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Evaluating spatial and temporal
variations in sub-field level crop
water demands

Travis Wiederstein1, Vaishali Sharda1*, Jonathan Aguilar2,
Trevor Hefley3, Ignacio Antonio Ciampitti4, Ajay Sharda1

and Kelechi Igwe1

1Department of Biological and Agricultural Engineering, Kansas State University, Manhattan,
KS, United States, 2Southwest Research-Extension Center, Kansas State University, Garden City,
KS, United States, 3Department of Statistics, Kansas State University, Manhattan, KS, United States,
4Department of Agronomy, Kansas State University, Manhattan, KS, United States
Variable rate irrigation (VRI) requires accurate knowledge of crop water

demands at the sub-field level. Existing VRI practices commonly use one or

more variables like soil electrical conductivity, historical yields, and topographic

maps to delineate variable rate zones. However, these data sets do not quantify

within season variability in crop water demands. Crop coefficients are widely

used to help estimate evapotranspiration (ET) at different stages of a crop’s

growth cycle, and past research has shown how remotely sensed data can

identify differences in crop coefficients at regional and field levels. However,

the amount of spatial and temporal variation in crop coefficients at the sub-

field level (i.e. within a single center pivot system) has not been widely

researched. This study aims to compare sub-field ET estimates from two

remote sensing platforms and quantify spatial and temporal variations in

aggregated sub-field level ET. Vegetation indices and reference ET data were

collected at Kansas State University’s Southwest Research Extension Center

(SWREC) and two Water Technology Farms during the 2020 corn growing

season. Weekly maps of the Normalized Difference Vegetation Index (NDVI)

and the Soil Adjusted Vegetation Index (SAVI) from aerial imagery are combined

with empirical equations from existing literature to estimate both basal and

combined crop coefficients at a 1-meter resolution. These ET estimates are

aggregated to a 30 m resolution and compared to the Landsat Provisional

Actual ET dataset. Finally, actual ET estimates from aerial images were

aggregated using k-means clustering and stationary variable speed zones to

determine if there is enough variation in actual ET at the sub-field level to build

variable rate irrigation schedules. An equivalence test demonstrated that the

aerial imagery and Landsat data sources produce significantly different crop

coefficient estimates. However, the two datasets were moderately correlated

with Pearson’s product-moment correlation coefficients ranging from -0.95 to

0.86. Both the aerial imaging and Landsat datasets showed high variability in

crop coefficients during the first 5-6 weeks after emergence, with these

coefficients becoming more spatially uniform later in the growing season.

These crop coefficients may help irrigators make more informed irrigation

management decisions during the growing season. However, more research is
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needed to validate these remotely sensed ET estimates and integrate them into

an irrigation decision support system.
KEYWORDS

evapotranspiration, crop coefficient, remote sensing, NDVI, satellite image, irrigation,
Ogallala Acquifer, soil moisture
Introduction

The High Plains Aquifer supports roughly one-third of all

groundwater used for irrigation in the United States, making it

vitally linked to the nation’s economic and food security

(Dennehy et al., 2002). Despite the aquifer’s importance, poor

management, overexploitation, and slow recharge has led to a

decrease in the aquifer’s storage. Without proper interventions,

up to 35% of the aquifer might not support irrigation by 2040

(Scanlon et al., 2012). Integrated satellite-based technologies for

irrigation management decision making could lower HPA

withdrawals by about 31% (Deines et al., 2019). Irrigators in

the High Plains Region use several irrigation scheduling

techniques such as deficit irrigation scheduling, where soil

moisture content is allowed to deplete to a crucial threshold

before irrigation is triggered (Rudnick et al., 2019; Ajaz et al.,

2020). This method is especially effective during non-critical

growth stages. Under both deficit and non-deficit irrigation

scheduling, producers typically apply a uniform amount of

water to an entire field. However, actual crop demands can

vary through space and time (spatiotemporally) based on plant

density, growth stage, plant health, topography, soil properties,

crop genetics, and the presence of pests or diseases, among many

other factors (Evans et al., 2013). To meet these variable

demands, researchers and agricultural technology companies

have developed speed control systems and flow rate control

systems. These Variable Rate Irrigation (VRI) technologies can

be retrofitted to existing center pivots and allow producers to

apply different amounts of water to different parts of a field.

Both deficit irrigation and VRI require knowledge of crop

water demands at high spatial and temporal scales. Past

researchers and agricultural technology companies have used

physical soil properties, historical yield data, and in situ sensors

to estimate crop water demand at sub-field scales (Garg et al.,

2016; Sui, 2017). However, physical soil properties and historical

data only provide an indirect way to predict crop water

demands, and they do not typically represent in-season

changes to water demands. While sensor networks, most

commonly soil moisture or crop canopy sensors, provide in-

season estimates of crop water demands, they can be expensive,

intrusive to normal agricultural operations, and they cannot take

measurements across the entire field. In contrast, remote sensing
02
platforms can provide in-season information about crop water

demands without the need for in-field sensors. Specifically, the

integration of multispectral and thermal sensing into irrigation

management systems has assisted in monitoring live plant and

soil water stress (Blonquist Jr. et al., 2005; O’Shaughnessy &

Evett, 2008; Evett et al., 2009; Mahan et al., 2010; O’Shaughnessy

and Evett, 2010; Casanova et al., 2012) and may be useful for

informing VRI schedules (Maguire and Neale, 2022). Existing

research has converted data from these sensors to water stress

indices, which are compared to critical values (Espinoza et al.,

2017). Once the measured index reaches a critical threshold,

irrigation is triggered. Multiple decision support systems are

available to integrate these indices into the VRI scheduling

process (Liakos et al., 2015; Shi et al., 2019; Andrade et al.,

2020; Evett et al., 2020; Stone et al., 2020).

