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Tillage practices influence winter
wheat grain yield prediction using
seasonal precipitation

Lawrence Aula1, Amanda C. Easterly2 and Cody F. Creech1*

1Panhandle Research, Extension, and Education Center, Department of Agronomy and Horticulture,
University of Nebraska-Lincoln, Scottsbluff, NE, United States, 2High Plains Agricultural Laboratory,
Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Sidney, NE, United States
Making the best use of limited precipitation in semi-arid dryland cropping systems

is important for crop production. Tillage practices may influence how this

precipitation is utilized to predict winter wheat grain yield (Triticum aestivum L.).

This study examined how tillage practices influence winter wheat grain yield

prediction accuracy using precipitation received at three different periods of the

season. Data were obtained from the period of 1972 to 2010 from a long-term

tillage experiment. The study was designed as a winter wheat-fallow experiment.

Each phase of the winter wheat-fallow rotation was present each year. The trial

was set up as a randomized complete block design with three replications. Tillage

treatments included no-till (NT), stubble mulch (SM), and moldboard plow (MP).

Feed-forward neural network and multiple linear regression (ordinary least

squares) were used to fit models under each tillage practice. No-till had the

highest yield prediction accuracy with a root mean square error (RMSE) of 0.53

Mg ha-1 and accounted for 81% of the variability in grain yield. Stubble mulch had

an RMSE of 0.55 Mg ha-1 and explained 73% of the variability in yield. Stubble mulch

and NT were more accurate in yield prediction than MP which had an RMSE of 0.77

Mg ha-1 and accounted for 53% of the variability in yield. The multiple linear

regression model was less accurate than the feed-forward neural network model

since it had at least 0.30 Mg ha-1 more RMSE and accounted for only 5-8% of the

variability in yield. Relative RMSE classified all neural network models as fair (21.6-

27.3%) while linear regression models for the different tillage practices was

classified as poor (33.3-43.6%), an illustration that the neural network models

improve yield prediction accuracy. This study demonstrated that a large proportion

of the variability in grain yield may be accounted for under NT and SM systems

when using precipitation as predictors with neural networks.

KEYWORDS

yield prediction accuracy, tillage practices, precipitation, winter wheat, feed-forward
neural network, multiple linear regression, relative root mean squared error
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Introduction

Wheat (Triticum aestivum L.) is highly significant in the global

crop production system that it occupies 19.3% of the total global crop

production area (Dhillon et al., 2019). It provides a substantial

portion of the total calories (19%) consumed worldwide (Shiferaw

et al., 2013). This means it is a crop that is subject to numerous

research efforts needed to attain sustainable production for meeting

the rising global food demand associated with the growth in human

population (Barrett, 2021). Understanding factors that influence

wheat production is, therefore, key to achieving the sustainability of

the wheat production systems. Winter wheat yield potential is one

variable that is studied to aid in making appropriate crop

management decisions (Colaç o and Bramley, 2019; Zhang et al.,

2019; Marszalek et al., 2022). This is, for instance, used as a basis to

make a recommendation for nitrogen application whether preplant

(yield goal) or in-season (Dahnke et al., 1988; Raun et al., 2002). The

more accurately a yield potential is estimated, the higher the

likelihood that a sound management decision is made.

In recent decades, much attention has been given to the use of

technology to predict yield potential. This includes the use of satellites

and proximal remote sensing instruments such as GreenSeeker

(Filippi et al., 2019; Kamir et al., 2020; Gómez et al., 2021). At the

heart of these approaches, are spectral reflectance measurements

collected at specific electromagnetic wavelengths. These

measurements are further transformed to normalized difference

vegetation index (NDVI) or in-season estimated yield (INSEY) or

other indices to predict yield potential with or without other

predictors (Raun et al., 2001; Gómez et al., 2021). This can account

for up to 88% of the variability in winter wheat grain yield (Yunus and

Polat, 2022). More predictors improve the accuracy with which the

algorithms can predict grain yield potential (Colaç o and Bramley,

2019). However, with more predictors, there is an increased

likelihood of overfitting the model and careful selection of the

features needs to be undertaken (James et al., 2021) to increase the

yield prediction accuracy.

