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Crop rotation and cultivation
effects on Convolvulus arvensis
population dynamics in small
grain organic cropping systems

Kara Hettinger1*, Zach Miller2, Kyrstan Hubbel2 and Tim Seipel1

1Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, United States,
2Western Agricultural Research Center, Montana State University, Corvallis, MT, United States
Convolvulus arvensis L. Scop. (field bindweed) is a difficult weed to manage in

organic cropping systems. Convolvulus arvensis suppression often requires

intensive tillage and cultivation practices that have negative impacts on soil

quality. To improve C. arvensis management in organic, small grain cropping

systems, we compared ten cropping system treatments in a field trial from the

autumn of 2017 until harvest of 2020 in Corvallis, MT, USA. Cropping system

treatments varied along a gradient of tillage and crop competition, with tillage

intensity and competition inversely related. High soil disturbance and no

competition occurred in two treatments that remained in tilled fallow for two

consecutive years. Six cropping system treatments had different combinations of

tillage and annual or biennial crops, including wheat and forages. Two treatments

had minimal soil disturbance and maximum competition from two consecutive

years of perennial alfalfa. Convolvulus arvensis ramet density was counted

annually to estimate changes in treatments over time. Differences in soil

chemical and physical properties between treatments were also assessed in

the final years of the study. In the first two years, there was no difference in C.

arvensis ramet density among cropping system treatments. In the final two years

of the study, C. arvensis density remained below one ramet per m2 in intensively

tilled fallow treatments and perennial alfalfa treatments, but was much more

variable in treatments with more diverse annual and biennial crop rotations with

minimal to moderate tillage. The only differences between treatments in soil

physical and chemical properties was aggregate stability. Soil from the most

intensively tilled fallow treatments had lower soil aggregate stability than six

other treatments, indicating higher erosion potential. Our results suggest that

annual cropping systems can lead to increased C. arvensis density. Incorporating

a perennial forage or an intensively tilled fallow period can prevent C. arvensis

expansion in small grain organic cropping systems, but the perennial forage can

protect and enhance soil quality.
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Introduction

Weeds are difficult to manage in organic crop systems and can

greatly reduce yields (Gomiero et al., 2011; McBride et al., 2015).

Perennial, rhizomatous forbs, including Convolvulus arvensis L.

Scop. (field bindweed), have been particularly problematic for

organic producers (Tautges et al., 2017b; Orloff et al., 2018).

Convolvulus arvensis can reproduce through both seeds and

vegetative shoots. The rhizomatous root system of C. arvensis is

extensive and allows it to form dense patches in annual small grain

cropping systems. Because C. arvensis reestablishes easily from root

fragments, cultivation can physically spread the weed across

agricultural landscapes (Weaver and Walker, 1982; Sosnoskie

et al., 2020). Convolvulus arvensis seeds can also remain viable in

soil for up to two decades (Weaver and Walker, 1982). The prolific

nature of the root system, long-lived seeds, and competitive growth

directly contribute to C. arvensis weediness in both conventional

and organic agricultural systems.

Historically, C. arvensis management in agroecosystems

involved frequent tillage and soil cultivation practices to disrupt

its perennial root system (reviewed by Sosnoskie et al., 2020). In

modern conventional cropping systems, C. arvensis seedlings and

aboveground shoots are temporarily reduced with chemical

herbicides, though long-term reduction of established populations

requires repeated herbicide applications (Davis et al., 2018; Bayat

and Zargar, 2020). In organic cropping systems, the use of systemic

herbicides for suppressing perennial weeds is not allowed. This has

led to a reliance on recurrent mechanical cultivation for C. arvensis

suppression. Intensive and repeated cultivation has reduced or

eradicated C. arvensis in past studies, but cultivation has negative

consequences for soil, including increased erosion potential, greater

water loss, decreased microbial diversity and abundance, and

decreased organic matter (Kasper et al., 2009; Moraru and

Teodor, 2010; Soane et al., 2012; Seitz et al., 2019; Carretta

et al., 2021).