While the introduction of these new indices has advanced

the practicality of VRI, typical VRI decision support systems are

still incapable of providing support based on both high spatial

and temporal resolution estimates of crop water demands

(Tolomio and Casa, 2020). Additionally, decision support

systems based on water stress indices typically require

knowledge of local, experimentally determined critical stress

thresholds. However, data for traditional evapotranspiration-

based irrigation scheduling is often readily available from

national-, state-, or university-funded sensor networks, like the

Kansas Mesonet (http://mesonet.k-state.edu/weather/historical).

The Kansas Mesonet is a network of over 60 weather stations

that estimates reference evapotranspiration (ET) values across

the state of Kansas. Multiple methods exist to convert these

reference ET values to actual crop ET, including the use of single

and dual crop coefficients. The single crop coefficient method

uses a single coefficient (Kc) to adjust reference ET values to

actual ET based on crop characteristics and averaged effects of

soil evaporation (Doorenbos and Pruitt, 1977). In contrast, the

dual crop coefficient method splits this Kc value into two

components—one for plant transpiration (Kcb), and one for

soil evaporation (Ke) (Allen et al., 2005a). Both Kc and Kcb vary

based on crop and plant growth stage. However, growth stages

are typically only divided between early, mid, and late season,

and do not reflect daily changes in crop water demands. Ke is

calculated as a function of the amount of water available in the

soil for evaporation, and the fraction of the soil’s surface that is
frontiersin.org
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exposed and wetted. Both single and dual crop coefficients are

useful for irrigation scheduling, but neither have been widely

used for variable rate irrigation due to a lack of knowledge of the

crop growth stages and soil water availability at the sub-

field level.

New sources of remote sensing information may be useful

for identifying high spatial and temporal differences in crop ET

coefficients. Remote sensing, especially satellite imagery, is often

used to study changes in vegetation properties, including crop

coefficients, at national, regional, and field scales. However,

satellite images are not always available at the right time, or

the right spatial resolution to be useful for agricultural

management. In contrast, drones have been used as a remote

sensing platform in agriculture for plant emergence monitoring,

weed detection, crop damage or illness mapping, and crop water

stress mapping to detect equipment malfunctions (van der

Merwe et al., 2020). However, collecting and processing drone

data can be very time-consuming and labor-intensive.

Multispectral cameras mounted to small commercial aircraft

can collect similar data at a 1-meter spatial resolution, and a

temporal resolution of up to a week, which may be ideal for

making more informed in-season management decisions.

However, data from these three sources have not been used to

determine if there are high enough spatial and temporal

differences in crop coefficients to inform VRI schedules.

This study was undertaken to conduct a comparison of

remotely sensed crop coefficients and actual ET estimates from

two different platforms: Landsat 8’s Provisional Actual

Evapotranspiration data set and aircraft-based multispectral

imagery. While each platform uses similar data (i.e.,

multispectral images) to estimate spatial patterns of actual ET

and crop coefficients, each platform has its own processes for

atmospheric correction and conversion of reflectance

measurements to ET. Each platform also measures a different

range of the electromagnetic spectrum, and each platform has its

own limitations to its usefulness in informing in-season

management decisions based on its spatial and temporal

resolution. The purpose of this study is to identify if these

platforms can identify high enough spatial and/or temporal

differences in crop ET to develop dynamic variable rate

irrigation schedules.
Methods

Site descriptions

All data were collected on irrigated corn fields during the

2020 growing season. The two quarter circle plots (Figures 1A,

B) were located on producer-owned fields and are part of Kansas

Water Office’s Water Technology Farm program. Field A is

located approximately 17 km Northeast of Leoti, Kansas, and

Field B is located 17.5 km Northwest of Garden City, Kansas.
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The East half of the experimental center pivot (Figure 1C) is on a

quarter section of land that is owned and operated by Kansas

State University’s Southwest Research and Extension Center

(SWREC), located 4.8 km Northeast of Garden City, Kansas.

This region is characterized by a humid subtropical climate, an

average of 35-50 cm of annual precipitation, and Richfield series

silt-loam soils. During this study, the research plot was primarily

used by SWREC to test different irrigation application

technologies, like different nozzle types and application rates.

Field A and Field B are characterized by similar soils and climate

as those at the SWREC research plot. Crop growth stages were

monitored during weekly visits to each location.
Data sources and descriptions

Kansas Mesonet stations located near Field B and the

SWREC plot measured air temperature, relative humidity,

solar radiation, wind speed, wind direction, barometric

pressure, and soil temperature throughout the growing season.