Precipitation and other climate variables are often recommended to

be used alongside other predictors to improve yield prediction accuracy

(Filippi et al., 2019; Aula et al., 2021). Although precipitation at specific

growth or reproductive stages may have a strong linear relationship

with grain yield when fit using ordinary least squares (Hatfield and

Dold, 2018), the entire growing season precipitation may have a poor

relationship with grain yield. For instance, Camara et al. (2003) showed

that annual and seasonal precipitation in Oregon had a positive linear

relationship with grain yield but that precipitation accounted for only

5.9-14.2% of the variability in grain yield. Since it is possible that this is

an R2 generated by fitting a model to the entire data set (unsplit into

training and validation set), the R2 obtained using a test data could be

lower than the 5.9-14% highlighted above. Relatedly, Omara et al.

(2020) conducted a study in Oklahoma and found seasonal

precipitation to account for about 25% of the variability in grain

yield at the highest nitrogen rate when evaluated using a linear

regression model. As this was also not validated, the amount of

variability explained by the model could be lower than the R2

obtained during model calibration. A poor relationship has also been

observed specifically between precipitation during the reproductive

stage and wheat grain yield but with precipitation having more effect on
Frontiers in Agronomy 02
grain yield during the vegetative stage (Yu et al., 2014). Nonetheless,

this study did not indicate the magnitude with which precipitation

accounted for the variability in grain yield. Considering that the

relationship between seasonal precipitation and grain yield may be

low, it may seem counterintuitive to use seasonal precipitation as a sole

predictor of winter wheat grain yield potential. However, with advances

in machine learning techniques (James et al., 2021), it may be possible

to explore the non-linear relationship between precipitation and grain

yield with increased prediction accuracy. Wallach et al. (2006) noted

that capturing the non-linearities in models aids our understanding of

agricultural systems much better. Additionally, precipitation at specific

periods of the year or different growth stages may influence winter

wheat grain yield differently and could be used as separate features for

predicting winter wheat grain yield. Feng et al. (2018) found indices

based on rainfall during specific months of the season to be important

variables that should be included in the model for predicting winter

wheat grain yield. In order tomake the best use of such predictors, feed-

forward neural network – a deep learning algorithm – capable of

detecting nonlinearities in responses of interest with more accuracy

could be deployed (James et al., 2021). The algorithm has the potential

to detect complex patterns in the data for improved prediction accuracy

(Khodayar et al., 2021) and this could be further explored in agriculture

for a more accurate yield prediction, an important option for a more

precise recommendation of crop nutrients, particularly nitrogen.

Despite its long existence among the statistical community, this deep

learning approach only regained more prominence in the scientific

communities after 2010 (James et al., 2021). As a result, its exploration

in yield prediction could offer a new tool in the scientific toolbox for

improving crop production efficiency. This study aims to understand if

tillage practices, that is, no-till (NT), stubble mulch (SM), and

moldboard plow (MP), influence winter wheat grain yield prediction

accuracy when using feed-forward neural network and compare the

results to models built using multiple linear regression approach with

precipitation as the predictors. No-till and SM are known to store extra

moisture in the soil (Lyon et al., 1998). This takes place, particularly

during the 14-month fallow phase leading to an improvement in soil

water and precipitation storage efficiency under NT (35%) relative to

MP (20%) (Tanaka and Anderson, 1997; Nielsen and Vigil, 2010).

Although this moisture hardly makes the yield associated with NT to be

substantially larger than that of MP and SM (Lyon et al., 1998), it is

uncertain if a model built under such a system can outperform a model

built under other tillage practices. The study hypothesizes that NT and

SM will result in models with a higher grain yield prediction accuracy

than a model built using data derived from the MP system under a

dryland cropping system. Furthermore, feed-forward neural network

will build a model with higher prediction accuracy than multiple linear

regression approach. Tang et al. (2022) used a similar approach in a

dryland cropping system and found the neural network using various

climate variables to reduce errors in yield prediction by as much as 502

kg ha-1 when compared to least absolute shrinkage and selection

operator (LASSO), a conservative linear model. This is illustrative of

the potential benefit of this approach in improving grain

yield prediction.

The objective of this work was to evaluate differences in the

prediction accuracy of models built under different tillage practices

that take precipitation at specific periods of the season as features for

predicting grain yield.
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Materials and methods

Site characteristics, experimental design,
and crop management

The experiment was conducted at the High Plains Agricultural

Laboratory (41°15’29.0”N 103°00’41.0”W) located in Sidney,

Nebraska. The soil at the experimental site is classified as Duroc

loam with 0-1% slopes (Fine-silty, mixed, superactive, mesic Pachic

Haplustolls) (Soil Survey Staff). The experiment was established in

1970 as a randomized complete block design.

