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High-throughput and point-of-
care detection of wheat fungal
diseases: Potentialities of
molecular and phenomics
techniques toward
in-field applicability

Sara Francesconi*

Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
The wheat crop is one of the most cultivated and consumed commodities all

over the world. Fungal diseases are of particular concern for wheat cultivation

since they cause great losses and reduced quality, and also for the

accumulation of toxin compounds into the final product. In this scenario,

optimal disease management strategies are a key point to boosting food

production and sustainability in agriculture. Innovative and point-of-care

diagnostic technologies represent a powerful weapon for early detection of

fungal pathogens and preventively counteract diseases on wheat with the aim

to drastically reduce the fungicides as inputs. Indeed, in-field diagnostics

devices are fast, sensitive, and ready-to-use technologies able to promptly

detect a low inoculum concentration even at the pre-symptomatic stage of the

disease. Promising isothermal molecular and phenomics-based methods have

been developed to detect wheat fungal pathogens directly in the field. Such

technologies could be potentially coupled to directly detect the presence of a

certain pathogen and indirectly disclose the plant-pathogen interactions since

spectral-based methodologies detect host perturbations following the

infection. The present review reports the main in-field isothermal molecular-

based and phenomics-based detection technologies for fungal pathogens in

wheat discussing their advantages, disadvantages, and potential applications in

the near future.
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1 Introduction

Wheat represents 20% of the total human food calories, and

it is extensively grown in all temperate world regions.

Furthermore, it is human beings’ most important source of

protein (Gustafson et al., 2009; Khan et al., 2020; Ma et al., 2020).

In the future, the world wheat supply will become even more

critical, as the demand will exponentially grow, while the current

agricultural systems are responsible for land degradation (Foley

et al., 2011). Thus, the world crop production needs to double by

2050 (Ray et al., 2013).

Plant diseases are responsible for major production and

economic losses in agriculture and forestry, which are also

attributed to non-native plant pathogens (Pimentel et al.,

2005). Biotic infestations result in symptoms appearing on

different parts of the plants, causing tissue damage and a

significant agronomic and economic impact (López et al.,

2003). In a recent report developed by the Food and

Agriculture Organization (FAO), about 20% to 40% of the

global crop production has been lost because of biotic stresses.

Particularly, plant diseases cost approximately US$220 billion

per year, and it is estimated that such losses deprived more than

800 million people of adequate consumable food (FAO, 2021;

Mitra, 2021). Referring to wheat, about 10% of estimated yield

losses were due to fungal pathogens, whereas viral and bacterial

diseases are usually less impacting (Oerke, 2006; Aboukhaddour

et al., 2020; Simón et al., 2021). Thus, it is clear to the scientific

community that an early disease detection system based on the

fundamental understanding of host–pathogen interactions can

aid in decreasing such losses, further prevent the spread of

diseases, and enhance the total agricultural yield (Sankaran

et al., 2010; Mitra, 2021). For such reasons, the success of

wheat improvement programs to meet future demands will

require the complementation of traditional and modern

breeding programs (Gustafson et al., 2009) with innovative,

sustainable, fast, and sensitive management and detection

strategies to promptly control wheat diseases.

The most employed in-laboratory detection techniques of

plant pathogens are the enzyme-linked immunosorbent assay

(ELISA), which recognizes an antigen from the pathogen, and

polymerase chain reaction (PCR), amplifying specific DNA

sequences of the plant pathogen (Prithiviraj et al., 2004;

Saponari et al., 2008; Yvon et al., 2009; Sankaran et al., 2010;

Martinelli et al., 2015). Although these are well-established

techniques, there is an increasing demand for fast, sensitive,

effective, and, possibly, in-field methods for the detection of

plant diseases (Figure 1) (Schaad et al., 2002; Schaad et al., 2003).

Detection techniques can be generally classified into two main

groups: direct and indirect methods. Direct methods comprise

techniques able to directly detect a certain structure from the

plant pathogen, such as ELISA- or PCR-based assays. Indirect

methods are based on the detection of host responses
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(perturbation of photosynthesis, change in chlorophyll

content, and temperature increase due to stomatal closure) to

a certain biotic stress, thus comprising volatile, proximal, and

remote sensing techniques (Sankaran et al., 2010). Although

molecular and serological methods have revolutionized plant

disease detection, they are sometimes not very reliable, sensitive,

and accurate and, especially at the asymptomatic stage, are

labor-intensive and time-consuming and do not always offer

the possibility of on-site detection. However, sensor-based

techniques can deliver much more high-throughput results, by

allowing high spatialization of data acquisition, and can

effectively detect early the infections in the field. For such

reasons, coupling DNA-based molecular methods and sensor-

based techniques will help plant disease management through an

effective, reliable, sensitive, and rapid preliminary identification

of latent infections (Li et al., 2014; Fahlgren et al., 2015;

Martinelli et al., 2015; Mahlein, 2016; Mahlein et al., 2018).
2 Most impacting fungal
wheat diseases

Before introducing the main and innovative detection

techniques, the following section will give a general overview

of the most impacting fungal wheat diseases (Figure 2) against

which researchers have focused their efforts on developing in-

field diagnostic methodologies.
2.1 Rusts

Rust fungi are obligate parasites characterized by high

genetic variability since several races have been reported

(Kolmer, 2013). They are of particular economic concern since

global annual losses range between US$4.3 and 5.0 billion

(Figueroa et al., 2018). In wheat, three rust diseases are

reported (Ash, 1996). Three species infect wheat, Puccinia

graminis f. sp. tritici, causing stem or black rust; Puccinia

striiformis f. sp. tritici, causing stripe or yellow rust; and

Puccinia triticina, causing leaf or brown rust. Typical

symptoms appear as masses of spores on leaves, stems, and

glumes, causing yield losses associated with a reduction in grain

size (Kolmer, 2005; Leonard and Szabo, 2005; Huerta-Espino

et al., 2011; Sabrol and Kumar, 2013; Khushboo et al., 2021).
2.2 Fusarium head blight

Fusarium head blight (FHB) stands out as the most

devastating wheat disease owing to a lack of resistant varieties,

great yield loss (10%–70%), grain quality reduction, and health

problems because of mycotoxin accumulation in food and feed.
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FHB occurs in the majority of the wheat-growing regions

including Asia, North America, South America, and Europe

(McMullen et al., 2012; Khan et al., 2020; Ma et al., 2020;

Mielniczuk and Skwaryło-Bednarz, 2020). Fusarium

graminearum Schwabe is considered the most aggressive

species; it is graded among the four crucial plant fungal

pathogens (Dean et al., 2012) and was thought to be a single

cosmopolitan species (Ma et al., 2020). The bleaching of infected

spikelets inhibits the development of kernels, which causes grain

number reduction in the spikes. The grains may be subjected to

the accumulation of trichothecene mycotoxins produced by

causal agents, such as deoxynivalenol (DON), making them

unsuitable for humans and animals (Gilbert and Tekauz, 2000;
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McCallum and Tekauz, 2002; Jansen et al., 2005; Beyer et al.,

2006; Vaughan et al., 2016; Gunupuru et al., 2017).
2.3 Powdery mildew

Powdery mildew is caused by Blumeria graminis f. sp. tritici,

which has been classified as the sixth most dangerous out of 10

fungal pathogens in wheat (Dean et al., 2012). Powdery mildew

can occur during the entire wheat seasonal year in all the wheat-

growing regions, with crop production losses recorded from 34%

to 62% (Alam et al., 2011; Mehta, 2014). Typical symptoms are

visible mycelium and conidia as powder-like colonies on leaves
FIGURE 1

Graphical representation of an ideal workflow for point-of-care (POC) detection of wheat fungal pathogens. Molecular POC detection starts
with an easy and fast DNA extraction by using an in-field protocol, such as simple maceration of plant materials in saline buffer. The crude
extract is directly subjected to an isothermal amplification, and results are visualized on a portable thermal cycler or by colorimetric reactions.
Molecular POC detection techniques are fast, sensitive, and specific and can give results in real-time, but they require precise expertise for
primer design and are not extremely high-throughput since the number of processed samples is determined by the characteristics of the
thermal cycler in use. Phenomics POC detection is based on the acquisition of images by a sensor mounted on an unmanned aerial vehicle
(UAV) or satellite-based to boost their high-throughput capabilities since it is possible to scan a field in a few minutes. Sensors acquire images
and collect a huge amount of data that need to be further analyzed, classified, and validated. Phenomics-based techniques are high-throughput
and fast during image and data acquisition, but data analysis is not real-time and often requires specific expertise for data interpretation;
moreover, they can be expensive, weather-dependent, and not specific for the detection of a certain stress. A prompt POC detection technique
is extremely useful to optimize disease management strategies.
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FIGURE 2