The Kansas Mesonet uses these measurements to calculate daily

reference ET using the ASCE standardized reference

evapotranspiration equation (Allen et al., 2005b). Reference ET

values from the Leoti Kansas Mesonet Station located 55 km

North of Field A were used in lieu of an on-site weather station

for Field A. More information regarding the Kansas Mesonet

weather stations, including a history of their development, is

provided by Patrignani et al. (2020). An agricultural technology

company collected thermal and multispectral images of each

location at one-week intervals. The spatial resolution of each

aerial image varied from 0.8 meter to 1.1 meters by location and

collection date based on the elevation of the aircraft-mounted

sensors during the data collection flight. Each image

was orthorectified and atmospherically corrected by the

agricultural technology company. These images were also

reprojected and resampled to the lowest available spatial

resolution using tools available in the raster R package

(Hijmans, 2020). Reprojecting and resampling these images to

the same extent and resolution allows for a pixel-by-pixel

comparison of the reflectance values from each measurement

date. 30-meter fractional ET images from the Landsat satellite

series were downloaded from the EarthExplorer database and

are functionally equivalent to crop coefficient maps. This data is

provided courtesy of the United States Geological Survey, and

was developed by (Senay, 2018). The images are available in 298-

square-kilometer scenes and can be filtered to only include

images with limited cloud coverage. In contrast to the aerial

images, which are collected during ideal flight conditions, the

Landsat satellites have a fixed return period of about 16 days,

meaning images of the fields are not available if the satellite

passes over each location on a cloudy day. For this study, the

Landsat images were filtered to only include those with 10%

cloud coverage or less. Finally, the spectral resolutions of the
frontiersin.org
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aerial imaging platform and Landsat platform vary slightly, but

they both measure wavelengths in the near infrared (NIR) and

visible red regions of the electromagnetic spectrum. Therefore,

no spectral adjustments were made to either dataset.
Conversion of vegetation indices to
crop coefficients

Pôças et al. (2020) provides a review of techniques and best

practices for converting multispectral imagery to single and

basal crop coefficients. Their review includes regression

equations from existing literature that estimate crop

coefficients from the Normalized Difference Vegetation Index

(NDVI) and the Soil Adjusted Vegetation Index (SAVI). Six of

these equations were used to calculate irrigated maize crop

coefficients from the aerial and Landsat images described

above. These equations are presented in Table 1 along with

information regarding their development. It is worth noting that

these equations were developed using a variety of multispectral

sensors, and not all the publications included measurements of

uncertainty or error compared to in situ measurements. Out of

the equations listed, Kamble et al. (2013) provided the most
Frontiers in Agronomy 04
detailed comparison to in situ data. Their research presented

combined crop coefficients with root-mean-squared-errors

between 0.16 and 0.19 relative to values calculated from the

AmeriFlux sensor network in the High Plains region.
Comparison of aerial imagery and
landsat data

The aerial multispectral images were converted to NDVI and

SAVI using equations 1 and 2 below, which were originally

developed by Rouse et al. (1974) and Huete (1988), respectively.

After calculating the NDVI and SAVI values for every pixel in

the aerial dataset using these equations below, the linear

equations from Table 1 were used to create maps of crop

coefficients. These crop coefficient maps were multiplied by

the daily Kansas Mesonet reference ET to create maps of

actual crop ET for each data collection date. The ET values

calculated using the basal crop coefficient equations mentioned

Pôças et al. (2020), are primarily driven by crop transpiration. In

contrast, the ET value calculated using the combined crop

coefficient equation mentioned in Pôças et al. (2020) is driven

by both transpiration and surface evaporation.
A B C

FIGURE 1

Experimental site locations. (A) Field A (B) Field B and (C) KSU SWREC.
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NDVI=
NIR−R
NIR+R

(1)

where:

NDVI = Normalized Difference Vegetation Index

NIR = Percent reflectance of light in the near-infrared region

of the electromagnetic spectrum

R = Percent reflectance of light in the red region of the

electromagnetic spectrum

SAVI=
NIR−R

NIR+R+L * 1+Lð Þ (2)

where:

SAVI = Soil Adjusted Vegetation Index

L = Soil brightness correction factor, assumed to be 0.5

Given the differences in spatial and temporal resolutions

between these datasets, additional processing was completed to

compare the ET maps. To directly compare the aerial and

Landsat ET estimates, ET maps from both sources were

reprojected to WGS 84 UTM Zone 14N using ArcGIS 10.4.1

(ESRI, 2011) to minimize distortion and clipped to the extent of

the irrigated area at each site. To account for the difference in

temporal resolution, the aerial imaging crop coefficient maps

were linearly interpolated to a daily time step. This interpolation

allows for an approximate same-day comparison between the

Landsat and aerial ET estimates. Additionally, the aerial maps

were chosen over the Landsat maps for interpolation because of

their finer temporal resolution. This finer temporal resolution

produces less uncertainty during interpolation relative to

interpolated predictions of the lower temporal resolution

Landsat data. Finally, the aerial images were aggregated to a

30-meter resolution by taking the mean crop coefficients from all

0.8-meter pixels that overlapped a given Landsat pixel.
Delineation of ET zones and
zone aggregation

In addition to accurately predicting actual ET, remote

sensing platforms must demonstrate sufficient variation in

sub-field level ET to be useful for VRI scheduling. However,
Frontiers in Agronomy 05
what justifies “sufficient” variation between management zones

is highly dependent on the level of control an irrigator has over

their pivot system. Two types of control are most common:

center pivot speed control, that creates pie slice shaped VRI

zones, and span control that creates concentric gridded VRI

zones (Kranz et al., 2012). To mimic VRI schedules for both

control techniques, the aerial ET maps were spatially aggregated

into VRI zones using two different techniques. First, mock pivot

speed control zones were created by dividing the center pivots

into 2-degree-wide slices, resulting in 90 different VRI zones for

the experimental half pivot, and 180 VRI zones for Fields A

and B.