The experiment consisted of three tillage treatments - no-till

(NT), stubble mulch (SM), and moldboard plow (MP). The fourth

and last treatment in this experiment was maintained as native sod.

Sod plots have never been tilled or planted with any crop since the

inception of the experiment. Because it has been retained as native

prairie grassland, it was excluded from this research and analysis.

With SM, the soil was tilled to a depth of 10-15 cm using 90-150 cm

V-Blades (Fenster and Peterson, 1979). The operation was done two

to four times with the first operation reaching a depth of 10-15 cm

while subsequent operations had the tillage depths reduced gradually.

This tillage practice retains crop residues on the soil surface, thus,

conserving soil and water (Fenster, 1961). An additional one to two

operations were carried out using a rotary rodweeder. For the MP,

tillage was carried out in spring of the fallow period to a depth of 15

cm. A field cultivator was used to perform two to three operations.

Lastly, a rotary rodweeder was used to perform one to two operations

(Fenster and Peterson, 1979). No-till plots were managed using

herbicides and planting was done using a NT drill having single

disk John Deere openers. Roundup [N-(phosphonomethyl) glycine)]

and 2,4 D LV 6 (2,4-Dichlorophenoxy acetic acid, 2-ethylhexyl ester)

were used to manage weeds during the fallow phase. The herbicides

were applied 2-3 times a year at the rate recommended by each

manufacturer. During the wheat phase, Beyond (ammonium salt of

imazamox: 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)5-oxo-1H-

imidazol-2-yl]-5-(methoxymethyl)-3-pyridinecarboxylic acid) and

2,4D LV6 were applied once a year in spring.

Each of the three treatments had three replicates. Each

experimental unit measured 8.5 m × 45.5 m and randomly received

one of the three treatments within each block.

The experiment was set up as a winter wheat-fallow. Each phase

of the winter wheat-fallow was present each year, meaning that when

one phase was under winter wheat, the other phase was undergoing

fallowing and vice versa. The experiment was established under a

dryland cropping system, implying that no supplementary irrigation

was applied for crop uptake in each year of experimentation.

Experimental units did not receive nutrients of any kind for the

entire length of the experiment.

More details about this experiment are contained in articles

written by Fenster and Peterson (1979) and Peterson et al. (2012).

Winter wheat was planted in September and harvested in July of

each cropping season. The grain moisture content was adjusted to 125

g kg-1. For this study, grain yield was obtained from the period of 1972

to 2010. This was because the period after 2010 saw the experiment

modified by splitting the experimental units into two equal parts and

assigned either intermittent tillage or NT treatment. This meant that
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SM was discontinued even though the baseline data for that treatment

will continue to be helpful to understand how a shift from SM to NT

or intermittent tillage (IT) could affect soil and crop response

variables. Because of IT, plow schedule was amended to take place

once every six years. As a result, data from 2011 to date was not

included in this analysis. Precipitation data was also obtained for the

same duration (1972-2010) from the weather station located near the

site. Precipitation totals received during the season were split into

three periods, that is, September – December, January – April, and

May – July. It was precipitation at each of these phases that were used

as a predictor during model calibration and validation.
Model calibration, evaluation, and
data visualization

Model calibration and evaluation were conducted using R (R Core

Team, 2022). R was implemented in RStudio (RStudio Team, 2022).

The feed-forward neural network, a deep learning technique, was

used to fit the models. A single-layer neural network was applied in

the model calibration and validation (Figure 1; equation 1). The data

was split into training and test sets. Test data constituted a third of the

data. A training set was used to calibrate the model while the test set

was used for validating the neural network model. The architecture

and functionality of the neural network model were developed based

on procedures highlighted by James et al. (2021). The input layer was

constituted by three features, that is, precipitation from September to

December, precipitation from January to April, and precipitation

from May to July. The hidden layer was set at K hidden units equal to

50 and the non-linear activation function was specified as a rectified

linear unit (ReLU). Stochastic gradient descent with a batch size of 50

for 300 epochs, and 10% dropout regularization was used for fitting

the models. The function ‘callback_early_stopping()’ was used to stop

training the model if mean square error did not improve for 20

epochs. Regularization was applied using L2 norm regularizer with a

multiplier of 0.001 to make weak signals have weight of nearly zero.