Representative symptoms of the main fungal diseases affecting wheat. (A) Stem or black rust by Puccinia graminis f. sp. tritici (Huerta-Espino
et al., 2020). (B) Stripe or yellow rust by Puccinia striiformis f. sp. tritici (Porras et al., 2022). (C) Leaf or brown rust by Puccinia triticina (Huerta-
Espino et al., 2020). (D) Fusarium head blight by Fusarium graminearum (Francesconi et al., 2021). (E) Powdery mildew by Blumeria graminis f.
sp. tritici (Twamley et al., 2019). (F) Blast by Magnaporthe oryzae Triticum pathotype (Fernández-Campos et al., 2021). (G) Karnal bunt by Tilletia
indica (Bishnoi et al., 2020). (H) Loose smut by Ustilago tritici (Thambugala et al., 2020). (I) Leaf blotch by Zymoseptoria tritici (Brennan et al.,
2020). (J) Black point by Bipolaris sorokiniana (Li et al., 2020). (K) Molds by Aspergillus spp. (Dzhavakhiya et al., 2016).
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and stem, which may be followed by black survival sexual

structures, chasmothecia (formerly cleistothecia), which may

overwinter and infect new host plants in the following

growing season by releasing ascospores (Glawe, 2008).
2.4 Wheat blast

Wheat blast is a devastating disease caused by the

ascomycetous fungus Magnaporthe oryzae Triticum pathotype

(MoT) (Couch and Kohn, 2002; Zhang et al., 2016; Cruz and

Valent, 2017). The disease was confined to South America since

its first emergence in Brazil in 1985, where it is a serious concern

to 3 million ha of wheat cultivated area (Kohli et al., 2011; Islam

et al., 2020). In 2016, MoT has been discovered for the first time

in Bangladesh and India, where it devastated more than 15,000

ha of wheat, causing yield losses of up to 100% (Islam et al., 2016;

Malaker et al., 2016; Figueroa et al., 2018). Recently, a MoT

strain was also detected and characterized in Zambia ( (Tembo

et al., 2020). The most distinguishable symptoms are observed in

the head, even though they can be easily confused with FHB

symptoms, since the spikes become partially or fully bleached,

causing shriveled grains, low test weight, and accumulation of

poor nutrients (Goulart et al., 2007; Islam et al., 2016; Surovy

et al., 2020). The affected grains are not suitable for

human consumption; thus, they can be discarded during

the post-harvest process (Urashima et al., 2009; Surovy

et al., 2020).
2.5 Karnal bunt

Karnal bunt is caused by the basidiomycetes fungus Tilletia

indica, and it was firstly reported in India in 1931. Nowadays, the

disease is present in India, Iran, Iraq, Mexico, Nepal, Pakistan,

South Africa, and the United States (Jones, 2007; Emebiri et al.,

2019a; Emebiri et al., 2019b; Gurjar et al., 2019; Singh et al.,

2020). Moreover, it is an internationally recognized quarantine

disease (classified as A1 by the European and Mediterranean

Plant Protection Organization (EPPO)); thus, restrictions

prevent the international trading of wheat grains from the

affected regions (Carris et al., 2006; Figueroa et al., 2018;

Pandey et al., 2019; Bishnoi et al., 2020). After the infection,

the grains become a black powdery mass of teliospores, which

secrete trimethylamine, thereby negatively impacting the quality

and marketability of the kernels by altering the chemical

composition and rendering them inedible (Kumari et al., 2020;

Iquebal et al., 2021; Kumar et al., 2021). Yield losses are of

particular concern, since, in addition to the unmarketable

kernels, costs are also associated with control measures,

quarantine, and regulatory and monitoring restrictions

(Kumar et al., 2021).
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2.6 Loose smut

Loose smut, a wheat fungal disease present worldwide,

caused by the fungal pathogen Ustilago tritici, occurs in wheat

during early and mid-anthesis. The pathogen infects the spikes,

leading to the damage of head tissues, with the exception of the

rachis, and producing a black powder mass of smut spores

(Abrahim, 2019). Despite that loose smut is not considered a

devastating disease, it can cause moderate reductions in both

yield and quality of kernels. A disease incidence of

approximately 1%–2% can reduce profit for the farmers by

approximately 5%–20% (Abrahim, 2019; Chaudhary and

Pujari, 2021).
2.7 Leaf blotch

Leaf blotch is caused by the hemibiotrophic pathogen

Zymoseptoria tritici (formerly known as Mycosphaerella

graminicola or Septoria tritici), which represents the primary

leaf disease of wheat in temperate regions (Duba et al., 2018;

Figueroa et al., 2018; Brennan et al., 2019). Nowadays, leaf blotch

is the primary threat to wheat production, and its estimated

annual losses in Europe are about 280–1200 million euros,

including direct losses and control costs (Fones and Gurr,

2015). In particular, high fungicide usage poses a strong

selection on pathogen populations (McDonald and

Stukenbrock, 2016), leading to a rapid evolution of fungal

resistance to the major classes of fungicides (Dooley et al.,

2016; Hayes et al., 2016; Corkley et al., 2022).
2.8 Diseases caused by Bipolaris
sorokiniana

Bipolaris sorokiniana (teleomorph Cochliobolus sativus) is

one of the major biotic constraints to wheat production since

losses can reach up to 50% (Sharma and Duveiller, 2006;

Figueroa et al., 2018). B. sorokiniana causes spot blotch, black

point, and root rot (Al-Sadi, 2021). Spot blotch can cause

significant losses (15%–43%) in warm areas (Gupta et al.,

2018; Al-Sadi, 2021; Alkan et al., 2022). Symptoms situated on

the leaf, sheath, node, and glumes appear as small light brown

and oval lesions. The affected leaves are affected by chlorophyll

deficiency and eventually die. Spikes and grains could also be

affected, causing black points (Gupta et al., 2018). Black point is

caused at the kernel site, in association often with other fungal

pathogens such as Alternaria, Fusarium, and Penicillium spp.,

causing a brown-to-black tip in the embryo. The disease

negatively affects the quality and market value of grains, with

an accumulation of fungal toxins in the kernels, and favors

seedling blight, root rot, and different diseases. Moreover, seed
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germination, seedling emergence, total photosynthetic area, and

normal growth of plants can be drastically reduced (Al-Sadi and

Deadman, 2010; Li et al., 2019; Somani et al., 2019; Al-Sadi,

2021). Seeds infected by black points can favor the development

of root rot and crown rot. Root rot and crown rot of cereals are

characterized by necrotic dark brown lesions on the roots and

crown (Al-Sadi and Deadman, 2010; Qostal et al., 2019). The

disease is caused by B. sorokiniana and other fungal pathogens,

such as Fusarium pseudograminearum, Fusarium culmorum,

Microdochium nivale, Pythium spp., and Rhizoctonia cerealis

(Moya-Elizondo et al., 2011; Saremi and Saremi, 2013; Kazan

and Gardiner, 2018; Xu et al., 2018; White et al., 2019). Yield and

quality are reduced in infected plants because of the reduced

number of tillers and the number and size of kernels (Al-

Sadi, 2021).
2.9 Molds by Aspergillus spp.

Aspergillus is considered a unique fungal genus since there

are more than 180 accepted anamorphic species (Sheikh-Ali

et al., 2014; Khan et al., 2021; Magallanes López and Simsek,

2021). High temperature, high humidity, and incorrect food

storage conditions enhance Aspergillus growth and mycotoxin

development, such as aflatoxins (AFs) (Pankaj et al., 2018;

Frisvad et al., 2019). The FAO estimated that approximately

25% of the world’s cereal grains are contaminated by AFs (FAO,

2004), since AF contamination may occur during pre- or post-

harvest stages (Shuaib et al., 2010; Iimura et al., 2017). Warm

temperature and high humidity conditions favor fungal growth

in the field and during storage, contributing to AF accumulation,

which is responsible for substantial commercial losses (Sheikh-

Ali et al., 2014; Khan et al., 2021). Importantly, AFs are among

the most toxic compounds, since they are considered mutagenic,

teratogenic, genotoxic, and carcinogenic (classified into group

A1 by the International Agency for Research on Cancer),

causing severe diseases in animals and humans (Giovati et al.,

2015; Monson et al., 2016; Yuan et al., 2016b; Peles et al., 2019).
3 Molecular-based point-of-care
detection methods

The desirable characteristics of plant pathogen diagnostic

assays are specificity, sensitivity, reproducibility, quickness,

affordable costs, and, possibly, high-throughput multiplex

detection capability (Lau and Botella, 2017). Point of care

(POC) describes any treatments or technology given at the

“site-of-need”. POC diagnostic methods are essential tools to

reduce the agricultural yield losses caused by biotic stresses (Lau

and Botella, 2017; Cassedy et al., 2020). Thus, POC assays that

do not require sophisticated and specific laboratory equipment
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can be rapidly and cheaply performed in the field and, possibly,

show multiplexing capability, which are in high demand (Yager

et al., 2006). For such purpose, isothermal DNA amplification

methods overcome the main limitation of PCR and real-time

PCR, since they can obviate the need for a thermal cycler (Gill

and Ghaemi, 2008; Craw and Balachandran, 2012). Such

characteristics depend not only on the detection methodology

itself but also on sampling and further nucleic acid extraction

procedures. Fungal spores are easily transported by wind and

water splashes; thus, the airborne inoculum can be captured by

several types of spore samplers, such as passive or active ones.

Passive traps are based on spore deposition on adhesive surfaces,

such as slides or filters. These samplers have the advantage of

low-cost equipment even though they do not allow spore

counting. However, active traps allow the calculation of spore

concentrations by using a scanning electron microscope. They

mechanically collect the airborne inoculum by using a rotor or a

pump, but since they require the most sophisticated equipment,

costs are less affordable (Van der Heyden et al., 2021). The

captured airborne inoculum can be further processed for DNA

extraction. More interestingly, optimized protocols for sampling

fresh plant material and DNA/RNA extraction are particularly

requested for efficient amplification. Soft leaves can be

homogenized or macerated in an appropriate buffer without

mechanical pre-treatments, and this is particularly suitable for

in-field applications. After that, extraction and purification of

nucleic acids require cell lysis and remotion of all the metabolites

that can negatively affect downstream applications.

