varied in the range of 0 - 55 cm in the experiments of this study.

m is a dimensionless model constant, and G(m) is the gamma function.

This procedure was performed using the EddyPro software. The

fluxes with fx equal to or more than 90% was selected for further
A B

FIGURE 3

The fetch determined as a function of wind direction in an interval of 10° over the single-row field in 2018 (A) before system relocation and
(B) following system relocation on September 24.
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processing. If the footprint was larger than the fetch, the flux was

partly sourced outside the field of interest and was filtered out.
2.5 Day time ecosystem WUE calculations
and data partitioning

The daytime WUE of the peanut ecosystem was calculated as

the ratio of net carbon uptake (or CO2 fluxes) to evapotranspiration

(Baldocchi, 1994; Scanlon and Albertson, 2004; Niu et al., 2011;

Anapalli et al., 2019; Zhang et al., 2022), i.e.

WUE = CO2   fluxes
ET= (2)

The data was partitioned into four periods based on

Accumulated Growing-Degree Days (aGDD) to account for the

variation in the CO2 flux, ET, andWUE with crop growth (Table 1).

The day after planting (DAP) and the growth stages corresponding

to these four periods are also listed in Table 1. The Mill’s Growing-

Degree Day (GDD) method (Mills, 1964) was taken in the study, as

it showed the best relationship with peanut maturity (Rowland

et al., 2006). GDD was calculated as:

GDD =
ATmax35 + 13:3 + ABS½ATmin − 13:3�

2
− 13:3 + DToc (3)

where ATmax = maximum daily air temperature, ATmax35 =

maximum daily air temperature limited to the threshold of 35 °C,

ATmin = minimum daily air temperature, and DToc =  ABS(ATm

ax − 24:4). aGDD is a cumulative sum of the GDDs from planting

date to the interested date. The student’s t-test (p< 0.1) was

performed to compare single and twin-row peanut for CO2 flux,

ET, WUE, and yield using the JMP software (JMP, 2018).
3 Results

3.1 Weather conditions

Figure 4 presents the averages and their standard errors of (a)

daily total solar radiation, (b) daily mean air temperature, and (c)
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daily mean vapor pressure deficit, and (d) total rainfall in different

ranges of accumulated growing-degree days in 2016 and 2018,

respectively. The year of 2018 had more rainfall and smaller

vapor pressure deficit, and thus less solar radiation due to more

cloudiness, and lower air temperature in all the aGDD ranges

of<500, 500-1000, 1000-2000, and >2000 that the year of 2016.

The largest difference occurred in the early growing season of

peanut with aGDD< 500.

The year 2018 with a total rainfall of 808 mm was considerably

wetter than the year 2016 with a total rainfall of 315mm. Although

peanut was irrigated in an amount of 168 mm in 2016 and 134 mm

in 2018, respectively, the total water supply in 2018 was

approximately twice that of 2016 (Figure 5). The irrigation serves

as a supplement to precipitation but cannot meet the entire crop

demand. Moreover, the impact of lower precipitation can be seen

on the VPD in 2016. The daily average VPD in 2016 was greater

than 2018 (Figure 6), reaching a maximum of 2 kPa, during the

vegetative, pod filling, and beginning maturity stages. Its influence

on photosynthesis, water-use efficiency and yield will be discussed

in the following sections.
3.2 Daytime net carbon uptake from the
atmosphere

The impact of different planting patterns on the daytime CO2

flux in both years is presented in Figures 7, 8. The CO2 flux between

the peanut canopy and the atmosphere is the result of three main

processes: canopy photosynthesis, autotrophic respiration by plants

and heterotrophic respiration by soil organisms. The CO2 flux

represents the net carbon uptake from the atmosphere by the

peanut ecosystem, with negative values indicating that CO2 is

transported downward from the atmosphere and absorbed by

peanut plants. As peanut plants grow, CO2 flux magnitude

increases and reaches a maximum during the mid-season with

aGDD 1000-2000 (Figure 8).

In 2016, CO2 flux of twin-row peanut was significantly greater

than single-row during the vegetative stage (aGDD<500) by 31.8%

and aGDD 500-1000 by 10%. During the aGDD 1000-2000 in 2016,
TABLE 1 The partition of mean 30-min filtered data according to accumulated growing degree days (aGDD) and days after planting (DAP) and
corresponding peanut growth stages (Boote et al., 1982).