The negative consequences of intensive soil cultivation and

tillage have led to a search for weed management that combines

multiple tactics into an integrated weed management plan (Kassam

et al., 2010; Lehnhoff et al., 2017; Larson et al., 2021). In organic

systems, integrated weed management incorporates biological,

cultural, and mechanical practices to suppress weeds (Carr et al.,

2012; Benaragama and Shirtliffe, 2013; Lehnhoff et al., 2017).

Integrated weed management can provide a more sustainable

approach to crop production by reducing the reliance on any

single weed management practice. In organic, small grain

cropping systems, integrated weed management is often focused

on the combination of diverse competitive crop rotations and

timely mechanical practices, or sometimes livestock grazing, to

remove weed biomass.

Crop rotation is an essential cultural tactic for weed

management. Rotations can include a diverse set of crops with

different traits such as life cycle or growth habit, which is important

for maximizing crop competition. For example, biomass and

residue from competitive cover crops has been shown to suppress

germination and growth of early-season weeds, specifically annual
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species, as well as allow for more frequent mechanical management

(Teasdale, 1996; Flood and Entz, 2018). However, annual cover

crops may be less competitive with rhizomatous perennial weeds.

Perennial forage crops, such as alfalfa (Medicago sativa L.), are more

competitive with perennial weeds like C. arvensis (Meiss et al., 2010;

Tautges et al., 2017a). The deep-reaching root systems allow for

perennial crops to compete directly with C. arvensis for resources

(e.g., water, soil nutrients).

In water-limited, semi-arid small grain cropping systems, the

adoption of cover or forage crops can be challenging due to their soil

water use, depression of subsequent cash crop yields, and low

biomass production, which inhibits the suppression of weeds

(Unger and Vigil, 1998; Carr et al., 2021; DuPre et al., 2022). In

organic zero-tillage systems, vegetative mulch from cover crops failed

to reduce established perennial weed populations (Carr et al., 2013).

Similarly, while integrating livestock grazing into organic cropping

systems to remove crop and weed biomass can be an effective way to

reduce tillage and provide forage, it has also demonstrated

problematic increases in both annual and perennial weed biomass

when compared to conventional-no till and organic-tilled systems

(Larson et al., 2021). Subsequent increases in weed density can reduce

crop yield (Zikeli and Gruber, 2017; Osterholz et al., 2020).

To improve integrated weed management of C. arvensis, we

compared ten cropping system treatments for three growing

seasons to determine which treatments limited the growth of C.

arvensis. Treatments were arranged on a spectrum of both tillage

intensity and crop competition. Tillage intensity was inversely

related to crop competition. For example, the treatments ranged

from a high tillage intensity, low crop competition system with two

consecutive years of tilled fallow to a minimal tillage, high crop

competition system with two consecutive years of perennial alfalfa.

Treatments in the middle of this spectrum had crop rotations with

monocot and dicot annual and biennial crops and more moderate

tillage intensities. We expected intensively tilled fallow and

perennial forage to limit the spread of C. arvensis more than

combinations of annual crops and moderate tillage. Repeated and

frequent cultivation weakens C. arvensis rhizomes, preventing patch

expansion and keeping root density low. However, tillage is

expected to lower soil stability and alter soil chemical and

physical characteristics compared to treatments with more crop

presence. Perennial alfalfa similarly limits C. arvensis density

through direct plant competition. Convolvulus arvensis density

was expected to be greatest in treatments with annual crops and

minimal to moderate tillage because crop competition was weaker

and tillage too infrequent to reduce populations.
Materials and methods

Site description

The field trial was conducted from the autumn of 2017 to the

summer of 2020 at the Montana State University Western

Agricultural Research Center in Corvallis, MT (46.3274° N,

114.0841° W, 1097 m). The experiment was conducted on a
frontiersin.org
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sandy-loam soil in the frigid Typic Haplustoll class, consisting of

very deep, well-drained materials formed in alluvium and

colluvium. Average annual precipitation for the area is 461 mm,

with the majority falling between May and August (Western

Regional Climate Center, 2023). A previous crop rotation study

comparing crop-weed competition was conducted in the field from

the spring of 2015 to the late summer of 2017 and organic

certification was maintained for the last two years of the study

(Miller, 2017, unpublished).
Experimental design

The study used a randomized complete block design with three

replicate blocks. Blocks were separated by 6 m buffer strips. Within

each block, ten cropping system treatments were randomly assigned

to 6 x 12 m plots. Treatment plots were separated by 1 m buffer

strips. In 2015, 48 C. arvensis rhizomes were transplanted into each

plot. Rhizomes were between 15 and 20 cm in length.
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Cropping system treatments