Nitrocellulose lateral flow discs were found to be extremely

useful since they allow DNA absorption frommacerated samples

without using laboratory equipment or specific reagents for

DNA precipitation. Another method is based on alkaline

polyethylene glycol (PEG-OH) extraction buffer, which allows

a fast DNA extraction from several tissues and cells ready to be

processed by PCR. These methods are amply reviewed by

Donoso and Valenzuela (2018) and Ivanov et al. (2021) and

have great potential to be applied for POC detection since they

are fast and cheap and require a minimum usage of or no

laboratory equipment. Nevertheless, nucleic acid amplification

can be strongly affected by the impurities in the crude extract,

but this is also connected to the efficiency of the isothermal

amplification technique. Interestingly, many companies have

developed portable thermal cyclers to directly submit the

crude extract to the amplification processes. Some examples

are the MiniAmp Thermal Cycler (Thermo Fisher Scientific)

and the Labnet Multigene™ Mini PCR Thermal Cycler (Sigma-

Aldrich), which are compact thermal cyclers suitable also for

POC applications. However, there are some especially designed

as portable cyclers such as the Palm PCR™ G3 (Ahram

Biosystems, Inc.), the GenePro LAMP Cycler (Gencurix), and

the LAMP thermal cycler iAmpDX (K-DOD Korea).

Among the isothermal amplification methods, loop-

mediated isothermal amplification (LAMP) has been
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developed by Notomi et al. (2000). LAMP requires two outer

primers (forward outer F3 and backward outer B3) and two

inner primers (forward inner FIP and backward inner BIP)

recognizing six specific sequences in the target DNA. The Bst

polymerase mediates strand displacement of DNA by producing

a single-stranded DNA, which acts as a template for the second

inner and outer primers, generating a DNAmolecule with a loop

structure. The addition of two extra loop primers (loop forward

(LF) and loop backward (LB)) may accelerate the LAMP

reaction. LAMP can be carried out at a constant temperature

(60°C–65°C) with a short reaction time, which makes it ideal for

POC plant pathogens detection, even though there is the need

for a heat block to maintain a temperature of 60°C–65°C.

Moreover, LAMP has high efficiency and sensitivity, as it

generates a large amount of amplicons from low amounts of

input DNA. However, the main limitations of LAMP reside in

the primers’ design, which is complicated and non-intuitive, and

its possible inhibitions by impurities in the crude extract.

Moreover, this technique does not allow proper quantification

of DNA, which is a useful tool to individuate the starting amount

of inoculum (Chang et al., 2012; Zhang et al., 2014c; Lau and

Botella, 2017; Le and Vu, 2017; Donoso and Valenzuela, 2018;

Rani et al., 2019; Cassedy et al., 2020; Hariharan and Prasannath,

2021; Ivanov et al., 2021; Leonardo et al., 2021). To potentiate

the LAMP applications for POC diagnostics, LAMP has been

combined with simple read-out methods to overcome the

traditional in-laboratory analyses. For example, the

amplification product can be detected by the naked eye by

adding color indicators into the LAMP amplification reaction

prior to amplification. Alternatively, LAMP has been combined

with ELISA by incorporating antigen-labeled nucleotides into

the reaction; thus, the amplicons incorporate them during the

amplification process. Reverse Transcriptase LAMP (RT-LAMP)

assays have been also developed for virus detection (Chang et al.,

2012; Zhang et al., 2014c; Lau and Botella, 2017; Le and Vu,

2017; Donoso and Valenzuela, 2018; Baldi and La Porta, 2020;

Buja et al., 2021).

Helicase-dependent amplification (HDA) is an isothermal

technique developed by Vincent et al. (2004). This technique

works quite similarly to the standard PCR, but it does not

require heat denaturation and the design of complicated

primers like LAMP. A DNA helicase denatures the double-

stranded DNA, following primer annealing and extension at

isothermal conditions. Moreover, single-stranded DNA-binding

protein (SSB) and MutL endonuclease have the role of

preventing the rehybridization of complementary single-

stranded DNA. Diverse POC applications for HDA also

improved its sensitivity by combining HDA amplification with

ELISA or gold nanoparticles, showing a 90% increase in

sensitivity and specificity as compared to the standard

HDA (Gill and Ghaemi, 2008; Andresen et al., 2009; Chang

et al., 2012; Lau and Botella, 2017; Ivanov et al., 2021; Leonardo

et al., 2021).
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Rolling circle amplification (RCA) is an isothermal

methodology to amplify circular DNA (Fire and Xu, 1995).

The DNA amplification is carried out by using phi29 DNA

polymerase, which enables single- or multiple-primer annealing

to a circular DNA by having a strand displacement activity. A

cascade of strand displacement events generates long single-

stranded DNA containing 100–1,000 tandem repeats of the

original target sequence. By manipulating linear DNA, this can

be suitable as a template for RCA. Indeed, a linear single-

stranded DNA probe can initially hybridize to the target

sequence, forming a loop and ligating to generate a circular

probe to start the RCA reaction. RCA is an isothermal technique

offering the advantages of ease to use, high multiplexing

potential, high sensitivity, and specificity. Incorporating RCA

with microarrays, biosensors, and immune assays has

significantly improved the POC potentiality of this technique

(Chang et al., 2012; Lau and Botella, 2017; Hariharan and

Prasannath, 2021; Ivanov et al., 2021).

Recombinase polymerase amplification (RPA) is an

isothermal technique optimally functioning at 37°C–42°C,

even though it can be also carried out at room temperature. In

the RPA reaction, a recombinase scans the double-stranded

target DNA to bind primers on complementary sites and

displace them. The generated single-stranded DNA is then

stabilized by an SSB. After that, the recombinase is released

from the primers, and strand displacement polymerase adds the

complementary nucleotides to form a new strand of DNA

(Piepenburg et al., 2006). RPA has gained a great interest in

pathogen detection due to its rapidity (the reaction lasts

approximately 30 min), sensitivity, selectivity, and low cost.

POC applications of RPA have been improved by combining

RPA with reverse transcription reactions (RT-RPA) or with

lateral flow devices (RPA-ELISA). The use of magnetic beads

has also been investigated to develop a naked-eye assay for plant

pathogen detection. Moreover, the RPA assay was found to be

suitable for paper and plastic lateral flow devices and

nanotechnology-based and microfluidics-based biosensors

(Santiago-Felipe et al., 2014; Sun et al., 2016; Lau and Botella,

2017; Rani et al., 2019; Ivanov et al., 2021).
3.1 Molecular isothermal detection of
wheat pathogens

Table 1 schematically summarizes the main isothermal

techniques employed for the detection of wheat fungal

pathogens, their peculiarities, potentialities, and drawbacks for

POC applications.

3.1.1 Detection by loop-mediated
isothermal amplification

LAMP was the most studied and validated POC application.

Several LAMP assays have been investigated for the detection of
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TABLE 1 Main isothermal techniques employed for detection of wheat fungal pathogens.

Technique Detected
pathogen

Starting
material

Time
required

Sensitivity Final
visualization

Potentialities
for POC

applications

Drawbacks for POC
applications

Reference

LAMP Fusarium
spp.

Direct testing on
mycelium, infected
grains and pure DNA
extracted from bulk
samples of grains

30 min 2 pg of DNA Calcein Tolerance to
inhibitors, fast, high
sensitivity

Need for UV light for
visualization

Niessen and
Vogel, 2010

Direct testing on
mycelium, infected
grains and pure DNA
extracted from
mycelium.

30 min 0.74 pg of
pure DNA;
0.5% of
infected
grains

Calcein Fast, high sensitivity Need for UV light for
visualization, presence of
false-negative results

Denschlag
et al., 2012

Pure DNA extracted
from wheat samples

60 min 0.004–15.74
ng of DNA

Turbidity from
precipitating
magnesium-
pyrophosphate

Multiplex capability,
detection of
mycotoxin-producing
strains, visualization
by naked eye

Not fast, high variability
in sensitivity, not tested
on crude extracted DNA

Denschlag
et al., 2014

Pure DNA extracted
from mycelium and
infected samples

60 min 100 pg of
DNA

Hydroxynaphthol
blue

High sensitivity, high
specificity,
visualization by
naked eye

Not fast, not tested on
crude extracted DNA

Zeng et al.,
2017

Pure DNA extracted
from infected heads

60 min 100 pg of
DNA

Hydroxynaphthol
blue

High sensitivity, high
specificity,
visualization by
naked eye

Not fast, not tested on
crude extracted DNA

Xu et al.,
2017

Pure DNA extracted
from pure cultures
and infected grains

90 min 5 pg of DNA Calcein High sensitivity, high
specificity, detection
of mycotoxin-
producing strain

Not fast, not tested on
crude extracted DNA,
need of UV light for
visualization

Wigmann
et al., 2020

Pure DNA extracted
from pure cultures
and infected grains

60 min Not specified Hydroxynaphthol
blue

Detection of
pesticide-resistant
strains, visualization
by naked eye

Not fast, not tested on
crude extracted DNA,
unknown sensitivity

Duan et al.,
2014

Pure DNA extracted
from pure cultures
and infected heads

Not
specified

Not specified Fluorescence
resonance energy
transfer (FRET)

Detection of
pesticide-resistant
strains

Not tested on crude
extracted DNA, unknown
time required and
sensitivity, need of specific
equipment for detection

Komura
et al., 2018

MoT Crude DNA extracted
from pure cultures
and infected samples

50 min 5 pg of DNA Portable Gene II
cycler

High specificity and
high sensitivity, use
of in-field DNA
extraction and
amplification
protocols

Not so fast Yasuhara-
Bell et al.,
2018

Pure DNA extracted
from infected grains
and mycelium

5 min 0.25% of
infected
grains and 5
pg of DNA

RotorGene
thermocycler
(Qiagen)

Extremely fast, high
sensitivity

Not tested on crude
extracted DNA, no POC
visualization

Thierry
et al., 2020

Tilletia spp. Pure DNA extracted
from mycelium

30 min 10 pg of
DNA

Calcein Fast, high sensitivity
and specificity

Not tested on crude DNA
extract, need of UV light
for visualization

Gao et al.,
2016

Pure DNA extracted
from mycelium and
spores

45 min 5 pg of DNA Neutral red High sensitivity and
high specificity,
visualization by
naked eye

Not tested on crude DNA
extract, not so fast

Sedaghatjoo
et al., 2021

Puccinia
spp.