Second, the kmeans function from the stats package in R (R

Core Team, 2022) was used to build maps of crop water

demands useful for systems with zone control, where irrigators

can change flow rates to individual spans, or clusters of a few

nozzles. The ideal number of clusters for k-means clustering is

commonly calculated using the elbow method, which graphs the

within-cluster sum of squares for k number of clusters, where k

ranges from 1 to some large number, and identifies the point

where additional clusters produce minimal reductions in the

within cluster sum of squares (WSS). K-means clustering was

chosen to maximize the difference in irrigation depths between

each zone and mimic the type of zones that would be created

from a variable flow control system. This unsupervised

classification technique assigns each image pixel individually

to one of k groups. This is done in iterations, and attempts to

minimize within cluster variance calculated as WSS:

WSS=o
k

j=1
o
n

i=1
d x jð Þ

i ,cj
� �2

where:

WSS = within cluster (or zone) sum of squares

k = number of clusters

n = number of observations in the jth cluster

xi
(j) = ith observation in the jth cluster

cj = jth cluster centroid

The elbow method was used to determine the appropriate

number of clusters for k-means clustering. This method plots the

total WSS for 1 to k clusters. The “elbow” in this line plot
TABLE 1 Linear models correlating corn evapotranspiration coefficients to vegetation indices derived from multispectral reflectance.

Reference Equation* Remote Sensing Platform Location Crop

(Bausch and Neale, 1987) Kcb = 1.36*NDVI - 0.06 Stationary Radiometer North Central Colorado Corn

(Neale et al., 1989) Kcb = 1.092*NDVI-0.053 Stationary Radiometer North Central Colorado Corn

(Neale et al., 1989) Kcb = 1.181*NDVI-0.026 Stationary Radiometer Western Colorado Corn

(Bausch, 1993) Kcb = 1.416*SAVI+0.017 Stationary Radiometer North Central Colorado Corn

(Campos et al., 2017) Kcb = 1.414*SAVI-0.02 Landsat 5 & 7 Eastern Nebraska Corn

(Kamble et al., 2013) Kc = 1.4571*NDVI-0.1725 MODIS South-Central Nebraska, South Dakota Rainfed & irrigated ag
*Kcb corresponds to the basal crop coefficient, and Kc corresponds to the combined crop coefficient. Adapted from Pôças et al. (2020) to show only equations that apply to irrigated corn.
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corresponds to the location where diminishing reductions in the

total WSS occur with increasing k. Given that the goal of this

research is to identify a potential alternative to multi-variate

zone delineation techniques, no covariates were used in the

clustering process.

Crop coefficient maps using the linear regression equation from

Kamble et al. (2013) were used for zone creation since this equation

represents a combined soil and crop evapotranspiration coefficient,

rather than just a basal crop coefficient. Each zone’s irrigation depth

was calculated by summing the daily ETmaps at the end of every 7-

day period after the crop emergence date. The pie zones were

aggregated using the mean of all cells in each zone.

While VRI using these crop coefficient maps does not change

the total volume of water used, they could improve how water is

allocated within a field if zones are properly delineated. Ideally,

these maps would improve water use efficiency, which is defined as

the amount of biomass production per unit of water (Briggs and

Shantz, 1913). Here, two types of variable rate zone delineations are

evaluated based on their ability to account for spatial variability in

crop water demands, which is quantified using the mean distance

from the centroid. Ideally, variability within each zone (meaning the

mean distance from the centroid) will be minimized, and the

variability between zones will be maximized. This indicates that

the aggregated ET values are an accurate representation of the crop

water demands within each zone, and irrigation is properly

distributed across the entire field. The mean distance from the

centroid is calculated as:

J= 
1
ko

k

j=1
o
n

i=1
  x jð Þ

i ,cj
���

���

Where:

J = mean distance from the centroid

k = number of clusters (or zones)

n = number of observations in the jth cluster

xi
(j) = ith observation in the jth cluster

cj = jth cluster centroid
Results and discussion

Comparison of aerial imagery and
landsat datasets

Boxplots of mapped crop coefficients for Fields A and B are

shown by collection date in Figures 2, 3. The median crop

coefficients from both datasets follow a seasonal pattern similar

to traditional crop coefficient curves, except for the July 6th

Landsat estimates. These boxplots capture both the spatial and

temporal variability in the crop coefficient estimates throughout

the growing season. Generally, the interquartile range from the

aerial imagery-based estimates appears to decrease for both

locations as the season progresses. In comparison, the

Landsat-based crop coefficient estimates show consistently
Frontiers in Agronomy 06
wider interquartile ranges throughout the entire growing

season. Additionally, the SAVI-based crop coefficients show

greater sub-field variability later in the season when the crop

canopy is heavily developed.

All the linear regression equations and data combinations

produced higher ET estimates than the Landsat data.

