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Toxicity of essential oils
on cabbage seedpod weevil
(Ceutorhynchus obstrictus)
and a model parasitoid
(Nasonia vitripennis)

Silva Sulg1*, Riina Kaasik1, Triin Kallavus1,2 and Eve Veromann1*

1Chair of Plant Health, Institute of Agricultural and Environmental Sciences, Estonian University of Life
Sciences, Tartu, Estonia, 2Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent
University, Ghent, Belgium
Plant essential oils are being increasingly studied as a potential environmentally

friendly alternative to synthetic insecticides. The insecticidal efficacy of essential

oils on the cabbage seedpod weevil (Ceutorhynchus obstrictus), an important

oilseed rape pest, has not been previously tested. We examined the impact of six

essential oils on C. obstrictus via contact with dry residues on leaf and flower

surfaces. We also examined the effect of these essential oils on a model non-target

parasitoid wasp, Nasonia vitripennis. Exposure to dry residues of cumin (Cuminum

cyminum) and cinnamon (Cinnamomum verum) essential oils (applied to oilseed

rape leaves) resulted in significant loss of mortality and immobility in C. obstrictus

adults. Treatment with C. cyminum essential oil at 1.5% resulted in 50.71%mortality

and 87.3% combined mortality and immobility in C. obstrictus. Cinnamomum

verum oil, at 1.5% concentration, resulted in 88.8%mortality and immobility among

C. obstrictus 24 h post-treatment. All treatments studied with essential oil dry

residues at 0.3% concentration caused high mortality and immobility in N.

vitripennis. The greatest mortality and immobility were observed at 0.3%

concentration in F. vulgare and C. verum treatments (54 and 53% loss

respectively). At 0.1% concentration, F. vulgare and T. vulgaris significantly

reduced parasitoids mobility and at 1.5% concentration all essential oils resulted

in 100% mortality of N. vitripennis after 3 h. Our study revealed that C. cyminum

and C. verum essential oils may have potential in the management of C. obstrictus.

However, their impact on non-target organisms, including parasitoids, needs to be

studied more thoroughly to determine the potential of essential oil main

compounds in integrated pest management.
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1 Introduction

The cabbage seedpod weevil (Ceutorhynchus obstrictusMarsham)

is widely distributed and one of the most important oilseed rape pests

in Europe (Williams, 2010) and North America (Buntin, 1998;

Dosdall et al., 2006; Dosdall and Mason, 2010). Adult C. obstrictus

feeds on flower buds and young pods of oilseed rape plants, but the

main economic loss is caused by larvae feeding within the seedpods

(Bonnemaison, 1957; Williams and Free, 1978). Management of C.

obstrictus is mostly based on synthetic insecticides that have harmful

effects on biodiversity, pollute the environment (Geiger et al., 2010)

and may leave pesticide residues on products (Yigit and Velioglu,

2020). Broad-spectrum insecticides have fatal effects on naturally

occurring predatory arthropods such as lacewings, spiders, ladybirds,

carabid beetles, rove beetles and parasitoids, which otherwise can

effectively control the abundance of agricultural pests and reduce the

need to apply insecticides (Tschumi et al., 2016; Begg et al., 2017;

Albrecht et al., 2020). For example, key parasitoids of C. obstrictus can

substantially contribute to biocontrol services, as the parasitism rate

of C. obstrictus can reach up to 90% (Veromann et al., 2011; Kovács

et al., 2019). In the light of the European Union’s Farm to Fork

Strategy which aims to diminish the negative impacts of agriculture

on the environment, there is a great need to find environmentally

sustainable pest control measures (European Commission, 2020).

Essential oils are of interest in pest science, as a possible alternative

to synthetic plant protection products (Menossi et al., 2021; Devrnja

et al., 2022). Several studies have highlighted their insecticidal effects

on important agricultural pests (Das et al., 2021; Devrnja et al., 2022).