Pure DNA extracted
from spores and
seedlings

Not
specified

2 pg of DNA SYBR Green High sensitivity Not tested on crude DNA
extract, unknown time
required, need of UV light
for visualization

Huang et al.,
2011

(Continued)
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Fusarium spp. The first reported study validated a LAMP assay

to detect F. graminearum on galactose oxidase (gaoA) gene of

the pathogen. The detection was carried out in situ by using

calcein fluorescence as a marker. The assay was rapid, specific,

and sensitive and detected the presence of less than 2 pg of

purified target DNA per reaction within 30 min. The LAMP

assay was applied for DNA amplification from fungal cultures,

infected barley grains, and detection of F. graminearum in total

genomic DNA isolated from wheat grains (Niessen and Vogel,

2010). Similarly, LAMP was used to detect Fusarium spp. in

unmalted and malted cereals during quality control in the

brewing industry by targeting hydrophobin (hyd5) gene.

Calcein was used as an in-tube indirect detection indicator.

The LAMP reaction detected a minimum of 0.74 pg of purified

DNA in 30 min. The authors also applied the LAMP reaction by

directly using the mycelia as a template without any previous

DNA extraction, but they obtained a false negative from F.

graminearum mycelia, probably because of the thicker cell wall

as compared to the other Fusarium spp., thus reducing the

accessibility of the DNA. Also, barley grains were tested directly

with the LAMP method. With the use of supernatants from

grain samples as templates, the LAMP assay detected an

infection level of 0.5% of F. culmorum in grains (Denschlag

et al., 2012). The same authors (Denschlag et al., 2014) designed

LAMP primers to amplify a partial sequence of Tri6

(trichothecene transcriptional regulator) gene in F.

graminearum and of Tri5 (trichodeine synthases) gene in
Frontiers in Agronomy 09
Fusarium sporotrichioides. Interestingly, the combination of

both primers in one duplex assay enabled multiple detections

of F. graminearum, F. culmorum, Fusarium cerealis, F.

sporotrichioides, Fusarium langsethiae, and Fusarium poae.

Moving to the applicability of the assay, 100 wheat samples

were analyzed for the trichothecene mycotoxin DON by high-

resolution mass spectrometry (HPLC) and the presence of

trichothecene producers by the new real-time duplex LAMP

assay. The LAMP assay showed positive results for all samples

with a DON concentration exceeding 163 ppb. As an indicator of

DNA amplification, the LAMP reaction employs turbidity

derived from precipitating magnesium–pyrophosphate

complex formed as a by-product of enzymatic DNA

biosynthesis, which is directly proportional to the amount of

amplified DNA. The LAMP reaction showed detection limits

varying from 0.004 ng for F. graminearum to 15.74 ng for F.

poae, probably depending on the interspecific sequence

variations between the target genes (Denschlag et al., 2014). In

another study, F. culmorum was specifically detected by a LAMP

reaction targeting CYP51C (cytochrome) gene. The LAMP

efficiently runs in 60 min at 63°C, demonstrating a sensitivity

of 100 pg of genomic DNA. The hydroxynaphthol blue (HNB)

dye was added to the amplification reaction to visually detect

positive samples (Zeng et al., 2017). The same CYP51C was

targeted to specifically detect Fusarium asiaticum in diseased

wheat heads. The LAMP reaction was efficient in 60 min at 63°C,

demonstrating a sensitivity of 100 pg of starting DNA. The
TABLE 1 Continued

Technique Detected
pathogen

Starting
material

Time
required

Sensitivity Final
visualization

Potentialities
for POC

applications

Drawbacks for POC
applications

Reference

Pure DNA extracted
from spores and
seedlings

60 min 1 pg of DNA Hydroxynaphthol
blue

High sensitivity,
visualization by
naked eye

Not tested on crude DNA
extract, not fast

Aggarwal
et al., 2017

Pure DNA extracted
from mycelium and
leaf

60 min 100 fg Hydroxynaphthol
blue

High sensitivity,
visualization by
naked eye

Not tested on crude DNA
extract, not fast

Manjunatha
et al., 2018

Ustilago
tritici

Pure DNA extracted
from mycelium and
infected plants

Not
specified

100 fg SYBR Green High sensitivity Not tested on crude DNA
extract, unknown time
required, need of UV light
for visualization

Yan et al.,
2019

RCA Fusarium
spp.

Pure DNA extracted
from mycelium and
infected samples

60 min Not specified SYBR Green Multiplex capability Not tested on crude DNA
extract, not fast,
sensitivity not specified,
need of UV light for
visualization

Davari et al.,
2012

RPA MoT Pure DNA extracted
from mycelium

30 min 1 ng Lateral flow
immunoassay

Fast, visualization by
naked eye

Not tested on crude DNA
extract, low sensitivity

Kang et al.,
2021

Bipolaris
sorokiniana

Pure DNA extracted
from mycelium and
infected samples

20-40 min 10 pg of
DNA

Agarose gel Faste and high
sensitivity

Not tested on crude DNA
extract, no POC
visualization

Zhao et al.,
2021
fro
For each reference study, main peculiarities, potentialities, and drawbacks of POC applications are described.
POC, point of care; LAMP, loop-mediated isothermal amplification.
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specificity was compared with that for other Fusarium spp. and

other fungal species, and the results were directly visualized by

adding HNB prior to amplification (Xu et al., 2017). LAMP was

also employed to specifically detect fumonisin producers

Fusarium spp. by targeting fum1 gene encoding for a

polyketide synthase present in the genome of all fumonisin-

producing Fusarium spp. Therefore, a fum1-specific LAMP

assay was developed and amplified 22 species belonging to the

Fusarium fujikuroi species complex (FFSC) as fumonisin

producers. The limit of detection of the assay was 5 pg of

genomic DNA per reaction. The usefulness of the LAMP assay

was demonstrated by analyzing fumonisin-contaminated grains

and by using calcein as a visual indicator of the amplified DNA

(Wigmann et al., 2020). Interestingly, LAMP was also used to

detect Fusarium spp. strains resistant to pesticides. For example,

Duan et al. (2014) detected F. graminearum strains resistant to

carbendazim by targeting the point mutation F167Y into the b2-
tubulin gene leading to resistance to carbendazim. The LAMP

reaction was optimal at 63°C for 60 min, and positive samples

were visually detected by adding HNB prior to amplification

(Duan et al., 2014). Also Fusarium spp. strains resistant to

benzimidazole were detected by LAMP (Komura et al., 2018).

A LAMP-fluorescent loop primer (FLP) was employed by

detecting genetic polymorphisms by measuring the peak

temperatures of fluorescence resonance energy transfer

between an FLP and a quencher probe specifically hybridizing

to the sequence including a single-nucleotide polymorphism

(SNP), which is characteristic of mutant genotypes F167Y,

E198Q, and F200Y carrying the mutation in the b2-tubulin
gene region, which results in methyl benzimidazole carbamate

(MBC) resistance. The method is based on the different

annealing temperatures between the selected primers and the

DNA of sensitive (fully matched) and resistant (partially

mismatched) strains. As a result, sensitive strains are quenched

at higher annealing temperature values, while resistant strains

are quenched at lower annealing temperature values.

LAMP has been also widely employed for the rapid detection

of MoT by targeting the MoT3 locus. The LAMP assay showed

high specificity for MoT, and its sensitivity was 5 pg of DNA per

reaction. The LAMP assay was tested on MoT-infected wheat

grains and spikes by using a field DNA extraction kit and the

portable Genie II system to run the DNA amplification. This

assay was useful for MoT field surveillance, as well as for

identifying non-host species that may serve as a source of

inoculum for nearby wheat fields (Yasuhara-Bell et al., 2018).

More recently, a comparative genomic approach has been

adopted to identify new loci specific to MoT in order to design

a set of new markers to be used in LAMP for MoT detection. The

assay enabled the detection of the target at an infection rate as

low as 0.25% by amplifying down to 5 pg of genomic DNA per

reaction in less than 5 min. Thus, this new toolkit may be

particularly beneficial in preventing the trade of contaminated

seeds (Thierry et al., 2020). Another genomic approach was
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followed by Kang et al. (2021), where, to develop an accurate and

sensitive method for MoT detection, they identified two DNA

fragments, MoT-6098 and MoT-6099, that are present in the

MoT genome but not in the rice-infecting M. oryzae Oryzae

(MoO) pathotype. Such markers were successfully employed to

design a specific and sensitive LAMP assay (Kang et al., 2021).

The causal agents of karnal bunt were also successfully

detected by LAMP assays. T. indica was detected by LAMP at

62°C in 30 min. LAMP sensitivity was 10 pg of DNA, and calcein

was used as an indicator for the endpoint reaction (Gao et al.,

2016). While the previous authors designed a LAMP assay to

specifically detect T. indica, another research work detected

several Tilletia spp. by LAMP in contaminated grains. Tilletia

caries, Tilletia laevis, and Tilletia controversa were detected at a

minimum DNA concentration of 0.001 ng/µl (Pieczul et al.,

2018). More recently, Sedaghatjoo et al. (2021) established a

LAMP assay to detect T. controversa by comparing 21 genomes

of six Tilletia spp. to identify DNA regions unique and conserved

in T. controversa isolates. The LAMP assay was specific for T.

controversa DNA, with the exception of Tilletia trabutii, from

pure cultures and teliospores, and its detection limit was 5 pg of

genomic DNA per reaction. The LAMP assay was validated in

five laboratories in Germany and resulted in 100% sensitivity

and 97.7% specificity by employing an isothermal amplification

at 65°C for 45 min (Sedaghatjoo et al., 2021).