Each of the ten cropping system treatments combined different

crop species and different amounts of mechanical tillage (Tables 1,

2). The cropping system treatments were arranged on a gradient of

decreasing tillage intensity and increasing crop competition. Each

cropping system treatment lasted three full growing seasons,

starting either in 2017 with a fall-planted crop or in 2018 with a

spring-planted crop. The maximum amount of soil disturbance

occurred in two treatments that were kept in fallow for two years

(Tillage 1; Tillage 2). In Tillage 1 and Tillage 2, mechanical

cultivation of soil occurred every two to three weeks after initial

C. arvensis emergence, usually in late March. Tillage 1 and Tillage 2

also had the lowest amount of crop competition by utilizing two

consecutive years of fallow.

Five cropping system treatments had annual crop species,

including mixtures of grain crops (e.g., spring wheat [Triticum

turanicum Jakubz.]), green manure cover crops (e.g., field pea

[Pisum sativum L.]), and varied tillage intensities. Of this group,
TABLE 1 Crop species planted across ten cropping system treatments, including seeding year and seeding rate (kg ha-1).

Cropping system treatments Crop Scientific name Year Seed rate, kg ha-1

1. Tillage 1 Fallow (no crop) N/A 2018, 2019 N/A

2. Tillage 2 Fallow (no crop) N/A 2018, 2019 N/A

3. Wheat-CC1 + till Hard red spring wheat Triticum turanicum Jakubz. 2018 224

Spring field pea Pisum sativum L. 2019 112

4. Wheat-CC1 Hard red spring wheat Triticum turanicum Jakubz. 2018 224

Spring field pea Pisum sativum L. 2019 112

5. Spring till Sorghum-sudangrass Sorghum bicolor x var. sudanese L. 2018, 2019 11

Faba bean Vicia faba L. 2018, 2019 22

Chickling vetch Lathyrus sativus L. 2018, 2019 22

6. Rye-CC1 + till Winter rye Secale cereale L. 2017, 2018 112

Winter field pea Pisum sativum L. 2018, 2019 112

7. Reduced till Winter field pea Pisum sativum L. 2017 56

Winter rye Secale cereale L. 2017 56

Sorghum-sudangrass Sorghum bicolor x var. sudanese L. 2018, 2019 11

Faba bean Vicia faba L. 2018, 2019 22

Chickling vetch Lathyrus sativus L. 2018, 2019 22

8. Grazing-CC1 Winter rye Secale cereale L. 2017 112

Yellow sweet clover Melilotus officinalis L. 2018, 2019 5.6

9. Conventional alfalfa Alfalfa Medicago sativa L. 2018, 2019 29

Common oat Avena sativa L. 2018, 2019 45

10. Organic alfalfa Alfalfa Medicago sativa L. 2018, 2019 29

Common oat Avena sativa L. 2018, 2019 45

All treatments (1-10) Hard red spring wheat Triticum turanicum Jakubz. 2020 160
(1) “CC” stands for cover crop.
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TABLE 2 Timeline of cropping system management for ten cropping system treatments over the four year study period (2017 to 2020), including field operations.

2019 2020

N D J F M A M J J A S O N D J F M A M J J A

Fallow Wheat

RT RT RT RT MP M D, CP H

Fallow Wheat

RT RT D D D M D, CP H

Spring pea Wheat

D, CP D D* D* D* D, CP H

Spring pea Wheat

D, CP D D D D D, CP H

Cover crop mix Wheat

D, CP FM, D D, CP H

Winter pea Wheat

FM, D D* D* D* D, CP H

Cover crop mix Wheat

FM D, CP H

Sweet clover Wheat

G G D, CP H

Alfalfa Wheat

H H H D, CP H

Alfalfa Wheat

H H H D, CP H

anure addition; R, reseed; RT, rototill (* indicating two events in one month); S, herbicide spray.
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Treatment ID Field Actions 2017 2018