An added complexity of essential oil studies is due to the variable

chemical composition, even within the same plant species, as a result of

different cultivars, growing conditions, production methods, plant

parts used and harvesting times (Figueiredo et al., 2008; Baser and

Buchbauer, 2009; Turek and Stintzing, 2013). Previously, several

studies have examined the potential of essential oils to control

another oilseed rape pest – pollen beetle (Brassicogethes aeneus

Fabricius) (Mauchline et al., 2005; Pavela, 2011; Mauchline et al.,

2013; Dorn et al., 2014; Willow et al., 2020). Pavela (2011) found that

Carum carvi L., Thymus vulgare L. and Foeniculum vulgareMiller had

an insecticidal effect against the pollen beetle, while Willow et al.

(2020) showed only a slight insecticidal effect of residual exposure

using very high dosage of Cinnamomum verum J. Presl oil; Mauchline

et al. (2005); Mauchline et al. (2013) and Dorn et al. (2014) found

repellent and lethal efficacy with Lavandula angustifolia Miller while

Cook et al. (2007a) indicated no behavioural response from the main

parasitoids Phradis interstitialis Thomson and P. morionellus

Holmgren. However, it is unknown whether these essential oils are

effective against another oilseed rape pest, C. obstrictus, as well which

could potentially aid in the control of these two major pests

simultaneously. While botanical insecticides are considered to be less

toxic to humans and the environment compared to synthetic

pesticides, their impact on the natural enemies of pests should be

assessed, as they can interfere with their behavior or biology

(Rampelotti-Ferreira et al., 2017; Parreira et al., 2018; Lima et al.,

2020; Stenger et al., 2021).

Biosafety of plant protection products is a major concern in

agriculture. Ideally, plant protection product applications should not

be at the expense of non-target organism populations, especially those
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contributing to biological control of the target pest. Some essential oils

have been evidenced as safe for such beneficial insects. For instance,

essential oil residues ofOriganum vulgare L. and T. vulgaris showed no

sublethal or lethal effects in the parasitoid Trissolcus basalisWollaston

(Platygastridae) in direct contact and fumigation bioassays (Werdin

González et al., 2013). Essential oil from Piper aduncum L. showed

promising results to control the stink bug Euschistus heros Fabricius,

while parasitism and emergence of the egg parasitoids Telenomus

podisi Ashmead (Platygastridae) and Trissolcus urichi Crawford

(Scelionidae) were unaffected (Turchen et al., 2016). However,

decreases in parasitism rate have been observed in other species

(Boeke et al., 2003; Stenger et al., 2021), leaving the biosafety profile

of essential oils questionable with regard to parasitoids.

In this study, we aimed to investigate whether the dry residues of

six plant essential oils affect the mortality and immobility of C.

obstrictus, as well as mortality and immobility, and next generation

development of the model parasitoid Nasonia vitripennis Walker

(Hymenoptera: Pteromalidae). We show that Cuminum cyminum L.

and C. verum essential oils have potential for use in C. obstrictus

management, but also that their impact on parasitoids needs further

study to determine the actual potential of these essential oils within

integrated oilseed rape protection.
2 Materials and methods

2.1 Insects

We collected C. obstrictus adults from an untreated oilseed rape

field (58.36377°N, 26.66145°E, Tartu County, Estonia) using a plant

tapping method and collecting insects into a ventilated plastic bottle.

In the laboratory we identified C. obstrictus via Morris (2008) and

allowed weevils to feed ad libitum on oilseed rape leaves and flowers

also collected from the same field. As the key parasitoids of C.

obstrictus are of the family Pteromalidae, we used N. vitripennis as

a model non-target biocontrol species in this study. Nasonia

vitripennis were reared in a climate chamber (Sanyo MLR-351H,

Japan) at 20 ± 2°C, 60% RH and 16:8 h light:dark cycle, using blow fly

(Calliphora sp.) pupae as the host. Blow fly larvae were bought from a

commercial fishing store and were allowed to pupate in the

laboratory. To produce new N. vitripennis adults, we placed

approximately 20 blow fly pupae into transparent, polystyrene,

ventilated insect breeding dishes (diameter 10 cm x height 4 cm;