Rust pathogens have been also successfully detected by

LAMP. A LAMP assay was designed to detect P. striiformis f.

sp. tritici during the first latent infection in leaves for the

estimation of the potential initial inoculum. The LAMP assay

was also validated by amplifying DNA from spores and wheat

seedlings, and its detection limit was 2 pg of starting template;

moreover, the latent infection was detected on leaves 24 h after

the inoculation (Huang et al., 2011). Other authors established a

similar LAMP assay to detect P. striiformis f. sp. tritici during

latent infection. In this study, the sensitivity of the assay was 1 pg

of DNA, but the latent infection was detected 48 h after the

inoculation. The authors also provided the possibility to

colorimetrically detect the amplified DNA by adding HNB to

the reaction mixture, and the LAMP assay was run at 65°C for

1 h (Aggarwal et al., 2017). Additionally, Manjunatha et al.

(2018) detected P. triticina by a rapid, reliable, efficient, and

visual colorimetric LAMP method. By in silico analyses, a

specific marker, PtRA68, was individuated in the genome of P.

triticina PTS68, which was targeted to establish the LAMP assay.

The LAMP assay was run at 65°C for 60 min by detecting P.

triticina on wheat 24 h after inoculation at a pre-symptomatic

stage. The sensitivity of the LAMP assay was 100 fg, and indirect

detection of the amplified DNA was recorded by adding HNB to

the mixture (Manjunatha et al., 2018).

Also, Aspergillus spp. were detected by LAMP. Tang et al.

(2016) developed a LAMP assay for the detection of Aspergillus

fumigatus. The specificity of the assay was tested by targeting the

DNA of 22 non-A. fumigatus strains, and its detection limit was
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10 copies of DNA per reaction, demonstrating higher sensitivity

than Real-Time qPCR (102 copies of DNA) (Tang et al., 2016).

A. fumigatus was also detected by Tone et al. (2017) by coupling

LAMP with melting curve analysis (MCA) to reduce both the in-

laboratory work required and the eventual detection of

contaminants by targeting the ribosomal DNA of the large

subunit of A. fumigatus. This LAMP assay demonstrated a

sensitivity of 20 copies of starting DNA (Tone et al., 2017).

Finally, King et al. (2019) applied LAMP to discriminate the A.

fumigatus mating type. The LAMP primers targeting MAT gene

were screened against 34 A. fumigatus isolates to establish

whether they could distinguish MAT1-1 or MAT1-2

genotypes. The LAMP assay operating at an isothermal

temperature of 65°C discriminated against the different mating

types in 20 min (King et al., 2019).

Lastly, Yan et al. (2019) employed LAMP to detect U. tritici.

The designed primers were specific for U. tritici, and

the sensitivity of the detection method was 100 fg of starting

DNA. Furthermore, the LAMP assay was successfully employed

on loose smut diseased wheat plants (Yan et al., 2019).
3.1.2 Detection by rolling circle amplification
and recombinase polymerase amplification

RCA and RPA have been also investigated to detect fungal

wheat pathogens. Davari et al. (2012) designed an RCA assay to

detect the polymorphisms in the elongation factor 1-a (EF-1a)
for the identification of different species belonging to the F.

graminearum species complex (FGSC). The RCA assay also

enabled the detection of the Fusarium oxysporum (FOSC),

Fusarium incarnatum-equiseti (FIESC), and Fusarium

tricinctum (FTSC) species complexes. The RCA assays

successfully detected the DNA of the target fungi in

environmental and contaminated wheat samples. The

amplification product was visualized by the naked eye by

add ing SYBR Green in combina t i on wi th a UV

transilluminator (Davari et al., 2012). RPA also was employed

to detect MoT. The authors used the Cas12a protein and guide

RNAs to target specific MoT sequences. Cas12a showed single-

stranded deoxyribonuclease (ssDNase) activity; thus, the

combination of the Cas12a ssDNase activity with RPA and

nucleic acid lateral flow immunoassay (NALFIA) accurately

detected MoT. The RPA assay was executed at 25°C–40°C for

30 min and showed a sensitivity of 0.001 µg of starting DNA

(Kang et al., 2021). RPA assay was also employed to detect B.

sorokiniana by targeting the calmodulin gene sequence. The

specificity of the assay was tested by targeting 19 fungal species

associated with wheat, while the sensitivity resulted in 10 pg of

starting DNA. The RPA assay was also tested to detect B.

sorokiniana from artificially infected and naturally infected

wheat plants, where the amplification reaction lasted 20–40

min (Zhao et al., 2021).
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4 Phenomics-based point-of-care
detection methods

Despite molecular-based POC methods being sensitive,

accurate, and effective, they require sampling procedures; thus,

these methods are still destructive. Moreover, isothermal

amplification techniques are not high throughput, since they

can allow the analysis of a limited number of samples at the same

time. To develop innovative, non-destructive, and high-

throughput detection methods, ground-based disease detection

based on plant phenotyping could be possibly integrated with an

automated agricultural vehicle. Plant phenotyping disease

detection methods include both field-based and laboratory-

based experiments. The laboratory-based experiments provide

a strong background knowledge for the field-based applications,

such as spectroscopic and imaging techniques, which could be

easily integrated with an unmanned vehicle for fast, reliable, and

real-time disease monitoring for control and management. This

could potentially lead to the early detection of plant diseases that

could be a valuable source of information for executing proper

management strategies to prevent the spread of disease and to

apply pesticides in a cost-effective manner (Sankaran et al., 2010;

Martinelli et al., 2015). With increasing options in sensor

availability for image capture and open-source analysis tools,

the field of high-throughput plant phenomics is exponentially

growing but has also revealed some drawbacks regarding the

necessary improvements of hardware and software to advance

the field (Fiorani and Schurr, 2013; Li et al., 2014; Fahlgren et al.,

2015; Mahlein, 2016; Ubbens and Stavness, 2017; Qiu et al.,

2018; Pieruschka and Schurr, 2019). The aim of plant imaging is

to qualitatively and quantitatively measure a phenotype through

the interaction between light and plants. This is possible because

plant cells and tissues have wavelength-specific absorbance,

reflectance, and transmittance properties, thanks to differences

related to biochemical features (Li et al., 2014). Particularly, a

stressed plant can react with biochemical rearrangements

leading to protection mechanisms, resulting in physiological

perturbations such as changes in leaf area index, chlorophyll

content, or surface temperature; reduction of photosynthesis

rate; and stomatal closure, which induces an increase in

fluorescence and heat emission (West et al., 2003). For such

reasons, spectroscopic and imaging techniques are unique

monitoring methods that have been used as proximal sensors

to detect diseases in several plant hosts.

Certain pathogens cause a reduction of leaf plant chlorophyll

content and photosynthetic efficiency, which increases

reflectance in the visible range and causes a shift of the red-

edge position in the spectrum (Sankaran et al., 2010). Thus,

chlorophyll fluorescence has been used to monitor diseases in

plants (Li et al., 2014), by estimating the plant’s efficiency of

photo-assimilation, non-photochemical quenching, and other
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physiological plant parameters. During disease infection,

photosynthesis, respiration, and nutrient flow are subjected to

metabolic changes, which can be monitored by fluorescence

imaging, thus detecting early the stress responses associated with

biotic factors (Balachandran et al., 1997; Chaerle et al., 2007a;

Chaerle et al., 2007b; Chaerle et al., 2007c; Baker, 2008).

Fluorescence imaging combined with further data analysis

discriminated and quantified diverse fungal infections (Konanz

et al., 2014). Nevertheless, disadvantages of fluorescence imaging

concern the preparation of the plants, which need to follow a

strict protocol, and thus it is difficult to implement in normal

agricultural greenhouses or field environments (Li et al., 2014;

Mahlein, 2016).

Thermal imaging (3–14-µm spectral range) allows the

detection of canopy temperature and has been of particular

interest in the laboratory and field to evaluate leaf water status

(Jones et al., 2009; Munns et al., 2010), as much as stomatal

conductance, since leaf temperature is dependent on water

transpiration. Since biotic stresses often result in decreased

rates of photosynthesis and transpiration, thermal imaging can

be a reliable way to detect changes in the physiological status of

plants in response to different plant pathogens (Nilsson, 1995;

Chaerle and Van Der Straeten, 2000). This was of particular

interest for the detection of systemic infections (e.g., Fusarium

spp.), which often influences the transpiration rate and the water

flow of the entire plant or organs. The advantages of thermal

sensors are spatial resolution and easy interpretation of data;

however, they are often subjected to environmental factors such

as environmental temperature, sunlight, rainfall, or wind speed

(Mahlein, 2016).

Imaging techniques rely on vegetation indices (VIs) as

simple and effective algorithms for quantitative and qualitative

evaluations of plant characteristics, such as cover, vigor, water

stress, and photosynthetic efficiency, thus indirectly estimating

also the presence of biotic stresses. VIs are calculated from a

limited number of selected spectral bands from canopies since

the reflectance of light is determined by the chemical and

morphological characteristics of the plant surface. Moreover,

VIs are of particular interest, since they have been employed to

facilitate interpretation of remotely sensed data, while

minimizing confounding effects, such as sun angle, viewing

angle, atmospheric composition, canopy background variation,

topography, soil variations, and differences in senesced or woody

vegetation (Xue and Su, 2017; Pôças et al., 2020; Ferchichi

et al., 2022).