Tidyverse (Wickham et al., 2019), keras (Allaire and Chollet, 2022),

ggpmisc (Aphalo, 2021), and readxl (Wickham and Bryan, 2019)

packages were utilized during model fitting and data visualization. A

multiple linear regression (ordinary least squares) model was also fit

with precipitation at different periods used as predictors of grain yield

(equation 2). Models using neural network and ordinary least squares

fitting procedures were also implemented across tillage practices, that

is, the data sets from separate tillage practices were merged (combined

tillage) and each model type was fit to the data to evaluate models’

performance across tillage practices.

Cross-validation was used to evaluate the performance of the

models under different tillage practices. Root mean square error

(RMSE), relative RMSE (rRMSE), and coefficients of determination

(R2) from validation of the models using test data were reported. The

performance of a model was considered excellent, good, fair and poor

if rRMSE <10%, 10%<rRMSE<20%, 20%<rRMSE<30% and rRMSE

>30% respectively (Despotovic et al., 2016). Validation of multiple

linear regression models was done using k-fold cross-validation

approach with k = 10. The boot package (Canty and Ripley, 2021)

was used to compute test mean square error by applying cv.glm()
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function. The model evaluation matrices (R2 and RMSE) above were

extracted using the function ‘postResample()’ within the caret

package (Kuhn, 2022). Relative RMSE was obtained by using the

function gofRRMSE() from the ehaGoF package (Eyduran, 2020).

These were then compared among the different tillage practices to

determine which model used precipitation more efficiently to explain

variability in winter wheat grain yield. Additional comparison was

made between models built using multiple linear regression and

nonlinear feed-forward neural network. A more comprehensive

detail of the procedures and R scripts applied in this work is

contained in a book written by James et al. (2021). In their

procedures implemented in R using keras package, splitting the

data into two sets meant that the neural network used a validation

set approach. But because the k-fold cross-validation leads to a better

bias-variance tradeoff (James et al., 2021), we used it for multiple

linear regression to improve the model’s performance in yield

prediction.

f (x) = b0 +oK
k=1bkAk (1)
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Where f(X) is a function used for prediction, b0 and bk are

coefficients to be estimated from the training data. Akrepresents the

transformation of the initial or original three predictors constituting

the input layer. K = 1, 2,…, 50.

f (x) = b0 + b1X1 + b2X2 + b3X3+ ∈ (2)

Where b0, b1, b2, and b3 are coefficients to be estimated from the

training set, X1 to X3are the three predictors, that is precipitation from

September to December, precipitation from January to April, and

precipitation from May to July, respectively. ϵ is the random error.

We also used data from this site collected in April 2022 to

compute saturated hydraulic conductivity to provide additional

information why differences may exist among models built under

different tillage practices. Stubble mulch tillage was not included in

this analysis since its experimental units were replaced by NT and IT.

However, only data from experimental units that retained the original

treatments prior to modification in 2010/2011 season was used in this

computation. Estimated marginal means was calculated using

emmeans package (Lenth, 2022) after fitting a linear mixed model
FIGURE 1

The architecture of a single layer neural network used in this study with illustration adopted with modification from James et al. (2021). X1, X2, and X3
represent rainfall from September to December, rainfall from January to April, and rainfall from May to July respectively. A1, A2,…, A50 represent
activations Ak for the nonlinear transformations of linear combinations of inputs. The function f(X) was solved using activations Ak from the hidden layer
as inputs to predict an observation, Y.
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using lme4 package (Bates et al., 2015) with replication treated as a

random effect while tillage was handled as a fixed effect. The mean

difference was obtained using the glht() function within the

multcomp package (Hothorn et al., 2008) piped to the summary

() function.

Data normality and heteroscedasticity or non-constant variances

of the error term were tested using functions shapiro.test() (Shapiro-

Wilk normality test) and ncvTest() (non-constant variance test)

within the car package respectively. In brief, the assumption of a

constant variance of the error term was observed for each tillage

practice and the combined data (Table 1). The assumption of

normality of the data was observed with only NT.
Results

The study investigated how tillage practices influenced winter

wheat yield prediction with precipitation at three different periods of

the growing season using feed-forward neural network and multiple

linear regression approaches.