Period aGDD Growth stage

Years

2016 2018

DAP Number of filtered 30-min. data
points for comparison DAP Number of filtered 30-min. data

points for comparison

I <500 Seeding ~ Vegetative before
beginning bloom

<33 72 <30 no data

II 500-
1000

Beginning bloom ~ Full pod 34-55 109 31-53 no data

III 1000-
2000

Beginning seed ~ Beginning
maturity

56-97 85 54-
102

99

IV >2000 Beginning maturity ~
Harvest maturity

>97 no data >102 164
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despite the faster crop growth rate of twin-row peanut, CO2 fluxes

of single- and twin-row peanut was comparable. During 2018,

however, CO2 fluxes of twin-row peanut were greater than single-

row peanut for aGDD 1000-2000 by 7.7% and aGDD >2000 by

10% (Figure 7B).
3.3 Evapotranspiration

The comparison in evapotranspiration between single- and

twin-row planting patterns for different aGDDs each year is

depicted in Figure 9. Peanut canopy ET varied with aGDDs, from

an average of about 0.07 g H2O m-2 s-1 with aGDDs< 500,

increasing to around 0.13-0.14 g H2O m-2 s-1 with 500< aGDDs<
A

B

D

C

FIGURE 4

Comparison of the average and its standard error of (A) daily total solar radiation, (B) daily mean air temperature, and (C) daily mean vapor pressure
deficit, and (D) total rainfall in different ranges of accumulated growing degree days (aGDD) between 2016 and 2018.
A

B

FIGURE 5

Total amount of water applied at the research site through
precipitation and irrigation for (A) 2016 and (B) 2018.
FIGURE 6

Daily average vapor pressure deficit (VPD) for different accumulated
growing-degree days (aGDD).
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2000, and dropping to about 1.0 g H2O m-2 s-1 with aGDDs > 2000.

However, there is no significant difference between single- and

twin-row planting patterns for different aGDDs in both years.
3.4 Water-use efficiency

The comparison in the daytimeWUE between single- and twin-

row planting patterns in various aGDDs each year is presented in
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Figures 10, 11. During 2016, the daytime WUE of twin-row peanut

was greater than single-row peanut by 27.4% in the early growth

stage for aGDD<500 and by 11.1% for aGDD 500-1000. However,

the WUE was similar for the aGDD 1000-2000. During 2018, the

WUE of twin-row was significantly greater than single-row by 9.3%

for periods with aGDD 1000-2000 and by 9.5% for aGDD>2000.
FIGURE 9

Mean and standard error of 30-min averaged evapotranspiration
rate (g H2O m-2 s-1) of single- and twin-row planting patterns for
different accumulated growing degree-days (aGDD). The same letter
A for different planting patterns in every aGDD category each year
means no significant difference between two planting patterns at
the a=0.1.
B

A

FIGURE 7

Comparison of 30-minute averaged CO2 flux (mg CO2 m-2 s-1) of
single- and twin-row planting patterns for different accumulated
growing degree days (aGDD) in (A) 2016 and (B) 2018.
FIGURE 8

Mean and standard errors of 30-min average CO2 flux (mg CO2 m-2

s-1) of single- and twin-row planting patterns for different
accumulated growing-degree days (aGDD). For every aGDD
category in each year, letters A, B mean a significant difference at
the a=0.1.
B

A

FIGURE 10

Comparison of the 30-min. average water-use efficiency (WUE)
(mg CO2/g H2O) of single- and twin-row planting patterns for
different aGDDs in (A) 2016 and (B) 2018.
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3.5 Yield

The yield in 2018 for both single- and twin-row peanut was

greater than in 2016 (Figure 12). The twin-row pattern exhibited a

greater yield than the single-row peanut in 2018. Single- and twin-

row peanut yields were not significantly different in 2016.
4 Discussion

4.1 Daytime CO2 flux, ET and WUE

Net ecosystem exchange of CO2 increases as peanut plants grow

and reaches a maximum during the mid-season with aGDD in the

range of 1000-2000 (Figure 8). This seasonal variation follows the

variations of solar radiation and temperature (Figures 4A, B) and

the change in plant biomass throughout the growing season as

indicated by peanut leaf area index (Figure not shown).

In this study, CO2 flux of twin-row peanut was significantly

greater than single-row during the vegetative stage in 2016. This

greater CO2 flux is a result of faster canopy closure (Table 2) and
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hence faster crop growth rate in twin-row peanut than in single-

row. Leaf area index in 2016 also presented higher values for twin-

row peanut than single row when DOY< 60 (Figure 13A). A greater

crop growth in twin-row peanut is also reported by Colvin et al.