SPL Life Sciences, Gyeonggi-do, South Korea; hereafter referred to as

cages), and introduced approximately 20–50 fast moving (a proxy for

insect health) N. vitripennis adults into the cages. Prior to introducing

the parasitoids to the cages, parasitoids were fed 50% sugar water to

optimize their reproductive potential.
2.2 Examining the effect of six essential
oils on C. obstrictus via contact with
dry treatment residues on leaf and
flower surfaces

To examine the effect of essential oil applications on C. obstrictus’

mortality and immobility, we treated oilseed rape leaf and flower
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surfaces with T. vulgaris, F. vulgare, C. cyminum, C. verum, C. carvi

and Cannabis sativa L. essential oils. Pure essential oils were ordered

from Talia (Rome, Italy; www.taliaessenze.com) in 2019, and once

received stored in a refrigerator at +4°C, in small separate boxes in

darkness. Details regarding the origin of plants, plant parts used,

extraction method, and the major relevant compounds in each

essential oil used, are described in detail in Willow et al. (2020).

The gas chromatography–mass spectrometry (GC-MS) used for

analyzing the essential oils, is described in detail in Kännaste et al.

(2014). In the present study, essential oils were used at a

concentration of 1.5%, with acetone as the solvent and polysorbate

Tween80 (0.05%) as a wetting agent. The negative control treatment

contained only acetone and Tween80; the positive control treatment

was analytical grade lambda-cyhalothrin applied at the recommended

field concentration (7.5 g active compound/ha) in acetone and

Tween80. For each treatment, oilseed rape leaves were individually

placed on a petri dish and using a pipette, at 1000 µl of treatment

solution were applied onto each oilseed rape leave (~ 12 cm x 9 cm).

In each petri dish we included four oilseed rape flowers dipped in the

respective [acetone + Tween80 + essential oil] solution. After that,

treated leaves and flowers were allowed to air dry for 1 h, and then one

leaf and four flowers were placed into each cage, followed by the

introduction of eight C. obstrictus adults into each cage. Five cages per

each treatment were prepared. Cages were kept in a ventilated room

with an ambient air temperature of 22 ± 2°C, away from direct

sunlight. Survival and mobility of weevils were assessed after 3 h and

24 h of exposure to dry residues of each treatment. In each sample, the

number of weevils displaying immobility effects, including erratic

movements or loss of mobility, was recorded, and all dead weevils

were counted. This experiment was repeated twice, in total ten cages

per treatment (N=10), total of 80 weevils per treatment.

The two most effective essential oils from the abovementioned

tests were then evaluated for C. obstrictus control efficacy at four

different concentrations. Here, we examined the dry residues of C.

verum and C. cyminum essential oils applied at 0.5%, 1%, 1.5% and

2% concentrations. The experimental setup was the same as

previously described, but the experiment was not repeated (N=5),

total of 40 weevils per treatment.
2.3 Examining non-target effects of six
essential oils on N. vitripennis

To examine the effects of essential oils on N. vitripennis, we

treated filter paper, via pipette, with the same six plant essential oils as

were tested on C. obstrictus, using acetone as the solvent, as well as

Tween80 (0.05%). The positive controls were the same as used in the

C. obstrictus assays. Here, all six essential oils were applied at four

concentrations: 0.1%, 0.3%, 0.5% and 1.5%. For each treatment, we

pipetted 1000 µL of treatment solution onto five pieces of filter paper

(~ 7 cm x 3 cm) individually on a petri dish. After treatment, the filter

papers were allowed to air dry for 1 h, and subsequently placed into

cages, one piece of filter paper per cage. Eight N. vitripennis adults

were introduced to each cage, and the cages were kept in a ventilated

room with an ambient temperature of 22 ± 2°C. At 3 h and 24 h post-

exposure to treatment residues, N. vitripennis mortality and

immobility were monitored. This experiment was repeated twice, in
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per treatment.