The simplest imaging method consists of the acquisition of

plant phenotypes by using cameras sensitive to the visible range

(400–700 nm) of the electromagnetic spectrum (Tackenberg,

2007; Hartmann et al., 2011). The projected canopy area is

extracted following image pre-processing and segmentation in

the RGB (red, green, blue) space. RGB imaging mimics human
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perception to provide useful data for plant phenotyping

applications, such as breeding for interesting plant traits or

detection of different stresses. For instance, RGB coupled with

machine learning for data analysis has been used to successfully

detect plant diseases (Camargo and Smith, 2009; Neumann et al.,

2014). The advantage of RGB sensors resides in cost accessibility

and ease of operation and maintenance. However, the image

acquisition step can be critical. Uniform focus, sharpness, and

illumination are crucial for high accuracy and reliable results.

Problems with RGB imaging are most commonly caused by the

overlapping of leaves and by background soil noise.

Consequently, new assessments should be performed on a

case-by-case basis during phenology for the developmental

stage of interest (Mahlein, 2016).

Multispectral and hyperspectral sensors are capable of

scanning a broader range of wavebands at high resolution

since they can detect emitted reflectance in the visible

spectrum (400–700 nm), the near-infrared (700–1,100 nm),

and the short-wave infrared (1,100–2,500 nm). This is of

particular interest in plant phenomics since the reflectance of

light from plants is a complex phenomenon depending on

multiple biophysical and biochemical interactions, which vary

also in response to certain stress. As an example, the visible

range is mainly influenced by green leaf pigment content; the

near-infrared reflectance depends on the tissue structure,

internal scattering processes, and the absorption by leaf water;

the short-wave infrared is influenced by the composition of

tissue chemicals and water (Carter and Knapp, 2001).

The use of such remote sensors can be grounded or airborne

(unmanned aerial vehicles (UAVs)) and spaceborne (satellites).

The Sentinel-2 satellite launched by ESA has a free and open

access policy, thus overcoming the expensive inaccessibility of

satellite-based images used for agricultural purposes. Sentinel-2

monitors and maps at local, regional, and global scales by using

multispectral sensors, while other hyperspectral missions have

been planned or recently launched, such as the Italian mission

PRecursore IperSpettrale (PRIMSA), the German mission

Environmental Mapping and Analysis Program (EnMAP), the

Japanese mission Hyperspectral Imager SUIte (HISUI), and the

National Aeronautics and Space Administration (NASA)

mission Hyperspectral Infrared Imager (HyspIRI). During the

last years, the costs and operability of UAVs are definitely more

accessible for agricultural applications. UAVs equipped with

sensors provide, in a fast and easy way, field data for precision

agriculture applications. While the resolution of satellite images

is from 5 to 30 m, UAV-based imaging provides resolution at

pixel sizes (3–5 cm2); thus, UAVs are a useful technology for

crop monitoring at different scales and can be used for

agronomic experiments where space, resource, and time

constraints limit manual sampling (Xue and Su, 2017; Marino

and Alvino, 2019; Marino and Alvino, 2020; Pôças et al., 2020).
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4.1 Phenomics-based detection of
wheat pathogens

Table 2 schematically summarizes the main phenomics-

based techniques employed for the detection of wheat fungal

pathogens, their peculiarities, potentialities, and drawbacks for

POC applications.
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4.1.1 Detection by fluorescence sensors
Kuckenberg et al. (2009) employed chlorophyll fluorescence

to detect both leaf rust and powdery mildew. The authors

measured the photochemical efficiency (Fv/Fm and Fv/Fo), on a

daily basis over a period of 2 weeks following the inoculation of

wheat leaves with B. graminis and P. triticina. Fluorescence

imaging detected early the infection (2–3 days before apparent
TABLE 2 Main phenomics-based techniques employed for detection of wheat fungal pathogens.

Technique Detected
pathogen

Measured
parameter

Detection
time

Accuracy Potentialities for POC
applications

Drawbacks for POC
applications

Reference

Fluorescence Puccinia spp. Photochemical
efficiency

Pre-
symptomatic
stage

High Pre-symptomatic detection Not tested in field, interaction with
other stresses is not reported, no
real-time data analysis

Römer et al.,
2011

RGB Blumeria
graminis f. sp.
tritici

DGSR and DGND
indices

Symptomatic
stage

High Tested in field, detection at
several symptomatic stages

Interaction with other stresses is not
reported, no real-time data analysis

Feng et al.,
2016

Fusarium
graminearum

GB index Symptomatic
stage

High Tested in field Interaction with other stresses is not
reported, detection at late
symptomatic stage, no real-time
data analysis

Qiu et al.,
2019

Infrared Zymoseptoria
tritici

Temperature Pre-
symptomatic
stage

Medium Tested in field, detection at
pre-symptomatic detection

Interaction with other stresses is not
reported, it might be influenced by
external factors, medium accuracy,
no real-time data analysis

Wang et al.,
2019

Multispectral B. graminis f.
sp. tritici and
Puccinia spp.

NDVI Symptomatic
stage

High Tested in field, detection of
several infective stages

Interaction with other stresses is not
reported, medium accuracy, no real-
time data analysis

Franke and
Menz, 2007

ANN, MD, MLC,
TVI, SAVI, VARI,
RGR, NDVI, and
GNDVI indices

Symptomatic
stage

High Tested in field, satellite-based Interaction with other stresses is not
reported, no real-time data analysis

Yuan et al.,
2014; Yuan
et al., 2016a;
Yuan et al.,
2017

Puccinia spp. LRDSI index Symptomatic
stage

High Tested in field Interaction with other stresses is not
reported, detection at late
symptomatic stage, no real-time
data analysis

Ashourloo
et al., 2014a;
Ashourloo
et al., 2014b

REDSI, PRI, and
ARI indices

Symptomatic
stage

High Tested in field, satellite-
based, detection of several
infective stages at different
phenological stages

Interaction with other stresses is not
reported, no real-time data analysis

Zheng et al.,
2018; Zheng
et al., 2019

Bipolaris
sorokiniana

NDVI Symptomatic
stage

High Tested in field, identified
resistant and susceptible
genotypes, and supported
mapping of QTLs

Interaction with other stresses is not
reported, detection at late
symptomatic stage, no real-time
data analysis

Kumar et al.,
2016

MoT VI, NDRE, GRVI,
and OSAVI indices

Symptomatic
stage

High Tested in field, UAV-based,
detected symptoms on spikes
and leaves, and identified
different infective stages

Interaction with other stresses is not
reported, no real-time data analysis

Gongora-
Canul et al.,
2020

Hyperspectral Puccinia spp. PRI index Symptomatic
stage

High Tested in field, airborne-
based

Interaction with other stresses is not
reported, no real-time data analysis

Huang et al.,
2007

NDVI Symptomatic
stage

High Tested in field, UAV-based Interaction with other stresses is not
reported, no real-time data analysis

Zhang et al.,
2019b

Forty indices Symptomatic
stage

Medium Used in breeding trials,
tested in field

Interaction with other stresses is not
reported, no real-time data analysis

Koc et al.,
2022

B. graminis f.
sp. tritici

Thirty-two indices Asymptomatic
and

High Zhang et al.,
2012

(Continued)
f
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symptoms), since the initial infection of both pathogens caused a

decrease in photochemical efficiency (Kuckenberg et al., 2009).

Leaf rust was also detected by fluoresce imaging during a pre-

symptomatic stage of the infection. Fluorescence spectra were

collected from healthy and inoculated plants 2–4 days after

inoculation. Fluorescence signatures revealed that inoculated
Frontiers in Agronomy 14
leaves may be separated by healthy ones, but a high

classification accuracy was difficult to achieve. The integration

of a support vector machine for classification reached an

accuracy of 93% in distinguishing between healthy and

diseased plants 2 days after inoculation before any visible

symptoms appeared (Römer et al., 2011). Another study
TABLE 2 Continued

Technique Detected
pathogen

Measured
parameter

Detection
time

Accuracy Potentialities for POC
applications

Drawbacks for POC
applications

Reference

symptomatic
stage

Distinguished between
healthy and slightly and
heavily infected plants

Not tested in field, interaction with
other stresses is not reported, no
real-time data analysis

DVI and SAVI
indices

Symptomatic
stage

High Tested in field Interaction with other stresses is not
reported, no real-time data analysis

Cao et al.,
2013; Cao
et al., 2015

Puccinia spp.
and B.
graminis f. sp.
tritici

Fourteen indices Symptomatic
stage

High Tested in field Interaction with other stresses is not
reported, no real-time data analysis

Shi et al., 2017

Twelve indices Symptomatic
stage

High Tested in field Interaction with other stresses is not
reported, no real-time data analysis

Liang et al.,
2017

Fusarium
spp.