Additionally, the Landsat estimates most closely approximate

the aerial imagery values calculated using the regression

equation from Kamble et al. (2013). This is likely because the

Kamble et al. equation predicts the combined crop coefficient,

which accounts for both soil and plant transpiration, compared

to the other equations which only predict the basal crop

coefficient. Given that the pixels in the aerial imagery covered

both vegetated and bare soil surfaces, the combined crop

coefficient model from Kamble et al. (2013) is a more accurate

representation of real-world conditions compared to the basal

crop coefficient models. The NDVI-based linear models

predicted less variability in crop coefficients than the SAVI-

based linear models and satellite-based crop coefficients. This is a

phenomenon noted by Neale et al. (1990), who found that

NDVI-crop coefficient relationships are not accurate past full

canopy cover development. This is because NDVI becomes

insensitive to differences in canopy coverage past a leaf area

index of 2-3 (Myneni et al., 1997).

To better understand what causes these differences, the sum

of the differences between all Landsat collections dates were

mapped (Figures 4–6). The sum of differences was preferred over

the sum of squares of the differences to identify parts of each

field that were over or underestimated. Spatially, the greatest

differences between these two data sets occurred around the field

boundaries. This is likely due to the difference in spatial

resolutions of the datasets. The higher resolution aerial images

provide a more accurate delineation of the boundary between

crops and the surrounding unplanted area. This concept of

“mixed pixels” is common to studies using remote sensing

data and is further discussed in relation to agricultural

management practices by (Ines and Honda, 2005). The

unplanted areas around the center pivot boundaries have

lower crop coefficients values since they are not heavily

vegetated. Therefore, the lower resolution Landsat images may

be under-predicting the crop coefficients values near the field

boundaries, given that a single Landsat pixel includes both

planted and unplanted land.

While the maps above identify spatial differences between

the Landsat and aerial imagery crop coefficients estimates, they

do not demonstrate the impact of differences in these coefficients

on the whole field’s evapotranspiration. To better understand the

impact of these differences in values on the total ET volume,

the original ~0.8-meter resolution Kc maps were multiplied by

the daily reference ET and raster cell area, then summed. The

same process was repeated for the 30-meter Kc rasters from the

Landsat images to produce a whole-field ET estimate. These

whole-field ET estimates are given in Table 2.
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Lastly, the correlation between the aggregated aerial imagery

and Landsat Kc estimates was assessed using Pearson’s product-

moment correlation. Arguably, an equivalence test would be

preferred to a correlation test, given the data sources are

attempting to measure the same parameter. However, the

Landsat and aerial imagery Kc estimates are calculated using

very different methods, and the boxplots (Figures 2, 3) show little

direct equivalence between the data sources. Additionally, a Two

One-Sided equivalence Test (TOST) was non-significant at an

alpha of 0.05, indicating that the two data sources are statistically

different. Instead, Pearson’s product-moment correlation is

calculated to determine if there is a correlation between the Kc

values from each source. Pearson’s coefficient has been

commonly used to compare remote sensing data with in-situ

and environmental variables such as evapotranspiration

(Szewczak et al., 2020), above ground biomass and canopy

height (Li et al., 2016), and land surface temperatures

(Mudede et al., 2020). A positive Pearson coefficient close to

one indicates a strong, positive correlation between variables,

and values near zero indicate there is no correlation

between variables.

Comparing the two datasets on a paired pixel-by-pixel basis

demonstrated poor agreement between the Landsat and aerial
Frontiers in Agronomy 07
imagery crop coefficient estimates, with a TOST concluding that

the datasets are statistically different at an alpha of 0.05.

However, a correlation test using Pearson’s rho demonstrated

that the interpolated and aggregated crop coefficient estimates

from the aerial images were moderately, and positively

correlated to the Landsat Fractional ET estimates at the two

producer fields (r = 0.86 at Field B, 0.63 at Field A) and

negatively correlated at the East half SWREC center pivot

(r = -0.95). The positive rho values close to 1 from Fields A

and B indicate that the crop coefficients estimate from the two

data sources were positively correlated, meaning as the estimated

crop coefficients from one data source increases, so does the

estimated crop coefficients from the other. The strong negative

rho value at the SWREC indicates that the crop coefficient

estimates from the two data sources were negatively correlated.

However, the SWREC field was much smaller, meaning there

were fewer data points for a pixel-by-pixel comparison. This also

means that the confidence intervals of the rho estimate at the

SWREC plot had a wider confidence interval. Additionally, the

SWREC center pivot uses dragon lines, which drastically

decreases evaporation rates from soil and crop canopies.

Although evaporation accounts for most of the uncertainty in

actual ET calculations, the results from the SWREC plot should
A B

D E F

C

FIGURE 2

Boxplots of crop coefficients at Field A from Landsat and Aerial Imaging. Crop coefficients were estimated from equations developed by (A) Kamble
et al. (2013), (B) Bausch and Neale (1987), (C) Bausch and Neale (1987), (D) Bausch (1993), (E) Campos et al. (2017), and (F) Neale et al., (1989).
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be interpreted with these differences in management practices

and size in mind.
Evaluation of ET Zone aggregation

The variable speed control zone delineation resulted in 180

individual management zones at Fields A and B, and 90

management zones at the SWREC half-pivot. An example of these

zones is shown inFigure 7. Themean,middle 90%, and total range of

weekly ET of these zones is shown for each location in Figure 8. At

Field A, the mean zone ET ranged from 0.79 to 3.18 cm, the middle

90% ranged from 0.74 - 0.86 cm to 3.10 – 3.23 cm, and the range

varied from0.69 - 0.97 cm to 1.98– 3.23 cmbetween thefirst and last

weeks of the study, respectively. At Field B, themean zone ET ranged

from 1.42to 4.32 cm, the middle 90% ranged from 1.42 – 1.91 cm to

4.30–4.37cm,and the total rangevaried from1.24–1.91cmto4.01–

4.39 cm between the first and last weeks of the studies, respectively.