To assess the potential impact of essential oils on the

developmental success of N. vitripennis, we used already-parasitized

blow fly pupae. For that, the parasitoids we allowed freely to lay eggs

into the blow fly pupae for 7 days. After 7 days, adult parasitoids were

removed, and blow fly pupae were dipped into the treatment solutions

for 2 seconds, allowed to air dry for 1 h, and then placed into cages, 10

pupae per cage. Cages were kept in a ventilated room with an ambient

temperature of 22 ± 2°C, away from direct sunlight, for three weeks.

After that, all emerged parasitoids were counted, and all pupae were

dissected to indicate the presence of unemerged parasitoids. The

experiment was repeated twice and in total ten cages per treatment

(N=10), total of 80 pupae per treatment.
2.4 Statistical analysis

Statistical analyses were performed in R v3.6.1 (R Core Team,

2018), using the R packages “car”, “emmeans”, “MASS”, “DHARMa”

and “dunn.test” (Venables et al., 2002; Dinno and Dinno, 2017; Hartig

and Hartig, 2017; Fox and Weisberg, 2019; Lenth, 2022). For C.

obstrictus analyses, Generalized Linear Models (GLMs) with Poisson

distribution and log link function and Wald statistics Type III

empirical standard error were used. For the post-hoc comparisons,

the Tukey test was used. To analyze N. vitripennis data, as the

residuals of the model were not normally distributed, we used the

nonparametric Kruskal-Wallis test, followed by Bonferroni-Dunn’s

test for post-hoc pairwise comparisons.
3 Results

3.1 Effect of essential oil residues on
C. obstrictus mortality and immobility

After 3 h of contact with dry residues of essential oil treatments,

survival rates did not differ from the negative control treatment

(Figure 1A). At 24 h post-treatment, however, we observed a

significant effect on survival (c2 = 132.41, df=7, p<0.0001).

The highest mortality (82.5 ± 6.8%) was observed in the C. verum

oil treatment, followed by the positive control (53.75 ± 3.75%) and

C. cyminum oil (50.71 ± 8.77%) treatment, while the mortality of

weevils exposed to T. vulgaris, C. carvi and C. sativa essential oil

treatments did not differ significantly from the negative control

(Figure 1A). Negative control treatment had no effect on survival.

Treatment with essential oils had a significant impact on C. obstrictus

mortality and immobility rates after 3 h (c2 = 90.32, df=7, p <0.0001;

Figure 1B). The greatest effect on C. obstrictus mortality and immobility

was observed in the positive control treatment (76.3 ± 6.3%), followed by

C. carvi oil (33.8 ± 11.9%) and C. cyminum oil (22.5 ± 7.9%). The

mortality and immobility rate increased at 24 h post-exposure to dry

residues, in all treatments except C. carvi. The greatest losses of mortality

and immobility in C. obstrictus were observed in the C. cyminum (87.3 ±

4.9%) and C. verum (88.8 ± 4.7%) treatments, which did not differ

significantly from the positive control treatment (98.8 ± 1.3%) with

lambda-cyhalothrin. Treatments with T. vulgaris and C. sativa did not
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differ from the negative control (p>0.05), but F. vulgare differed

significantly from both the positive and negative control (p<0.05). No

mortality nor immobility effects were observed in the negative

control treatment.
3.2 Effect of different concentrations of
C. cyminum and C. verum essential oil
residues on C. obstrictus mortality and
immobility

As C. cyminum and C. verum represented the most effective

essential oils against C. obstrictus, we examined the effects of their

residues against C. obstrictus after applying these two essential oils at

increasing concentrations (0.5%, 1%, 1.5% and 2%) (Figures 2A-D).

At 3 h C. verum showed a significant effect on C. obstrictus survival

(c2 = 12.93, df=4, p=0.012) (Figure 2A), where concentrations of 1%

and higher caused mortality; however no significant effect on C.

cyminum was observed after 3 h (Figure 2B). At 24 h post-treatment,

both C. cyminum and C. verum essential oil residues significantly

increased C. obstrictus mortality (c2 = 126.49, df=4, p<0.0001; c2 =

87.29, df=4, p<0.0001, respectively). Ceutorhynchus obstrictus

mortality rates in C. cyminum treatments were significantly greater

in 1.5% and 2% compared to the 0.5% and 1% solutions (Figure 2B).