(1985); Jaaffar and Gardner (1988), and Plumblee (2015). Jaaffar

and Gardner (1988) also linked the faster canopy closure of peanut

in twin-row to its higher growth rate and light interception.

During the mid-season in 2016CO2 fluxes of single- and twin-

row peanut was comparable. As stated earlier, low precipitation and

high VPD happened during various growth periods in 2016. Larger

VPD enhances the evaporative demand hence increasing the water

loss from the crop. To conserve water under a higher evaporative

demand period, stomates close to limit transpiration (Stockle, 1990;

Gholipoor et al., 2010; Schoppach and Sadok, 2012; Jiao et al., 2019).

Consequently, the stomatal closure results in lower photosynthesis

(Taylor et al., 1983; Stockle, 1990; Sinclair et al., 2017; Jiao et al.,

2019). Therefore, the weather conditions of higher VPD and lower

precipitation in 2016 were unfavorable to peanut growth potential

to present. This would result in a similar CO2 flux in single- and

twin-row peanut during these periods.

During 2018, precipitation and VPD were not limiting to

peanut growth as compared to 2016. Thus, CO2 fluxes of twin-

row peanut were greater than single-row peanut for aGDD 1000-

2000 and aGDD >2000 (Figure 7B). This is consistent with that

twin-row peanut showed larger LAI than single row when DOY >

94 (Figure 13B). The peak in LAI values was observed to be in a

range of 5.4-6.1, in line with previous values of about 4.5-6.7 in
B

A

FIGURE 13

The comparison of peanut leaf area index between single- and
twin-row planting patterns in (A) 2016 and (B) 2018.
FIGURE 11

Mean and standard error of the 30-min. averaged water-use
efficiency (WUE) (mg CO2/g H2O) of single- and twin-row planting
patterns for different accumulated growing-degree days (aGDD). For
every aGDD category in each year, letters A and B mean a significant
difference at the a=0.1.
FIGURE 12

Mean and standard error of peanut yield (kg ha-1) of both planting
patterns. Different letters mean a significant difference (a=0.1).
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Alabama, US by Davis and Mack (1991), 5.0-7.0 in Texas, US by

Kiniry et al. (2005), about 4.5-6.8 in Georgia, US by Rowland et al.

(2010), 5.1-5.3 in South China by Qi et al. (2020), and 4.9-6.5 in

Georgia, US by Zhang et al. (2022). The observed higher CO2 flux

can be attributed to lower intra-row competition for space, light,

water and nutrients in twin-row as compared to single-row peanut

(Hauser and Buchanan, 1981; Wehtje et al., 1984). This competition

is supported by general higher canopy height of single-row peanut

than that of twin row observed in this study (Figure 14).

Evapotranspiration of single- and twin-row peanut was similar

throughout the growing season in the current study (Figure 9). The

crop evapotranspiration was calculated using the eddy-covariance

method. The difference in the number of days leading to canopy

closure (Table 2) was expected to cause a difference in the ET during

the early season due to fast canopy closure. However, such a

difference was not observed. Fast canopy closure results in a

greater crop biomass and a lower soil exposure. Consequently,
Frontiers in Agronomy 09
twin-row peanut with faster canopy closure should have higher

transpiration but lower soil evaporation than the single-row peanut.

The total of them (i.e., ET) was found to be similar for both

planting patterns.

As the ratio of CO2 flux to ET, the daytime WUE of twin-row

peanut during 2016 was greater than single-row peanut in the early

growth stage for aGDD< 1000 (Figures 10, 11). These results

suggest that the greater WUE during the early season of 2016 is

likely linked to the faster crop growth in twin-row peanut. As noted,

the fast canopy closure in the twin-row (Table 2) implies a fast crop

growth rate and hence a greater CO2 flux. However, the ET during

this period was similar. As a result, the WUE of twin-row peanut

was greater than single-row during the 2016 early growing season.