Finally, at the SWREC half-pivot, the mean ET values ranged from

2.08 to 6.60 cm, themiddle 90% ranged from2.06 – 2.13 cm to 6.40–

6.766 cm, and the total range varied from 2.03 – 2.59 cm to 6.27 –

6.78 cm between the first and last weeks of the studies, respectively.

While both data sources demonstrated variability in ET at

the sub-field level, the aerial imagery’s variability decreased
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significantly late in the growing season and total ET did not

significantly decrease with crop senescence. This is likely due to

NDVI and SAVI saturation, which commonly occurs when crop

canopies are fully developed. In contrast, fractional ET estimates

from the Landsat Data show higher in-field variability and more

significant decreases in ET late in the growing season.

Both Field A and B reached a peak weekly ET volume at

around six weeks after emergence. In contrast, the SWREC East

Pivot ET continued to increase throughout the data collection

period due to a section of malfunctioning nozzles, which stunted

a portion of the field’s growth until late in the season. The weekly

ET between the middle 90th percentile of the variable speed

zones (or the middle 162 zones), only differed by 0.25-0.51 cm

(10-20%) for the first five weeks after emergence, then decreased

to less than 0.25 cm (<10%) for the remainder of the data

collection period at all locations. However, the total range of all

zones’ ET values ranged from about 1.27 cm at Field B, to about

1.91 cm at Field A and the SWREC East Pivot. Overall, this

demonstrates that there is a clear difference in total sub-field ET.

However, sub-field ET tended to become more uniform in this

study as the season progressed. Therefore, early season ET maps

may help irrigators allocate resources under water-limited

conditions to relieve prolonged early-season water stress,

which negatively impacts final yields. However, the sub-field
A B

D E F

C

FIGURE 3

Boxplots of crop coefficients at Field B from Landsat and Aerial Imaging. Crop coefficients were estimated from equations developed by (A) Kamble
et al. (2013), (B) Bausch and Neale (1987), (C) Bausch and Neale (1987), (D) Bausch (1993), (E) Campos et al. (2017), and (F) Neale et al., (1989).
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variability in ET decreased by tasseling and ear formation, which

are considered the most critical growth stages.

Results of the k-means clustering elbow test for Field B are

shown in Figure 9, which shows that four k-means clusters are

sufficient for every week during the data collection period at

Field B, given that the reduction in WSS is negligible with the

addition of more than four clusters. The same graphs for the

other two locations yielded similar results, with four clusters

being sufficient for k-means clustering every week. The largest

WSS occurred between two and four weeks after emergence for

both the fields. In contrast, the largest WSS at the SWREC field

occurred between seven and nine weeks after emergence. The

WSS at the SWREC peaked later in the season due to the

malfunctioning section of nozzles, which stunted the growth of

a large section of plants in the middle of the pivot and increased

the sub-field crop coefficients variability.

The centroid, or mean, value of all weekly ET pixels in each

cluster was used to determine the weekly crop water demand in

each zone. The weekly crop demand for each zone is shown
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in Table 3 and an example of a k-means clustering map is shown

in Figure 10. Note that unlike the pivot speed control zones, the

size and shape of each k-means cluster changes every week

because the ET maps themselves are used for the VRI zone

delineation. As expected, the area with the largest weekly ET

tended to grow as the season progressed, which corresponds to

increased crop water demands with crop maturity. By six weeks

after emergence at both the fields, the k-means zone with the

highest weekly ET covered approximately 70% of the entire field.

Lastly, the average mean distance from the centroid for each

aggregation method at each location is shown in Figure 11

for comparison.

The range of mean distances from the centroid varied by date

and aggregation type and was higher in the variable speed zones

than in the k-means clusters. Even though the average mean

distance from the centroid in the variable speed zones was less

than that of the k-means clusters, there was higher variability in the

mean distances in the variable speed zones. This means that the

variable speed zones produced inconsistent levels of within-zone
A B

D E F

C

FIGURE 4

Total seasonal differences between the Aerial Imaging crop coefficients and the Landsat Fractional ET Data at Field (A) Aerial Imaging crop
coefficients were estimated from equations developed by (A) Kamble et al. (2013), (B) Bausch and Neale (1987), (C) Bausch and Neale (1987),
(D) Bausch (1993), (E) Campos et al. (2017), and (F) Neale et al., (1989).
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D E F
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FIGURE 5

Total seasonal differences between the Aerial Imaging crop coefficients and the Landsat Fractional ET Data at Field (B) Aerial Imaging crop
coefficients were estimated from equations developed by (A) Kamble et al. (2013), (B) Bausch and Neale (1987), (C) Bausch and Neale (1987),
(D) Bausch (1993), (E) Campos et al. (2017), and (F) Neale et al., (1989).
TABLE 2 Whole field actual evapotranspiration estimates calculated based on seven different crop coefficient maps.