With the feed-forward neural network, winter wheat yield

prediction accuracy was highest under NT. The model developed

and validated under this tillage practice had an RMSE of 0.53 Mg ha-1

(Table 2). This model accounted for 81% of the variability in winter

wheat grain yield (Table 2; Figure 2A). With 0.48 Mg ha-1 more

RMSE, the multiple linear regression (ordinary least squares)

approach was much less accurate than the neural network

(Table 2). The proportion of yield variance that was accounted for

by the linear regression model was 8% (Figure 3A). Further, 21.6%

rRMSE reported with the neural network was 18.7% lower than the

rRMSE attained with the linear regression model (Table 2).

Stubble mulch tillage had the second highest yield prediction

accuracy with an RMSE of 0.55 Mg ha-1 and rRMSE of 22.3%

(Table 2). Under this tillage practice, precipitation accounted for

73% of the variability in winter wheat grain yield (Figure 2B). With

this tillage practice, yield prediction was less accurate by about 20 kg

ha-1 when compared to NT neural network model. This may suggest

that yield prediction under both tillage practices using precipitation

may not differ drastically in their accuracies. Under the same tillage

practice (SM), linear regression model applied to the same data

demonstrated lower yield prediction accuracy than the feed-forward

neural network model. The model was less accurate in predicting

winter wheat grain yield by 0.3 Mg ha-1 than the neural network

(Table 2) and explained only 8% of the variability in grain yield
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(Figure 3B). Additionally, the model had an rRMSE of 33.3%,

illustrating that its ability to predict winter wheat grain yield is poor.

Yield prediction accuracy was lowest under MP with the feed-

forward neural network model using precipitation to predict yield

that was off the observed yield by 0.77 Mg ha-1 (Table 2). This was

associated with an rRMSE of 27.3% (Table 2). About 53% of the

variability in winter wheat grain yield was explained under this tillage

system (Figure 2C). Relative to the model under SM, this represented

a decrease in yield prediction accuracy since the model under MP had

0.22 Mg ha-1 more RMSE than under SM. As a result, the neural

network model performed poorly in predicting grain yield under MP.

Similarly, neural network model under NT resulted into more

accuracy than the counterpart under MP. Under MP, neural

network model had more variability in its yield prediction because

of the additional 0.24 Mg ha-1 its RMSE contained compared with the

NT neural network model. However, this model had more accuracy in

yield prediction when compared to a model calibrated and validated

using multiple linear regression. Although the neural network model

predicted yield that was off the observed yield by 0.77 Mg ha-1, the

linear regression model was off by an additional 0.30 Mg ha-1. The

rRMSE associated with this model was 43.6%, making yield

prediction under this system poor (Table 2).

When evaluated using data from all the tillage practices, feed-

forward neural network explained 55% of the variability in winter

wheat grain yield (Figure 2D). The model had an RMSE of 0.72 Mg

ha-1, a value that differed from that of MP by 50 kg ha-1 (Table 2). The

model performed poorly in predicting grain yield in years where the

observed grain yield was zero (Figure 2D). This model also had a

rRMSE of 28.2%, a figure close to making the model poor in

predicting winter wheat yield (Table 2). This could be because zero

yield was not selected by the algorithm to calibrate the model, making

it perform poorly in predicting such observed yields in the test data

set. This also suggests that the kind of observed data that feeds into

the model calibration might influence the predictive capability of the

model. Combining data under different tillage practices and using

precipitation at different periods of the season as predictors did not

lead to a large improvement in yield prediction accuracy under MP.

This was because the difference in RMSE between of MP and

combined tillage model was about 50 kg ha-1 (Figure 2D). This was

reaffirmed using rRMSE where MP and combined tillage had an

rRMSE value of 27.3 and 28.2% respectively (Table 2). However, the

RMSE of combined tillage model was more than that of SM and NT

by at least 170 kg ha-1 (Figure 2D). Fitting the multiple linear

regression model to the data obtained across tillage practices, had

an RMSE of 0.99 Mg ha-1 and this was higher than that of feed-

forward neural network by 0.27 Mg ha-1, further illustrating the

potential advantage of neural network over the linear model

(Figure 3). This linear regression model was categorized as poor in

its prediction of winter wheat grain yield since it had an rRMSE of

39.4%, a value higher than that of a similar model using neural

network model by 11.2% (Table 2).
Discussion

Using the feed-forward neural network, yield prediction accuracy

was improved under SM and NT relative to MP due to lower RMSE
TABLE 1 Test for normality and heteroscedasticity (non-constant
variances of the error term) in the data for the different tillage practices.