O N D J F M A M J J A S O

1. Tillage 1 Crop

Mechanical actions1 RT RT RT* RT RT RT*

2. Tillage 2 Crop

Mechanical actions1 D RT RT* RT RT RT*

3. Wheat-CC + till Crop Wheat

Mechanical actions1 D D CP H, D D*

4. Wheat-CC Crop Wheat

Mechanical actions1 D CP H, D D

5. Spring till Crop Cover crop mix

Mechanical actions1 D CP D D

6. Rye-CC + till Crop Rye

Mechanical actions1 D

7. Reduced till Crop Pea-rye mix Cover crop mix

Mechanical actions1 D D D

8. Grazing-CC Crop Rye

Mechanical actions1 D

9. Conventional alfalfa Crop

Mechanical actions1 S S R H

10. Organic alfalfa Crop

Mechanical actions1 D CP R H

(1) CP, cultipack; D, disking (* indicating two events in one month); FM, flail mow; G, grazing; H, harvest; M, compost m
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the Wheat-CC treatment is a standard farmer practice in the semi-

arid wheat-growing areas of North America (Cochran et al., 2006).

The Wheat-CC treatment had three to four total tillage events

annually, including a pre-plant, a post-harvest, and a final fall

disking. Other treatments in this group included Spring Till,

Wheat-CC + till, Rye-CC + till, and Reduced Till. The Grazing-

CC had increased crop competition by using a biennial sweet clover,

and reduction in tillage by using livestock grazing to terminate

forage. The remaining two treatments used a two-year perennial

alfalfa rotation (Conventional Alfalfa; Organic Alfalfa), which

constituted maximum competition and no soil disruption. In

2020, all ten treatments were planted with Khorasan spring wheat

(Triticum turanicum Jakubz.; Kamut ®). Seeding rates can be found

in Table 1.

In total, four different field implements were used among the

treatments for mechanical control of C. arvensis: a moldboard plow,

a rototiller, a disc, and a flail mower (for cover crop termination).

The moldboard plow and rototiller were used in the most

intensively tilled fallow treatment (Tillage 1). The rototiller had a

15 cm maximum depth and was applied during the growing season,

starting two weeks after C. arvensis emergence. The moldboard

plow had a 25 cm depth and was used in early fall. A disc was used

in other treatments requiring tillage at a 15 cm maximum depth.

Cover crops were terminated with the flail mower and then

incorporated with the disc. Conventional Alfalfa had two initial

glyphosate applications (GlyStar® Plus; 2017: 1121 g ai ha-1; 2018:

3365 g ai ha-1). One treatment (Grazing-CC) utilized livestock

grazing with sheep to terminate a biennial forage crop in the

second year of growth. Further details on field actions can be

found in Table 2.
Sampling C. arvensis populations

Convolvulus arvensis ramet counts were initiated in the summer

of 2017, prior to fall crop planting. Subsequent ramet counts were

conducted annually in each plot before crop termination or harvest

(either July or August). Convolvulus arvensis ramets were counted

inside the core of the plot (4 x 10 m). We excluded a 1 m buffer

around the plot to avoid edge effects. In 2017, 2019, and 2020, in

addition to density, four 0.25 m2 frames were randomly placed

parallel to crop rows in the core of the plot. All biomass was cut,

separated into C. arvensis, crop, and other weed biomass. The

biomass was then dried and weighed. In the final year of the

cropping treatments, wheat grain yield in each plot was estimated

from a combine mounted yield monitor. Yield estimates were

calculated from a 17 m2 area in the center of the plot.
Soil sampling and analysis

Soil was sampled from each plot twice: once in summer of 2019

for slake stability testing and once before planting spring wheat in

2020 for soil nutrient analysis. A total of 18 samples were taken on the

surface of each plot for slake stability testing. The slake test was
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performed to measure the stability of soil aggregates when exposed to

rapid wetting as a proxy for soil erosion (United States Department of

Agriculture, 1999). Stability class was scored based on criteria for soil

structural integrity on a scale from 0 to 6, with 0 indicating a soil too

unstable to sample and 6 indicating 75-100% of soil remains intact

after five wetting events. A stability class of less than 4 is generally

considered unstable (United States Department of Agriculture, 1999).