Twelve indices Symptomatic
stage

High Individuated mycotoxin-
contaminated kernels

Not tested in field, interaction with
other stresses is not reported, no
real-time data analysis

Ropelewska
and
Zapotoczny,
2018

NSCI index Symptomatic
stage

High Individuated Fusarium-
damaged kernel, detection
was made in 15.07 s

Not tested in field, interaction with
other stresses is not reported, no
real-time data analysis

Zhang et al.,
2020

GLCM Symptomatic
stage

High Tested in field, UAV-based Not tested in field, interaction with
other stresses is not reported, no
real-time data analysis

Xiao et al.,
2021

S. tritici Reflectance (five
wavelengths)

Asymptomatic
and
symptomatic
stage

High Tested in field and on several
genotypes, distinguished
between infected and
senescent plants

Not tested in field, interaction with
other stresses is not reported, no
real-time data analysis

Anderegg
et al., 2019

Fourteen indices Symptomatic
stage

High Tested in field, integrated
with climatic data, crop
rotation, and historical data
on disease

Interaction with other stresses is not
reported, no real-time data analysis

Malakhov,
2021

RGB ×
fluorescence

Puccinia spp.
and B.
graminis f. sp.
tritici

Spectral signature Pre-
symptomatic
stage

High Distinguished between
diseased and nitrogen-
defective plants

Not tested in field, no real-time
data analysis

Bürling et al.,
2011

RGB ×
multispectral

Fusarium
spp.

Spectral signature Symptomatic
stage

High Tested in field, real-time data
analysis

Interaction with other stresses is not
reported

Dammer
et al., 2011

Multispectral
×
fluorescence

B. graminis f.
sp. tritici

Twenty-eight
indices

Pre-
symptomatic
stage

High Tested in field, distinguished
between diseased and water-
stressed plants and weed
presence

No real-time analysis Peteinatos
et al., 2016

RGB ×
infrared

B. graminis f.
sp. tritici

Spectral signature Symptomatic
stage

High Tested in field, satellite-
based, disease mapping

Interaction with other stresses is not
reported, no real-time data analysis

Zhang et al.,
2014a

Fusarium
spp.

Temperature, GLI
and VEG indices

Symptomatic
stage

High Tested in field, UAV-based
detection at early infective
stage

Interaction with other stresses is not
reported, no real-time data analysis

Francesconi
et al., 2021

Infrared ×
fluorescence
×
hyperspectral

Fusarium
spp.

Temperature,
photosynthetic
efficiency, spectral
signature

Symptomatic
stage

High Detection at early infective
stage, combination of the
three techniques improved
accuracy to 90%

Not tested in field, interaction with
other stresses is not reported, no
real-time data analysis

Mahlein et al.,
2019
f

For each reference study, main peculiarities, potentialities, and drawbacks of POC applications are described.
POC, point of care; NDVI, normalized difference vegetation index; SAVI, soil-adjusted vegetation index; REDSI, red edge disease stress index; PRI, photochemical reflectance index; ARI,
anthocyanin reflectance index; UAV, unmanned aerial vehicle.
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employed chlorophyll fluorescence to detect FHB. Wheat heads

were artificially inoculated with F. culmorum, and fluorescence

sensors were used to detect Fv/Fm to determine the degree of the

damaged ears. Results showed that Fv/Fm decreased in infected

heads compared to healthy ones and that the lowest level of

disease detection by chlorophyll fluorescence corresponded to a

visually rated degree of disease of at least 5% (Bauriegel

et al., 2010).

4.1.2 Detection by RGB and thermal sensors
RGB imaging was widely employed to detect rust diseases.

Zhou et al. (2015) tested rust resistance in 12 winter wheat

genotypes by assessing two RGB indices, grain yield (GY) and

grain yield loss index (GYLI). GYLI values distinguished

between resistant and susceptible varieties and demonstrated

to be a potentially affordable approach for high-throughput

phenotyping of yellow rust resistance in wheat (Zhou et al.,

2015). Another study employed RGB imaging in the field to

predict grain yield and yellow rust disease severity by measuring

the normalized difference vegetation index (NDVI), leaf

chlorophyll content, stomatal conductance, and canopy

temperature. RGB imaging proved to be an accurate predictor

of grain yield and grain yield losses associated with yellow rust,

showing correlation coefficients of 0.581 and 0.536 (Vergara-

Diaz et al., 2015). A recent study detected leaf and stripe rusts by

UAV-based RGB imaging to discriminate between healthy and

infected wheat plants. The study has been conducted in four

wheat fields, and diseased leaf areas were determined based on

green and red spectral bands for stripe rust and the combination

of green, red, and blue spectral bands for leaf rust. Both diseases

caused an alteration in the reflectance spectra of plants in the

green and red channels. Thus, the RGB-based detection

accurately identified infected leaf areas at stem elongation and

booting stages for efficacious fungicide application (Dehkordi

et al., 2020). RGB imaging was also employed to detect powdery

mildew by using dual-green indices. The canopy spectra were

measured in artificially inoculated fields, potted plants, and

nurseries at different levels of disease incidence and wheat

growth stages. The authors individuated that the most

sensitive bands to powdery mildew were between 580 and 710

nm and constructed dual-green vegetation indices to detect the

disease (Feng et al., 2016). FHB was also detected by color

imaging in combination with a deep learning technique. RGB

images of wheat spikes were collected in shadow at the milk stage

and processed to construct datasets employed to retrain the deep

learning model. The RGB detection method was compared to

the manual count of infected spikes and showed to detect

accurately infected spikes, demonstrating a coefficient of

determination of 0.80 (Qiu et al., 2019).

Infrared thermal sensors have been employed to detect Z.

tritici in the field. Twenty-five wheat genotypes were artificially

inoculated in order to predict the onset of the disease before
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visual symptoms appeared. The results showed that the

maximum temperature difference and the temperature

depression significantly correlated with the presence of the

disease (Wang et al., 2019).

4.1.3 Detection by multispectral sensors
Multispectral and hyperspectral sensors were the most

studied spectral-based techniques to detect wheat fungal

pathogens. Multispectral sensors have been widely employed

to detect powdery mildew in controlled and field conditions.

Graeff et al. (2006) inoculated wheat plants under controlled

conditions, measured leaf reflectance in the visible and near-

infrared spectra, and demonstrated that leaf reflectance highly

correlated with different infection levels of powdery mildew

(Graeff et al., 2006). Another study examines the potential of

multispectral remote sensing for a multitemporal analysis of

powdery mildew and leaf rust. An experimental field showing all

the infective stages of powdery mildew and leaf rust was

subjected to high-resolution remote sensing in order to

execute spatial and temporal analyses of the infection

dynamics. Images were used to calculate the NDVI to classify

areas with different levels of disease severity, demonstrating an

accuracy ranging from 56.8% to 88.6% (Franke andMenz, 2007).

However, Yuan et al. 2014; Yuan et al. 2016a detected powdery

mildew by satellite-based multispectral sensors. Two regions in

China were selected for conducting a field survey, and five

multispectral-based indices were associated with three

supervised classification methods. The accuracy of such

detection techniques ranged from 79% to 89% (Yuan et al.,

2014; Yuan et al., 2016a). The authors also employed satellite-

based multispectral sensors to detect both powdery mildew and

yellow rust in winter wheat. The results revealed a significant

increase of reflectance over the “red-valley” spectra at 650–680

nm, probably caused by a reduced amount of chlorophyll and

destruction of cell structures due to infections (Yuan et al., 2017).

Detection of rust pathogens by multispectral approaches has

been also widely investigated. Devadas et al. (2009) evaluated 10

multispectral vegetation indices to distinguish rust diseases on

leaves. They found that the reflectance features for non-

chlorophyll pigment discriminated between diseased and

healthy leaves. Nevertheless, none of the individuated indices

discriminated among the three rust pathogens (Devadas et al.,

2009). Ashourloo et al. (2014a) a developed two multispectral

indices for leaf rust detection. The authors collected the

reflectance spectra of infected and uninfected leaves at

different stages, while RGB imaging was employed as ground

truth to obtain the ratio of the disease-affected area and the

fractions of the different symptoms. The two developed

multispectral indices demonstrated a correlation coefficient of

0.94 with the RGB imaging for the estimation of infected leaves

(Ashourloo et al., 2014a). The same authors developed also

multispectral-based indices to classify different rust symptoms
frontiersin.org

https://doi.org/10.3389/fagro.2022.980083
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Francesconi 10.3389/fagro.2022.980083
levels. The reflectance of healthy and infected leaves was

collected in the 450–1,000-nm range and RGB imaging was

again employed as ground reference. The authors observed that

the values of the indices increased with the disease severity,

demonstrating a classification accuracy from 20% to 60%

(Ashourloo et al., 2014b). Satellite-based multispectral sensors

have been also employed to detect yellow rust to discriminate

between healthy, slight, and severe infection levels. Three

sensitive spectral bands were individuated, and a novel

multispectral index, the red edge disease stress index (REDSI),

was proposed to classify different disease levels of yellow rust

(Zheng et al., 2018). The same authors employed also

multispectral sensors to detect yellow rust at different growth

stages. They individuated yellow rust-sensitive bands from

booting to anthesis (460–720 nm) and from filling to milky

ripeness (568–1,000 nm). The band combinations were used to

calculate two indices, the photochemical reflectance index (PRI)

and the anthocyanin reflectance index (ARI), and employed to

determine disease severity at different growth stages (Zheng

et al., 2019). A more recent study trained multispectral sensors in

association with a classification algorithm to detect yellow rust at

different disease stages and to discriminate the infection from

the defense responses occurring in a resistant variety. The

method detected early the presence of yellow rust and showed

an accuracy of 86% (Aharoni et al., 2021). FHB, spot blotch, and

wheat blast have been also detected by multispectral imaging.