The WUE values of different planting patterns were similar each

other for the aGDD 1000-2000 in 2016, while the WUE of twin-row

was observed significantly greater than single-row for periods with

aGDD > 1000 in 2018 (Figures 10, 11). As discussed above, the

difference in precipitation and VPD between 2016 and 2018 could

cause the change in CO2 flux difference and thus WUE difference

between single- and twin-row peanut.
4.2 Yield

In this study, peanut yield in 2018 for both single- and twin-row

peanut was greater than in 2016, and the twin-row pattern exhibited a

greater yield than the single-row peanut in 2018 while single- and

twin-row peanut yields were not significantly different in 2016

(Figure 12). These results may be attributed to the difference in

precipitation and vapor pressure deficit (VPD) between the year

2016 and 2018. As stated earlier, 2016 was a year characterized by

lower rainfall and higher VPD that in 2018. Even though peanut was

irrigated in both years, the total water supply in 2016 was

approximately half of that in 2018. The irrigation serves as a

supplement to precipitation but cannot meet the entire crop

demand. As discussed earlier, a high VPD leads stomates to close to

limit transpiration when in water stress. This results in a similar CO2

flux and yield in single- and twin-row peanut in 2016. On the other

hand, peanut growth potential present in conditions of more rainfall

and smaller VPD in 2018, resulting in larger CO2 flux and yield for

twin-row planting pattern than single-row planting pattern.

Moreover, due to a higher VPD during vegetative, pod filling

and beginning maturity stages and the lower precipitation regime of

2016, weather conditions were not favorable for peanut growth. As
B

A

FIGURE 14

The comparison of peanut canopy height between single- and twin-
row planting patterns in (A) 2016 and (B) 2018.
TABLE 2 Visually observed canopy-closure time in terms of days after planting (DAP) and accumulated growing degree days (aGDD) for single- and
twin-row peanut.

Planting pattern

Year

2016 2018

DAP aGDD DAP aGDD

Twin-row 71 1369 67 1311

Single-row 77 1515 72 1340
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a result, a lower yield was noted in 2016 compared to 2018. These

results are in line with the analysis of Jiao et al. (2019); Sinclair et al.

(2017), and Taylor et al. (1983) on the negative impact of a higher

VPD on crop growth.

Pod filling and seed maturity stages are considered the most

critical growth stages for peanut yield (Klepper, 1973; Reddy et al.,

1981; Boote et al., 1982). The pod filling stage corresponds to aGDD

values ranging between 1000 and 2000. Water-use efficiency was

greater for twin-row peanut for this period in 2018 when

precipitation was abundant. Furthermore in 2018, the yield of

twin-row peanut was greater than in single-row peanut. On the

other hand, no difference was observed between single- and twin-

row peanut in 2016, a year characterized by low summer

precipitation. Therefore, it is possible that the higher WUE at the

critical stages of twin-row peanut in 2018 correlates with greater

yield when compared with single-row peanut. A more exhaustive

year-to-year investigation is required to confirm these results with

incontrovertible assurance.
5 Conclusion

In this study, field-scale daytime net carbon ecosystem

exchange (CO2 fluxes), ET and WUE of single- and twin-row

peanut were compared using the eddy-covariance technique. To

the best of our knowledge, the present study is unique in that it

examines for the first time the effect of planting pattern on WUE.

Results showed that in 2018, a wetter year with lower VPD, both the

net daytime carbon uptake from the atmosphere and the WUE of

twin-row peanut were significantly greater than those in the single-

row peanut by 7-10% and ~9% respectively, during the critical pod

filling and seed maturity growth stages (aGDD 1000-2000 and

aGDD > 2000). In contrast, in 2016, a year with lower

precipitation and higher VPD during several stages, the net

daytime carbon uptake and WUE of peanut were similar for both

planting patterns during pod filling (aGDD 1000-2000). Higher

precipitation and lower VPD in 2018 likely resulted in greater

peanut yield in twin-row as compared to single-row with

abundant precipitation.

This study also suggests that during the vegetative stage

(aGDD<500) in 2016, both daytime net carbon uptake from the

atmosphere and WUE were considerably greater in twin-row than

single-row by 31.7% and 27.4%, respectively. This was due to the

faster crop growth rate as indicated by the faster canopy closure in

twin-row peanut compared to single-row. In both years, the ET

from both planting patterns was similar. This indicates that the

variation in WUE, between the two planting patterns, was more

impacted by changes in the daytime net carbon uptake than changes

in evapotranspiration.

This experiment can be used as a blueprint to study ecosystem

WUE of different peanut cultivars and peanut with different tillage
Frontiers in Agronomy 10
practices and in other crops too. Further studies could help growers

if given a focus on the determination of the effect of management

practices on WUE, carbon sequestration from the atmosphere,

water conservation and yield.
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