Tillage p-value

Normality heteroscedasticity

Moldboard plow 0.03 0.73

Stubble mulch <0.01 0.87

No-till 0.46 0.64

Combined <0.01 0.09
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and high R2 values. However, normalizing the RMSE into rRMSE

suggests that all models for the different tillage practices led to a fair

yield prediction accuracy with a range of 21.6 to 27.3% with NT

having the lowest rRMSE and MP system exhibiting the highest

rRMSE. In contrast, multiple linear regression model (ordinary least

squares), had an rRMSE ranging from 33.3% with NT to 43.6% with

MP. This means that using ordinary least squares to predict yield
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using seasonal precipitation led to a poor yield prediction across the

tillage practices. This was further reaffirmed by the 39.4% rRMSE for

the ordinary least squares model to 28.2% rRMSE associated with the

neural network model fit to the entire data sets (combined tillage).

This is even though precipitation is the primary limiting factor

affecting crop production under dryland cropping systems

(Whitman and Meyer, 1990) where grain yield would – at least in
FIGURE 2

The relationship between predicted grain yield and measured grain yield for winter wheat. The prediction was done by fitting and validating a feed-
forward neural network model under different tillage practices using precipitation received at three different periods of the season. The tillage practices
were NT (A), SM (B), MP (C), and combined tillage (D). NT, no-till; SM, stubble mulch; MP, moldboard plow.
TABLE 2 Performance of models fit using feed-forward network and multiple linear regression on test data sets.

Tillage Feed-forward neural network Multiple linear regression

RMSE rRMSE R2 RMSE rRMSE R2

Mg ha-1 % Mg ha-1 %

Moldboard plow 0.77 27.3 0.53 1.07 43.6 0.05

Stubble mulch 0.55 22.3 0.73 0.85 33.3 0.08

No-till 0.53 21.6 0.81 1.01 40.3 0.08

Combined tillage 0.72 28.2 0.55 0.99 39.4 0.05
f

RMSE, root mean square error; rRMSE, relative RMSE; Multiple regression equations for moldboard plow (1.35 + 0.002 × PSD + 0.001 × PJA + 0.004 × PMJ), stubble mulch (1.32 + 0.005 × PSD +
0.002 × PJA + 0.003 × PMJ), and no-till (1.25 + 0.008 × PSD + 0.002 × PJA + 0.002 × PMJ). PSD, precipitation in September to December; PJA, precipitation in January to April; PMJ, precipitation in
May to July. The equations for feed-forward neural network are not shown because there are 50 nonlinear transformations of linear combinations of three inputs i.e., PSD, PJA, and PMJ.
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theory – be expected to relate highly and linearly with

seasonal precipitation.

The definitive reason why neural network models outperformed

ordinary least squares is not fully known to us. However, neural

network models may be able to detect patterns in the data in a manner

that is beyond the power of ordinary least squares (Abiodun et al.,

2018). James et al. (2021) highlighted the powerfulness of neural

network models to detect non-linearities in the data associated with

agricultural systems (Wallach et al., 2006) for an accurate prediction

of a dependent variable of interest. This is possibly because of the

non-linear transformation of a linear combination of inputs which

allowed the neural network to detect non-linearities (James et al.,

2021) in grain yield response to precipitation.

Although our study did not investigate soil fertility and health

indicators, the ability of the neural network model to account for

more variability in winter wheat grain yield under NT could be

attributed to its unique features of conserving soil moisture,

enhancing soil fertility and soil quality. In furtherance of this idea,
Frontiers in Agronomy 07
we analyzed soil saturated hydraulic conductivity (Ksat) data collected

from the same experiment modified in 2010/2011 and found that NT

had the highest Ksat (3.3 cm hr-1) while MP system had 56% lower Ksat

(Table 3). This means an increased quantity of precipitation water

infiltrated NT system than it did with MP, potentially leading to more

water stored in the soil pore spaces.

This capability to explain a large proportion of the variability in

winter wheat grain yield was also observed under SM system. Using a

one-way disc tiller, rodweeder, blade, sweep, or chisel plow, this

system cuts roots of weeds from underground to cause minimum

disturbance to the soil surface and in the process, retains some

standing residues on the soil surface, making it possible to sustain

some of the benefits associated with NT (Fenster, 1961).