In 2020, soil was resampled from all plots and sent to Agvise

Laboratories (Northwood, ND, USA) for soil physical and chemical

analysis, which included analyses of P, K, Zn, Ca, Mg, N, CEC, organic

matter, and pH. In 2020, soils were also analyzed for microaggregate,

macroaggregate, and large macroaggregate percentages.
Statistical analysis

We assessed changes in C. arvensis ramet density in each plot

annually over the four-year period, beginning with an initial count

in 2017 before treatments started and ending at harvest in 2020. We

analyzed density using a linear mixed effects model (`lmer` in R-

package ‘lme4’; Bates et al., 2015). The model had the fixed effects of

year, cropping system treatment, and the interaction between the

two variables. Block and a unique plot identifier were added as

random effects to account for grouping of replicate blocks and the

repeated measures of the same plots over time. Convolvulus arvensis

ramet density was scaled to ramets per m2 and log-transformed to

meet assumptions of normality. Type-III ANOVA (`anova` in R-

package ‘lmerTest’; Kuznetsova et al., 2017) was used to determine

if year, treatment, or their interaction accounted for variation in C.

arvensis densities. Estimated marginal means of C. arvensis ramet

density were calculated and compared using the Tukey post-hoc

method (`emmeans` in the R-package ‘emmeans’; Lenth, 2021). We

estimated marginal and conditional R2 using the `r.squaredGLMM`

function in ‘MuMIn’ package (Bartoń, 2023). The marginal R2

describes proportionally the variance explained by the fixed effects,

whereas the conditional R2 describes the variance explained by both

fixed and random effects (Nakagawa & Schielzeth, 2013). We

correlated density and biomass of C. arvensis in plots using

density and biomass data from 2019 and 2020.

Interannual rates of ramet density change were calculated using

the common growth rate equation, [relative growth rate = ln(Nt+1/

Nt)], where N is the density of ramets in a plot, and t is an annual

time step (Vandermeer and Goldberg, 2013). We fit a linear mixed

effects model with transition period (e.g., 2017 to 2018), cropping

system treatment, and their interaction as the fixed effects, and

block and unique plot identifier as the random effects. Estimated

marginal means were calculated and compared using the Tukey

post-hoc method (`emmeans` in the R-package ‘emmeans’; Lenth,

2021). To determine if growth rates were positive or negative

between transition periods, the estimated marginal means were

tested against the default of zero (relative growth rate = 0) using a

reference grid and `test` function in the R-package “emmeans”

(Lenth, 2021).

To assess if soil chemical characteristics differed among

treatments, we tested individual soil parameters using linear
frontiersin.org
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mixed effects models with treatment as a fixed effect and block as a

random effect. To assess soil stability, slake test data were scored as

integer counts and analyzed using a generalized linear model with a

Poisson distribution (Carpenter and Chong, 2010). Post-hoc Tukey

comparisons using the ‘emmeans’ package (Lenth, 2021) were

conducted to assess differences in soil aggregate stability

between treatments.

All statistical analyses and graphics were performed and

produced in the statistical environment R, version 4.0.2 (R Core

Team, 2020; graphics produced using R-packages “ggplot2”

(Wickham, 2016) and “cowplot” (Wilke, 2019)). Linear mixed

effects models were assessed visually for normality and

homoscedasticity. Differences between all explanatory and

response variables for all models were analyzed at the P < 0.05 level.
Results

Convolvulus arvensis density changes

The interaction between year and cropping system treatment

affected C. arvensis ramet density (P < 0.001; Table 3; Figure 1). The

fixed effects of year, cropping system treatment, and their

interaction explained 42% of variation (marginal R2 = 0.42), and

the combined fixed and random (block and plot) effects accounted

for 71% of variation (conditional R2 = 0.71). There were no

differences in C. arvensis ramet density among cropping system

treatments in the first (2017) and second year (2018) of the study

(Supplemental Table 1.1). In the first two years, mean C. arvensis

density for all treatments ranged between 0.3 and 1.3 ramets per m2

(Figure 1; Supplemental Table 1.1). In the third year (2019), C.