Date Landsat
Fractional ET

(Bausch and
Neale, 1987)

(Neale et al., 1989–
Greeley)

(Bausch,
1993)

(Neale et al., 1989–
Fruita)

(Campos et al.,
2017)

(Kamble et al.,
2013)

Field B

06/20/
2020

2.59 0.23 0.23 0.28 0.25 0.25 0.18

06/27/
2020

3.81 0.43 0.43 0.46 0.46 0.43 0.36

07/06/
2020

3.76 0.48 0.48 0.48 0.48 0.43 0.43

07/13/
2020

8.28 0.48 0.48 0.48 0.46 0.46 0.46

07/22/
2020

7.34 0.69 0.69 0.69 0.66 0.64 0.66

07/29/
2020

5.84 0.76 0.76 0.89 0.69 0.84 0.74

08/14/
2020

4.04 0.71 0.71 0.66 0.64 0.64 0.69

08/23/
2020

5.59 0.56 0.56 0.48 0.53 0.48 0.53

08/30/
2020

4.90 0.76 0.76 0.71 0.71 0.69 0.74

Field A

06/20/
2020

3.23 3.43 3.43 3.76 1.96 1.80 1.40

(Continued)
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variability, while the k-means clustering produced zones with

similar levels of within-zone variability. This indicates that the

mean ET in some of the variable speed zones did not accurately

represent the water demand in those zones. This is due to the static
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nature of the variable speed zones. Some of the variable seed zones

contain both healthy and unhealthy or unplanted areas.

Evapotranspiration increases in healthy planted areas as the

season progresses, while the evapotranspiration in unplanted or
TABLE 2 Continued

Date Landsat
Fractional ET

(Bausch and
Neale, 1987)

(Neale et al., 1989–
Greeley)

(Bausch,
1993)

(Neale et al., 1989–
Fruita)

(Campos et al.,
2017)

(Kamble et al.,
2013)

07/06/
2020

2.16 6.86 6.86 6.45 3.58 3.43 3.56

07/22/
2020

4.39 18.24 18.24 17.58 4.72 4.88 5.08

08/07/
2020

5.84 9.04 9.04 8.33 4.57 4.47 4.88

08/23/
2020

4.80 10.44 10.44 9.07 4.39 4.01 4.65

SWREC

06/20/
2020

0.20 0.23 0.23 0.23 0.25 0.18 0.15

07/06/
2020

0.00 0.25 0.25 0.28 0.28 0.25 0.18

07/22/
2020

0.13 0.53 0.58 0.53 0.51 0.48 0.46

08/23/
2020

0.20 0.94 0.94 1.37 0.84 1.35 0.91
Evapotranspiration depths are in centimeters.
A B

D E F

C

FIGURE 6

Total seasonal differences between the Aerial Imaging crop coefficients and the Landsat Fractional ET Data at the SWREC. Aerial Imaging crop
coefficients were estimated from equations developed by (A) Kamble et al. (2013), (B) Bausch and Neale (1987), (C) Bausch and Neale (1987),
(D) Bausch (1993), (E) Campos et al. (2017), and (F) Neale et al., (1989).
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damaged areas remains low. Therefore, k-means clustering is

preferred over variable speed zones in fields with known regions

of unplanted areas or unhealthy plants, unless these unplanted or

unhealthy areas are removed from the dataset before

zone delineation.
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Limitations and future work

A major limitation to the comparison of remote sensing

platforms used in this study was a lack of same-day data

collection between the datasets. To account for this, the crop
FIGURE 8

Mean, middle 90th percentile (dark red), and range (light red) of weekly evapotranspiration for all variable speed zones in (A) Field A, (B) Field B
and (C) the SWREC Pivot.
FIGURE 7

Weekly ET maps (left) are aggregated into variable speed control zones (right) using the mean of all pixels within each zone.
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TABLE 3 Evapotranspiration depth (centimeters) for every k-means clustering zone, sorted by minimum depth to maximum depth.

Weeks since emergence Minimum Maximum

Field B

1 1.30 1.57 1.88 2.34

2 0.99 1.96 2.29 2.67

3 1.50 3.00 3.48 3.84

4 1.83 3.43 3.89 4.24

5 2.03 3.71 4.45 4.67

6 1.80 3.68 4.52 4.72

7 1.88 3.71 4.55 4.67

8 1.73 3.66 4.47 4.60

9 1.80 3.51 4.42 4.50

10 2.18 3.56 4.32 4.39

11 2.18 3.94 4.29 4.39

Field A

1 0.69 0.81 0.94 1.96

2 1.12 1.30 1.47 1.68

3 1.40 1.80 2.08 2.39

4 1.12 2.26 2.72 3.07

5 1.24 2.77 3.23 3.51

6 1.35 2.84 3.38 3.58

7 1.37 2.67 3.33 3.53

8 1.40 2.54 3.23 3.40

9 1.37 2.34 3.12 3.30

10 1.24 2.39 3.12 3.33

(Continued)
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FIGURE 9

K-means clustering Elbow test results for Field B by week.
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coefficients calculated from the aerial images were linearly

interpolated between collection dates and aggregated to a 30-

meter resolution to match the Landsat data. These methods, in

combination with the Vegetation Index (VI)-Kc models

introduced a significant amount of uncertainty to the actual

ET estimates. Future remote sensing comparison studies should

aim to eliminate, or at minimum, quantify this uncertainty by

comparing data collected from different platforms on the same

day. Additionally, the SSEBop model used to create the Landsat

Provisional ET Dataset was developed across the contiguous

United States and is commonly used for regional studies. The use

of this data at the sub-field level adds an additional source

of uncertainty.