The mortality rates of C. obstrictus treated with C. verum essential oil

at 1%, 1.5% and 2% solutions exceeded 80% (82.5 ± 3.1%, 90 ± 10%

and 90 ± 4.7%, respectively), each differing significantly from the C.

verum 0.5% and control treatments. Mortality and immobility rates of

C. obstrictus reached up to 90% at 24 h post-exposure to dry residues
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(c2 = 300,77, df=4, p<0.0001; Figure 2D).
3.3 Effect of essential oil residue
concentrations on N. vitripennis mortality
and immobility

After 3 h of exposure to essential oil residues applied at 0.1%

concentration, there was a significant effect onN. vitripennismortality

and immobility (c2 = 20.96, df=6, p=0.0019), more parasitoids were

affected in T. vulgaris and F. vulgare treatments, 43.5 ± 11.9% and 15

± 8.3%, respectively (Figure S1I). After 3 h we observed under 10%

mortality and immobility for C. sativa (2 ± 0.42%), C. carvi (0%), C.

verum (7.0 ± 1.89%), C. cyminum (6 ± 1.07%). For insecticide

(lambda-cyhalothrin) treated group, a small mortality was observed

(1.5 ± 0.26%), same for negative control (tween) (4.5 ± 0.63%). At

24 h post-exposure of dry treatment residues, no significant effect on

mortality and immobility was observed for any of the essential oil

treatments applied at 0.1% concentration (c2 = 7.49, df=6, p=0.28).

The lowest mortality and immobility rates were observed in the C.

carvi treatment (3 ± 1.5%) and the highest in the T. vulgaris treatment

(29 ± 12.5%), but no significant differences between treatments were

found. The mortality and immobility rates at 24 h post-exposure to T.

vulgaris oil residues were lower than at 3 h post-exposure, indicating

that some specimens were able to recover from knockdown effects.

In all essential oil treatments applied at 0.3% concentration, N.

vitripennis mortality and immobility were significantly decreased at

both 3 h and 24 h (c2 = 24.98, df=6, p<0.001; c2 = 27.78, df=6,
A B

FIGURE 1

Effect of six plant essential oils (Thymus vulgaris, Foeniculum vulgare, Cuminum cyminum, Cinnamomum verum, Carum carvi and Cannabis sativa),
lambda-cyhalothrin (positive control) and Tween80 (negative control) on Ceutorhynchus obstrictus mortality (A) and mortality and immobility (B), at 3 h
and 24 h post-exposure to treated oilseed rape leaves and flowers, N=10 (80 weevils per treatment). All treatments were compared using Generalized
Linear Models (GLMs) with Wald statistic Type III, post-hoc comparisons with Tukey test, error bars: ± SE. Different lowercase and uppercase letters
indicate significant differences (p<0.05) between treatments at 3 h and 24 h post-exposure, respectively.
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p<0.0001, respectively) post-exposure to essential oil dry residues,

compared to the control treatment. At 3 h, the F. vulgare treatment at

0.3% concentration resulted in the greatest mortality and immobility

(54 ± 14.3%), followed by the C. verum treatment (53 ± 15.7%),

T. vulgaris (50 ± 5.27%), C. sativa (3 ± 0.48%), C. carvi (15 ± 2.06%),

C. cyminum (10 ± 3.16%), compared to the insecticide treatment

lambda-cyhalothrin (1.5 ± 0.26%) and negative control (tween) (4.5 ±

0.63%). At 24 h, C. verum oil at 0.3% concentration resulted in

the greatest loss of mobility (63.5 ± 4.1%), followed by T. vulgaris oil

(60 ± 4.8%) (Figure 3A).