arvensis ramet density differed among treatments (Figure 1;

Supplemental Table 1.1). Six cropping system treatments had C.

arvensis densities that remained between 0 and 1 ramet per m2,

including Tillage 1 (0.01 ramets/m2 ± 0.01 SE), Tillage 2 (0.1 ± 0.1),

Conventional Alfalfa (0.2 ± 0.2), Organic Alfalfa (0.09 ± 0.09),

Spring Till (0.4 ± 0.4), and Reduced Till treatments (1.0 ± 1.0). In

this year, Tillage 1 had significantly lower C. arvensis ramet density

than four other treatments: Wheat-CC + till (P = 0.005; 4.0 ± 4.0),

Grazing-CC (P = 0.01; 3.0 ± 3.0), Rye-CC + till (P = 0.01; 2.8 ± 2.8),

and Wheat-CC (P = 0.01; 2.5 ± 2.5; Supplemental Table 1.1).

In the final year of the study (2020), Tillage 1 (0.01 ± 0.01) had

lower mean C. arvensis density than the Reduced Till treatment (1.7

± 1.7), Rye-CC + till treatment (2.8 ± 2.8), the Wheat-CC + till

treatment (5.1 ± 5.0), and the Grazing-CC treatment (6.7 ± 6.7;

Figure 1; Supplemental Table 1.1). The Conventional Alfalfa
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treatment (0.04 ± 0.04) also had lower C. arvensis density than

the Grazing-CC treatment (P = 0.02) and the Reduced Till

treatment (P = 0.03). At the end of the study, treatments with the

highest C. arvensis densities (Grazing-CC and Rye-CC + till) had

crop rotations with multiple years of either annual or biennial cover

crops and minimal to moderate tillage. In contrast, the treatments

with the lowest C. arvensis densities had perennial alfalfa or

frequent tillage throughout the growing season.

The interannual relative growth rates of C. arvensis varied in

response to cropping system treatment (P = 0.04) and the

interaction of treatment and transition period (P = 0.005;

Table 4). Over the course of the study (2017 to 2020), the relative

growth rate of C. arvensis density was negative in the Tillage 1

treatment (P < 0.01; Figure 2A; Supplemental Table 1.2). Over the

same period, the relative growth rate of C. arvensis density was

positive in the Grazing-CC (P < 0.01; Figure 2A). The average

relative growth rates of the remaining eight treatments did not

significantly differ from zero over the course of the study

(Figure 2A). However, certain cropping system treatments did

show significant changes in relative growth rates within years of

the study.

The average relative growth rate of C. arvensis in the Reduced

Till plots was negative during the first transition period (2017-2018;

relative growth rate = -1.64; see Figure 2B) but significantly

increased in the second transition (2018-2019; relative growth

rate = 2.24; see Figure 2C). In the Reduced Till treatment, the C.

arvensis growth rate increase coincided with a reduction in tillage

and the second season of an annual cover crop mix. During the

same period, C. arvensis relative growth rate in the Tillage 1 plots

decreased (relative growth rate = -3.54), in conjunction with the

start of intensive, consistent mechanical tillage (Figure 2C).

Convolvulus arvensis relative growth rate was also negative

(relative growth rate = -1.95) in the Organic Alfalfa treatment

during the second transition period (from 2017-2018 to 2018-2019;

Figure 2C), which corresponded to the second year of perennial

crop growth. Finally, C. arvensis growth rate decreased in the

Wheat-CC treatment from the second to third transition period

(from 2018-2019 to 2019-2020; Figure 2D), which may be due in

part to the planting of a more competitive wheat grain crop instead

of a broadleaf annual crop.
Biomass, wheat yield, and soil analyses

Over the course of the study, estimated C. arvensis biomass was

significantly correlated with plot density (cor = 0.72). In the final
TABLE 3 Analysis of variance (ANOVA) for a linear mixed effects model of Convolvulus arvensis density on the log scale as effected by year (e.g.,
2017), cropping system treatment, and their interaction.