In addition to the challenges of accurately quantifying late

season ET previously mentioned, there are some practical

limitations to using either dataset for variable rate irrigation

scheduling. The most significant limitation for both datasets is a

lack of validation from in situ measurements. The Landsat

images have been validated using data at regional scales, but
Frontiers in Agronomy 14
they have not been used for sub-field level management

decisions (Singh et al., 2014; Senay et al., 2016; Senay et al.,

2017). The second major limitation is the image processing time,

which ranges from about 1-2 days for the aerial imagery, to

about a week for the Landsat images. It is imperative for

irrigators to make well-informed decisions at the right time to

avoid unnecessary crop stress that could negatively impact

yields. Third, aerial imagery providers offer a wide variety of

products for both water and nutrient stress monitoring, as well

as customized insight into their data. However, for some, these

services may not be cost effective at the frequency needed for

irrigation scheduling. In contrast, the Landsat Provisional ET

Dataset is available for free, but the raw data does not have the

same level of support or insight that aerial imagery provides.

Additionally, the Landsat satellites have a fixed revisit period,

meaning they may not always collect data under ideal

environmental conditions (i.e., rainy or cloudy days).

This work presents several opportunities for future research

to improve on the comparison of crop evapotranspiration
TABLE 3 Continued

Weeks since emergence Minimum Maximum

11 1.32 2.44 3.02 3.23

SWREC

1 2.03 2.11 2.26 2.62

2 0.76 0.86 0.99 1.14

3 1.07 1.17 1.30 1.55

4 1.47 1.68 1.83 2.06

5 1.37 1.78 2.06 2.39

6 2.29 3.00 3.56 4.06

7 1.65 2.24 2.69 3.02

8 2.77 3.84 4.50 5.05

9 2.64 3.84 4.47 4.93

10 3.51 5.05 5.61 5.99

11 4.34 5.94 6.48 6.76
fr
FIGURE 10

Weekly ET maps (left) are aggregated using k-means clustering to mimic variable flow control zones (right).
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monitoring using remote sensing platforms. First, the

introduction of uncertainty could be reduced by carefully

planning data collection to occur on the same date, and as

close to the same time, for all data sources. This would eliminate

the need to perform temporal interpolation between collection

dates and simplify data processing needs. Second, all imaging

platforms useful at the sub-field scale should be able to identify

unplanted regions, like pivot access roads. These unplanted areas

decreased ET estimates within VRI zones, and negatively

impacted zone delineation using the k-means clustering

method. Third, future researchers should validate remotely

sensed ET estimates using high spatial resolution in situ

measurements. Fourth, not all the regression models used in

this study were published with uncertainty estimates, and the

model parameters were similar between all studies. This

indicates that the linear models may not be significantly

different from each other and introduces an additional source

of uncertainty. Future studies aimed at producing VI-Kc

regression models should quantify the uncertainty associated

with the calculated parameters so those utilizing the models

better understand potential sources of error and can determine

the significance of observed differences in high resolution ET

estimates. Additionally, future studies should aim for as large of

a sample data set as possible to reduce uncertainty and produce

more accurate model parameters. Finally, remote sensing is an

ongoing field of research and new datasets may address the
Frontiers in Agronomy 15
practical limitations related to using remotely sensed ET for

irrigation scheduling. These datasets should continue to be

evaluated for use in irrigation decision support systems.
Summary and conclusion

This work investigated sub-field evapotranspiration

estimates on three irrigated corn fields in Western Kansas, all

of which depend on the High Plains Aquifer for water. This

research used data from two remote sensing platforms, three

Kansas Mesonet weather stations, and two common aggregation

techniques to predict weekly ET, and delineate variable rate

irrigation zones. Six linear VI-Kc models paired with aerial

imagery all estimated higher ET rates than the Landsat

Provisional Actual ET dataset. Comparing these two data

sources in-depth proved challenging based on their differences

in temporal and spatial resolutions. However, Pearson’s

product-moment correlation tests showed moderate levels of

correlation between VI-Kc model outputs and Landsat’s

fractional ET layer. The two aggregation techniques-variable

speed zones and k-means clustering-both reduced sub-field level

ET variability and demonstrated potential for use in VRI

scheduling. The variable speed zones require minimal

equipment adjustments for use, but do not always accurately

represent crop water demands in every zone. In contrast, the k-
A B

C

FIGURE 11

Time series of average mean distance from the zone’s aggregated ET value by aggregation method at (A) Field A, (B) Field B, and (C) the
SWREC Pivot.
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means clusters require irrigators to have control of flow rates to

individual spans, or groups of nozzles. k-means clustering also

evenly distributed the within-zone variability between each zone

rather than creating a few zones with much higher variability,

like in the variable speed zones.

There are many questions that need to be answered before

these sub-field Kc maps get integrated into an automated

irrigation scheduling tool. However, this work demonstrates

enough variability in sub-field-level ET zones to warrant

further research into this topic. Critical areas of future research

include validating these data sets with in situ measurements and

quantifying the yield and financial benefits obtained by using

this data to inform VRI schedules. Such research will help

determine if sub-field ET maps can help irrigators maintain

high yields under limited water availability, which will soon be

common for those in the Central and Southern regions of the

High Plains Aquifer.
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