In all essential oil treatments applied at 0.5% concentration, N.

vitripennis mortality and immobility were significantly decreased at

both 3 h (c2 = 59.54, df=6, p<0.0001) and 24 h (c2 = 53.84, df=6,

p<0.0001). At 3 h post-exposure to the C. verum treatment at 0.5%

concentration, the mortality and immobility rate of N. vitripennis was

100%, followed by the T. vulgaris and F. vulgare treatments (100% and

97 ± 2.1%, respectively), C. cyminum (44 ± 4.48%), C. carvi (21 ±

3.31%) and C. sativa (24 ± 2.95%). At 24 h, there was a significant loss

of mortality and immobility in all 0.5% concentration essential oil

treatments. The greatest loss of mortality and immobility at 24 h was

observed in the C. verum treatment (100%) (Figure 3B). Contact with
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dry residues of the insecticide lambda-cyhalothrin did not result in a

significant loss of N. vitripennis mortality and immobility, compared

to the negative control treatment. All essential oils, at 1.5%

concentration, resulted in 100% mortality of N. vitripennis after 3 h.
3.4 Effect of essential oils on the number of
next generation N. vitripennis

After allowing N. vitripennis to parasitize untreated blow fly pupae

for 7 days, we treated the parasitized pupae to determine the post-

parasitism mortality of developing parasitoids. Compared to the

untreated control group, the average number of next generation

N. vitripennis adults that emerged was greatest in the group consisting

of untreated pupae (223 ± 16.3 specimens), followed by pupae treated

with C. verum oil (176 ± 11.3 specimens) and F. vulgare oil (171.8 ± 12.5

specimens), although the differences were not significant (Figure 4).

Compared to untreated pupae, significantly less parasitoids emerged

from C. sativa, C. cyminum and T. vulgaris treatments decreasing the

number of emerging parasitoids similar to lambda-cyhalothrin where

only 85.7 ± 16 next generation parasitoids emerged.
A B

DC

FIGURE 2

Effect of Cuminum cyminum essential oil residues, at different concentrations, on Ceutorhynchus obstrictus mortality ( ± SE) (A) and mortality and
immobility ( ± SE) (C), at 3 h and 24 h post-exposure to treated oilseed rape leaves and flowers. Effect of Cinnamomum verum essential oil residues, at
different concentrations, on C obstrictus mortality ( ± SE) (B) and mortality and immobility ( ± SE) (D), at 3 h and 24 h post-exposure to treated oilseed
rape leaves and flowers, N=10 (80 weevils per treatment). All treatments were compared using Generalized Linear Models (GLMs) with Wald statistic Type
III and post-hoc comparisons with Tukey test. Different lowercase and uppercase letters indicate significant differences (p<0.05) between treatments at
3 h and 24 h post-exposure, respectively. No significant difference was observed for C cyminum mortality after 3 h.
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4 Discussion

The present study showed that contact with essential oil residues

via treated oilseed rape leaves and flowers caused both mortality and

immobility in C. obstrictus adults. In addition to C. obstrictus,

essential oil treatments showed an impact on the mortality and

immobility of a model pteromalid parasitoid, N. vitripennis, and

furthermore influenced the number of next generation adult

parasitoids that emerged from their hosts. Our results showed that

at 24 h post-treatment with C. cyminum and C. verum essential oils at

1.5% concentration they were as effective as the synthetic insecticide

lambda-cyhalothrin, mortality and immobility of C. obstrictus adults

reached 82.5% for C. verum and 50.7% for C. cyminum. There is an

overlap in the occurrence of B. aeneus and C. obstrictus in oilseed rape

fields (Veromann et al., 2006; Sulg et al., Under Review); B. aeneus

arrives a little bit earlier than C. obstrictus, as its flight threshold

temperature is 12°C (Williams, 2010), whereas for C. obstrictus, it is

13–15°C (Free and Williams, 1979; Lerin, 1991). However, they are

both present in oilseed rape fields from the green bud stage (BBCH

51) (Veromann et al., 2006; Veromann et al., 2012). Therefore, it is

possible that treatments targeting B. aeneus may also contribute to C.