Predictor Sum Sq. Mean Sq. NumDF DenDF F-value Pr(>F)

Year 0.5 0.2 3 60 0.21 0.95

Treatment 32.1 3.6 9 18 1.80 0.06

Year: Treatment 108.0 4.0 27 60 2.63 <0.001***
fron
ANOVA table using type III analysis of variance with Satterthwaite’s method.
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study year (2020), wheat yields did not vary by treatment (P = 0.3;

Supplemental Table 1.3). Soil aggregate percentages and most soil

chemical properties also did not vary by treatment (Supplemental

Tables 1.4 – 1.7). Slake soil stability scores did vary by cropping

system treatment (P < 0.001; Figure 3). The Tillage 1 treatment had

lower soil stability compared to all other treatments (P < 0.001),

except the Tillage 2 treatment (Figure 3). Tillage 1 had a mean score

of 3.6, indicating that less than 10% of soil remained on the sieve

after five wetting cycles (USDA, 1999). Tillage 2 differed from all

treatments (4.0; P = 0.001), except the Spring Till treatment and the

Wheat-CC + till treatment. The remaining treatments had mean

scores of 5 or higher, indicating that 25% to 75% of soil remained on

the testing sieve after five wetting cycles (United States Department

of Agriculture, 1999).
Discussion

Perennial rhizomatous weeds in organic, small grain cropping

systems are difficult to manage (OAEC, 2013; DeDecker et al., 2014;

Tautges et al., 2017b; Orloff et al., 2018). In this experiment, we

recorded increases in mean C. arvensis density in certain annual and

biennial crop rotations with minimal to moderate tillage. By the

fourth growing season, C. arvensismean densities were largest in the
Frontiers in Agronomy 07
Grazing-CC treatment, which incorporated livestock grazing and a

biennial sweet clover crop. Extensively tilled fallow plots (Tillage 1,

Tillage 2) and alfalfa forage (Conventional Alfalfa, Organic Alfalfa)

plots had consistently low mean C. arvensis densities (Supplemental

Table 1.1). Tilled fallow decreased C. arvensis density over the course

of the study. However, tilled treatments also had lower soil aggregate

stability than other treatments, and therefore a greater erosion

potential. Our research suggests incorporation of periods of

perennial crops or extensively tilled fallow may maintain lower C.

arvensis populations in organic cropping systems, while prolonged

use of annual crops in rotation or large reduction in tillage can allow

for expansion for C. arvensis populations.

Annual cropping systems in this study had more varied

changes in C. arvensis density than tilled fallow or perennial

forage cropping system treatments. Following an initial lag in

density changes, our study found C. arvensis densities increased in

both annual and biennial cropping systems in years where a

broadleaf forage crop was sown (Supplemental Table 1.1). For

example, the standard wheat cover crop rotation (Wheat-CC) had

low C. arvensis density in the initial wheat phase, which then

increased in the field pea phase, and decreased during the final

spring wheat phase.

Annual cover crops vary in their ability to suppress weeds in

dryland agroecosystems and have produced mixed results
FIGURE 1

Estimated means of ramet density of Convolvulus arvensis per m2 among ten cropping system treatments over a four-year period (2017-2020).
TABLE 4 Analysis of variance (ANOVA) for a linear mixed effects model of Convolvulus arvensis relative population growth rate in response to
transition period (e.g., 2017-2018), cropping system treatment, and their interaction.

Predictor Sum Sq. Mean Sq. NumDF DenDF F-value Pr(>F)

Transition period 1.4 0.5 3 60 0.2 0.04*

Treatment 56.1 6.2 9 20 2.6 0.90

Transition period: Treatment 148.4 5.5 27 60 2.3 0.005**
front
ANOVA table using type III analysis of variance with Satterthwaite’s method.
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depending on crop type (Kumar et al., 2020). Cereals tend to be

more competitive with perennial weeds than broadleaf annuals due

to increased residue cover (Derksen et al., 2002; Lensenn et al., 2015;

Ghimire et al., 2018). Biennial sweet clover (Melilotus officinalis L.),

especially when undersown with other crops, has suppressed

perennial weeds in dryland cropping systems due to high biomass

production (Schoofs and Entz, 2000; Blackshaw et al., 2001).