Contrastingly, plowing exposes the soil surface to the effect of

wind erosion – a common problem within the study region (Lyon

et al., 1998) – which may cause disintegration of soil structure

allowing pore spaces to be filled with the particles disassociated

from soil aggregates. This may lower the infiltration of water into
FIGURE 3

The relationship between predicted and measured winter wheat grain yield under different tillage practices with yield predicted using precipitation received at
three different periods of the season by fitting and validating a multiple linear regression model. The tillage practices were NT (A), SM (B), MP (C), and
combined tillage (D). k-fold cross-validation (k = 10) was used to evaluate model performance. NT, no-till; SM, stubble mulch; MP, moldboard plow.
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the soil (Table 3) and cause some of the rainwater to be lost through

evaporation (Fuentes et al., 2003; Guan et al., 2015; Ray et al., 2015).

This could lower the ability of models associated with this system to

account for more variability in grain yield. Neural network models

under NT system may have better chances of accounting for more

yield variability than MP because of improved soil structure, soil

organic matter, aggregate stability, porosity, and bulk density and soil

porosity (Lyon et al., 1998; Liu et al., 2015) (Shaver et al., 2002). This

extra soil moisture may explain why crops are reported to transpire

more and produce more photosynthates under NT and SM systems of

semi-arid environment (Peng et al., 2019). Our study adds to a body

of knowledge that precipitation plays a pivotal role in yield prediction

(Feng et al., 2018) and high variability in climate features may

increase yield variability over time (Ray et al., 2015). Other scholars

have shown that soil water explained a significant portion of the

variations in grain yield (Schillinger et al., 2008; Basso et al., 2009).

This is an indication that practices that increase retention of water in

the root zone may account for more of the variations in grain yield.

With an rRMSE rating of fair (Despotovic et al., 2016), the feed-

forward neural network models could be further improved possibly

by incorporating other key predictors in the model. Other artificial

intelligent methods such as bagging, random forests, boosting, and/or

Bayesian additive regression trees, and support vector machine could

also be used to evaluate the strengths and/or weaknesses of the feed-

forward neural network to predict winter wheat grain yield. As this

study was done under a dryland cropping system, a different

conclusion may be reached in regions that receive sufficient rainfall

or supplementary irrigation.
Conclusion

The study demonstrated that feed-forward neural network model

was more accurate in predicting winter wheat grain yield under NT and

SM systems. This is illustrated by the larger proportions of variance

accounted for under these systems, that is, 73 and 81% for SM and NT

respectively when compared to 53% under MP system. This was possibly

because of improved soil water storage resulting from a large proportion

of water from precipitation conserved under these systems when

compared to more intensive tillage systems. Nonetheless, models built

and calibrated using this procedure had a fair yield prediction accuracy

since the rRMSE fell within 20%<rRMSE<30%. This was in sharp

contrast to the multiple linear regression (ordinary least squares)

models with rRMSE of greater than 30% for all the tillage practices,

indicating a poor yield prediction accuracy. A related observation was
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made when a single model was fit across tillage practices where neural

network had an rRMSE of 28.2% and linear regression had an rRMSE of

39.4%. The capability of the feed-forward neural network model to

transform a linear combination of inputs into a nonlinear combination of

inputs may increase its ability to use seasonal precipitation to predict

winter wheat grain yield in a manner that exceeds the power of the linear

regression model, thus, increasing its ability to detect yield patterns more

efficiently. The categorization of the neural network model as fair

suggests that the ability of the model to accurately predict winter

wheat grain yield could be improved by integrating other useful yield

predictors and applying an appropriate model selection algorithm to

improve its rating from fair to good or excellent. This study suggests that

when using seasonal precipitation in a dryland cropping system, the

tillage system applied is important for accounting for more variability in

winter wheat grain yield and that the deployment of the neural network

model gives an improved yield prediction accuracy than a model fit using

the ordinary least squares fitting procedure.
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TABLE 3 Soil saturated hydraulic conductivity for the moldboard plow
and no-till at the long-term tillage experiment (phase C) that was modified
in 2010/2011 season.

Tillage Mean Confidence interval
Lower Upper

cm hr-1 %

Moldboard plow 1.5A† -0.04 3.0

No-till 3.3B 1.8 4.8
†Different letters within the column for mean values indicate significant difference at P < 0.05.
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