obstrictus control and vice versa. Our new findings show the potential

of C. verum essential oil to manage C. obstrictus, but as it greatly

exceeds that of previously reported for B. aeneus (17.5% combined

immobility and mortality) (Willow et al., 2020), the two species are

unlikely to be managed simultaneously using only C. verum. Based on

previous results and our new findings, the treatment of oilseed rape

with C. verum affects two of its main pests to some extent, therefore

indicating the need for further investigations. The essential oils used

in our study were almost the same (excluding anise) as inWillow et al.
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(2020). Gas chromatography–mass spectrometry results of the

C. verum oil used in the present study are reported in detail in

Willow et al. (2020). The primary active compound in the C. verum

oil used was reported to be (E)-cinnamaldehyde (46%), followed by

caryphyllene (15%), linalool (12%) and D-limonene (8%).

According to our best knowledge, the toxicities of essential oils for

C. obstrictus, or other species in the genus Ceutorhynchus, have not

previously been assessed. However, there are previous studies

examining other members of the family Curculionidae, where

essential oil treatment efficiencies have been examined. For

instance, essential oils isolated by hydrodistilling the dried fruit of

Trachyspermum ammi (L.) Sprague ex Turrill (Apicaceae) and Nigella

sativa L. (Ranunculaceae) have shown repellent activity and toxic

effects against the rice weevil (Sitophilus oryzae L.) (Chaubey, 2012).

The rice weevil was also examined by Saad et al. (2018), where they

found that, from all examined compounds contributing to

acetylcholinesterase inhibition, the most promising was trans-

cinnamaldehyde. Different essential oils, including C. verum, were

studied against the stored product pest Sitophilus zeamais

Motschulsky by Ramlal et al. (2020). They observed repellent and

lethal effects of C. verum oil, resulting in 78% and 97% mortality at

concentrations of 75 and 100 µL/mL, respectively. Similar to our

study, the main constituent of C. verum essential oil in their study was

cinnamaldehyde (62%) confirming that this compound can be

potentially exploited against weevil pests.

The mortality rates in other essential oil treatments in our study

were under 50% at 24 h, suggesting that their efficacy was insufficient

for use in controlling C. obstrictus abundance in oilseed rape crops. In

the present study, we did not examine other effects than mortality and

immobility of these essential oils on C. obstrictus adults, e.g. repellence
A B

FIGURE 3

Mortality and immobility rate ( ± SE) of Nasonia vitripennis adults at 24 h post-exposure to essential oil (Thymus vulgaris, Foeniculum vulgare, Cuminum
cyminum, Cinnamomum verum, Carum carvi and Cannabis sativa) dry residues [(A) 0.3% and (B) 0.5% concentrations] on filter paper. All treatments were
compared using Kruskal-Wallis test, followed by Bonferroni-Dunn’s test for post-hoc pairwise comparisons. Different letters indicate significant
differences (p<0.05) between treatments.
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etc. For instance, previous studies have shown the repellent effects of

essential oils on insects (reviewed in Lee (2018)) and also their

potential to be used in storage facilities as pest management

approaches (Cook et al., 2007b; Nerio et al., 2010; Campolo et al.,

2018; Xu et al., 2018; Bandeira et al., 2021), but the use for managing

agricultural pests have gained less attention. Essential oils can also be

used to manage agricultural pests, but in order to use them in

agricultural fields, the essential oils need to be more stable,

preventing them from evaporating or biodegrading (Oladipupo

et al., 2022). Future studies on C. obstrictus should examine

behavioral effects in addition to the effects examined in the present

study as exposure to essential oils, as well as treatment residuals, can

result in behavioral changes, for example deterring egg laying or

acting as antifeedant (Lazarević et al., 2020; Magierowicz et al., 2020;

Stenger et al., 2021). Examining our two most effective (against C.

obstrictus) essential oils, C. verum and C. cyminum, at four different

concentrations, showed C. verum oil at 1% concentration to be the

most efficient, resulting in almost 90% mortality and immobility at

24 h post-exposure, whereas C. cyminum oil at 2% concentration

resulted in 90% morality and immobility at 24 h post-exposure. We

presented mortality and immobility rates, since in nature, immobility

is likely to result in mortality. Immobile insects are easier prey, as well

as they may also die of dehydration, starvation, cold or heat stress,

etc., as a result of being in contact with toxic substances.