However, research in Montana demonstrated the integration of a
Frontiers in Agronomy 08
sweet clover cover crop and sheep grazing to produce high weed

density and low subsequent wheat yields (Larson et al., 2021). In our

study, the cropping system treatment with biennial sweet clover had

one of the highest densities of C. arvensis. In the initial

establishment phase during the first year of the biennial life cycle,

the competitive ability of sweet clover is limited, though in both

years the density of C. arvensis increased. Because some annual

crops have limited competitive ability and tillage can only be used in
FIGURE 2

Convolvulus arvensis mean relative growth rate (change in ramet density over time) with 95% confidence intervals for relative population growth
rates by cropping system treatment, as derived from the underlying linear mixed-effects model for the entirety of the study period from 2017 to
2020 (A), 2017 to 2018 (B), 2018 to 2019 (C), and 2019 to 2020 (D). Green lines indicate a significant decrease in relative growth (e.g., significantly
less than zero) over the given time interval (P < 0.05). Blue lines indicate a significant increase in relative growth (e.g., significantly greater than zero)
over the time interval (P < 0.05). Purple lines indicate relative growth rate does not differ from zero.
FIGURE 3

Mean slake soil stability scores among ten cropping system treatments with 95% confidence intervals. Letters indicate significant post-hoc
differences in soil stability among cropping system treatments (P < 0.05).
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certain stages, annual cropping systems are likely more suspectable

to increases in C. arvensis and overall more variable in their

suppression of weeds.

In comparison to the annual crop rotations, C. arvensis density

did not increase in perennial alfalfa treatments. In a review of C.

arvensis distribution in the United States, Boldt et al. (1998)

reported increased C. arvensis infestations after land was removed

from the Conservation Reserve Program, suggesting the transition

from perennial cover to annual crops allowed for spread of the more

competitive perennial C. arvensis. Meiss et al. (2010) similarly

reported perennial crop fields to have lower perennial weed

populations (specifically C. arvensis) than annual crop fields. Our

study demonstrates that perennial crops were associated with lower

C. arvensis populations.

The competitive ability of alfalfa with perennial cropland weeds

has been well-documented (Meiss et al., 2010; Tautges et al., 2017a;

Favrelière et al., 2020), but in this paper we show that it can be used

successfully for weed management in organic cropping systems.

Integrating an alfalfa phase into conventional small grain cropping

system can suppress perennial weeds better than continuous cereal

crops (Ominski et al., 1999). In organic systems specifically, Grosse

et al. (2021) demonstrated that the choice of a perennial alfalfa-

grass crop rotation was the most important factor for managing

perennial weeds. Our results suggest that incorporating competitive

perennial crops, particularly alfalfa, can effectively prevent the

growth of C. arvensis populations.

The success of the intensive tillage-fallow treatment confirms

the results of historical studies, which saw reduced or even

eradicated C. arvensis populations using thorough and repeated

mechanical disturbance (as reviewed by Sosnoskie et al., 2020). In

the dryland, organic cropping systems of the Northern Great Plains,

soil deterioration due to increased mechanical cultivation is a threat.

Though we found similar soil chemical properties among the

cropping system treatments, physical soil stability was

significantly lower in the intensively tilled fallow compared to the

treatments where crops were grown consecutively. While successful

in decreasing C. arvensis populations, the adverse effects of such

extensive tillage have made it impractical and unsustainable for

wide-scale weed management. Alternatively, while no-tillage or

reduced tillage is less damaging for soil stability, it has been

shown to increase perennial weed presence due to insufficient

reduction of underground rhizomes (Hume et al., 1991; Menalled

et al., 2001; Buhler, 2002).

Overall, we demonstrated that annual crop-dominated systems

can lead to increases in C. arvensis populations, especially in

livestock-integrated systems. Intensively tilled fallow reduced C.

arvensis populations but was also associated with low soil aggregate

stability. Integrating consecutive years of alfalfa into grain

production suppressed C. arvensis populations as well as intensive

tillage. To improve the sustainability of weed management in

dryland organic grain systems, incorporation of a perennial ley

phase is recommended to both suppress perennial weeds and

reduce dependence on mechanical cultivation.
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