Similar to other insecticides, the effects of essential oils on non-

target organisms, including economically beneficial insects, should

always be assessed. It is necessary to assess the impact of essential oils

on the natural enemies of target pest species (e.g. relevant model

parasitoids). The present study demonstrated that C. verum essential

oil has the potential to control abundance of C. obstrictus, but at the

same time it resulted in almost 100% mortality in the model

pteromalid parasitoid N. vitripennis at 3 h post-exposure to
Frontiers in Agronomy 07
treatments at 1.5% concentration of all studied essential oils except

C. sativa. Testing the oils at 0.1% concentration showed that at 3 h

post-exposure, T. vulgaris oil residues resulted in the highest mortality

and immobility rates in N. vitripennis, although some parasitoids

were able to recover from immobility by the 24 h time point. Similar

to our results, Werdin González et al. (2013) found that one day old

residues of T. vulgaris essential oil resulted in 100% mortality in

parasitoid Trissolcus basalis Wollaston (Platygastridae) while one

week old residues did not result in any mortality. When targeting a

pest species, knowledge of parasitoid distribution in or arrival to the

crop is crucial, as pesticide application times can be planned in a

manner where the pesticide residues represent an insignificant threat

to target pest-relevant biocontrol agents. Essential oil residues of C.

verum show promising results for controlling C. obstrictus. However,

C. verum oil treatment, at 0.1% concentration, resulted in an

immobility rate of 17% in N. vitripennis. Increasing the

concentration of C. verum oil to 0.3% resulted in almost four times

this immobility rate in N. vitripennis, and residues from a 0.5%

concentration application of C. verum oil resulted in 100%

immobility. Thus, residues of C. verum essential oil, even when

applied in low concentrations, are not safe for the parasitoid N.

vitripennis. It remains unclear whether the essential oils could cause

side effects in the next generation of N. vitripennis.

When treating parasitized pupae with C. sativa and C. cyminum it

lowered hatching of the new generation of N. vitripennis to the same

level as treatment with insecticide. But as direct exposure to essential

oil residues, in the concentration of 1.5%, caused 100% mortality after

3 h among N. vitripennis, we can only assume that fly pupae served as

protective shield mitigating the toxic effect of treatments. It has been

reported that lambda-cyhalothrin can alter the ability of the

parasitoids to find and infest their hosts, even when mortality is not

observed among next generation female parasitoids (Desneux et al.,
FIGURE 4

Mean ( ± SE) number Nasonia vitripennis specimens emerged from ten blow fly (Calliphora sp.) pupae treated with different essential oils (Thymus
vulgaris, Foeniculum vulgare, Cuminum cyminum, Cinnamomum verum, Carum carvi and Cannabis sativa) (1.5% concentration) and lambda-cyhalothrin
(positive control), as well as in untreated pupae, 7 days after first generation N. vitripennis were introduced to their hosts. Differences between treatments
were compared using Kruskal-Wallis test, followed by Bonferroni-Dunn’s test for post-hoc pairwise comparisons. Different letters indicate significant
differences between treatments (p<0.05).
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2004). Even though parasitoids developed in our study, their

following parasitism efficacy remains unknown, and should be

investigated in future studies. Whether the pods concealing

parasitoids of C. obstrictus provide similar protection from

developing parasitoids needs investigating. It also remains unknown

whether the essential oil treatments in the present study had sublethal

effects on next generation adult parasitoids, representing a crucial

knowledge gap that is in need of assessment. Undetected sublethal

effects, could result in death or decreased fecundity or jeopardize host

location abilities. Our results show the potential of essential oils use in

controlling C. obstrictus. However, much more research is needed

before essential oils could be recommended for pest control.
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