Bauriegel et al. (2011a) employed multispectral sensors to detect

FHB before harvesting in order to separate infected from

uninfected grains. The spectra of diseased and healthy heads

were analyzed by principal component analysis (PCA) and

successfully detected FHB during the beginning of the medium

milk stage but not at flowering; thus, early detection was not

possible (Bauriegel et al., 2011a). Spot blotch was detected by

calculating the NDVI in order to individuate resistant wheat

genotypes. Particularly, 108 wheat germplasm were subjected to

multispectral sensors, and a high negative correlation was

observed between symptoms’ visual observation and NDVI,

allowing an accurate mapping of quantitative trait loci (QTLs)

associated with spot blotch resistance in wheat (Kumar et al.,

2016). Finally, Gongora-Canul et al. (2020) used multispectral

imaging to detect wheat blast. The experiments were conducted

in two files in order to distinguish between symptoms of spikes

and leaves. Multispectral measurements were correlated to visual

estimation of symptoms, and this method was precise and

accurate for wheat blast detection at different levels of disease

severity (Gongora-Canul et al., 2020).

4.1.4 Detection by hyperspectral sensors
Hyperspectral sensors are the most promising and employed

ones since they can analyze a wide range of wavelengths.

Detection of rust diseases has been widely explored as

reviewed by Maid and Deshmukh (2018). Huang et al. (2007)

employed in situ and airborne hyperspectral imaging to detect
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yellow rust. The PRI has been developed to quantify the disease

index in wheat, demonstrating a negative correlation with the

disease index (Huang et al., 2007). Another study developed a

continuous wavelet analysis method based on decomposing the

amplitude and the scale of hyperspectral data at continuous

position and scale, allowing a thorough exploration over the

spectrum to detect yellow rust. This method was compared to

conventional hyperspectral indices for the detection at the leaf

level. Hyperspectral measurements were performed at two

growth stages, and the results highlighted that the method

detected yellow rust at both stages. Univariate and multivariate

statistics revealed a high accuracy (coefficient of determination

of 0.81) and potential ability to detect early yellow rust on leaves

(Zhang et al., 2014b). Satellite-based hyperspectral imaging was

also employed to detect yellow rust. Yuan et al. (2013)

considered 10 satellite sensors to individuate disease-sensitive

bands. Green, red, and near-infrared bands were the most useful

for yellow rust detection and well correlated with conventional

vegetation indices (Yuan et al., 2013). Another different

approach has been proposed by Bohnenkamp et al. (2019),

who established a hyperspectral method to distinguish between

brown rust and yellow rust on wheat leaves by detecting pure

fungal spore spectra as reference. After individuating the spectral

fingerprint of both diseases, symptom quantification was verified

on inoculated plants at different time points. The detection of

rust diseases was enabled without pixel-wise labeling thanks to

the reference spectra from rust spores (Bohnenkamp et al.,

2019). A very similar method was adopted by Wójtowicz et al.

(2021) to detect leaf rust by using a spectrometer connected to a

microscope and measuring in the range of 350–2,500 nm. Raw

spectra of uredospores, chlorotic discoloration, green leaves,

senescent inoculated leaves, and senescent uninoculated leaves

of wheat and rye were collected and used to individuate seven

indices for the classification of different symptoms (Wójtowicz

et al., 2021). Also, UAV-based hyperspectral imaging has been

investigated for yellow rust detection. Zhang et al. (2019b)

coupled UAV-based hyperspectral imaging with a deep

convolutional neural network for automated disease detection

in order to employ both spatial and spectral information for

yellow rust detection. The model was calibrated with

hyperspectral images collected in a well-controlled field

experiment consisting of healthy and infected plots. This

method resulted in a highly accurate (correlation coefficient of

0.85) detection of yellow rust (Zhang et al., 2019b). Stripe rust

was also detected by hyperspectral imaging. The authors

collected infected wheat leaves and measured their chlorophyll

content expressed as SPAD values. Sensitive hyperspectral bands

were individuated by PCA and were correlated to SPAD values.

The validation accuracy of this method was high (correlation

coefficient of 0.92) and was also employed to estimate

distribution maps of stripe rust by allowing its detection 6

days after inoculation and 3 days before visible symptoms

appeared (Yao et al., 2019). More recently, high-throughput
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plant phenotyping based on hyperspectral imaging was

employed to predict yellow rust distribution in field trials. In

this work, 40 indices were associated with the random forest

model and demonstrated a good prediction accuracy when

measuring the correlation between predicted and observed

scores (Koc et al., 2022). Powdery mildew has been also highly

investigated for the possibility of hyperspectral-based detection.

Zhang et al. (2012) compared hyperspectral measures from

infected and healthy leaves in laboratory. Thirty-two spectral

features were tested for their ability to discriminate between

three health status (normal, slightly damaged, and heavily

damaged) and were found to be highly accurate (over 90%) for

detection of heavily damaged leaves (Zhang et al., 2012). Cao

et al. (2013) tested hyperspectral imaging on wheat varieties with

different susceptibility levels to powdery mildew at several wheat

growth stages. The authors calculated the difference vegetation

index (DVI) and the soil-adjusted vegetation index (SAVI) and

observed that as the disease level increased, the reflectance in the

near-infrared spectrum decreased (Cao et al., 2013). The same

authors employed hyperspectral imaging to both detect powdery

mildew and estimate grain yield loss after infection and found

that the wavelength range between 680 and 760 nm is well-

correlated with the observed grain yield (Cao et al., 2015). A

more recent work conducted by Zhao et al. (2020) describes the

integration of hyperspectral imaging with machine learning

algorithms to quantitatively identify powdery mildew infection

on wheat leaves. The support vector machine was constructed by

PCA, and the detection method showed an accuracy of 93.33%

(Zhao et al., 2020). Interestingly, hyperspectral sensors were

employed for a double detection of both rust and powdery

mildew diseases by Huang et al. (2014). Reflectance from all

possible combinations of the most relevant wavelengths was

used to calculate the spectral indices. The classification

accuracies of such indices to distinguish between healthy and

diseased leaves ranged from 85.2% to 93.5% (Huang et al., 2014).

Hyperspectral-based imaging was also employed in the open

field for multiple detections of yellow rust and powdery mildew

in winter wheat, and multivariate regression analysis was run to

statistically validate such data. The classification accuracy of

such a method was 91.9% (Shi et al., 2017). Similar research was

conducted by Liang et al. (2017), who detected powdery mildew

and yellow rust in an open field. Hyperspectral data were

validated by PCA, and 12 disease-sensitive bands were

individuated, demonstrating a classification accuracy of 92%

(Liang et al., 2017). Hyperspectral imaging has been also widely

investigated for its ability to detect FHB and mycotoxin content

in grains, as reviewed by Femenias et al. (2020), starting from

microscopic observations to high-throughput phenotyping

platforms. Zhang et al. (2019a) individuated a classification

index for FHB detection from hyperspectral imaging obtained

by microscopy observations of wheat spikes. The classification
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index displayed an overall accuracy of 89.80% in classifying

diseased and healthy spikes and demonstrated 30% higher

accuracy as compared to six common vegetation indices

(Zhang et al., 2019a). Another work employed hyperspectral

imaging on selected textural parameters of wheat grains to

distinguish between infected and healthy grains situated at the

ventral or dorsal side of the spike. The classification accuracy for

the kernels positioned on the ventral side ranged from 78% to

100%, while it was 78%–98% for the kernels positioned at the

dorsal site. When combining textural parameters from the

ventral and dorsal sites, the classification accuracy was 76%–

98%. This classification model will be of particular interest to

individuate mycotoxin-contaminated grains in spikes

(Ropelewska and Zapotoczny, 2018). Hyperspectral imaging

was also used to phenotype wheat varieties for resistance to

FHB. An automated method based on using two hyperspectral

sensors was employed to capture the most relevant bands for

pigments, cell structure, water, and synthesis of secondary

compounds. High correlation was found between the disease

severity and the spectral signatures in 430–525, 560–710, and

1,115–2,500 nm, demonstrating that this approach can improve

breeding the process to identify resistant and susceptible

varieties (Alisaac et al., 2018). A more recent study proposed a

novel hyperspectral classification index for ease and fast

detection of Fusarium-damaged kernels (FDK). The

classification accuracy of the method was 0.97, with a

specificity of 0.99 and a sensibility of 0.93. Interestingly, the

detection was performed in 15.07 s (Zhang et al., 2020). More

recently, FHB was also detected by UAV-based hyperspectral

imaging. The authors combined spectral and texture features to

accurately and timely detect FHB (Xiao et al., 2021). FHB and

yellow rust were also contemporarily detected by hyperspectral

imaging. The authors mapped the spatial distribution of the

diseases by on-line hyperspectral measurements performed in

the field. Hyperspectral images were overlapped to RGB images,

and the disease classification was performed by in-field visual

assessments and photo interpretation assessments, which were

found to be highly accurate to detect both fungal diseases

(Whetton et al., 2018). More recently, hyperspectral imaging

has been employed to detect Septoria diseases. Anderegg et al.

(2019) detected and quantified crop diseases caused by S. tritici

blotch in field. They collected canopy reflectance on 18 infected

wheat genotypes and healthy plots and demonstrated that

changes in temporal canopy reflectance correlated with the

presence of Septoria blotch. The authors also distinguished

between infected and senescent plants in order to individuate

resistant genotypes directly in field (Anderegg et al., 2019).

Another research work developed a novel hyperspectral-based

approach to monitor and detect Septoria leaf blotch in

combinations with climatic data, crop rotation, and historical

data of disease appearance and severity. The final output of such
frontiersin.org

https://doi.org/10.3389/fagro.2022.980083
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Francesconi 10.3389/fagro.2022.980083
methods is a map of probability of leaf blotch appearance. The

monitoring method was found to be highly sensitive in detecting

leaf blotch at middle-to-late period of wheat phenological stages

(Malakhov, 2021). Less recently, hyperspectral sensors have been

employed to detect Aspergillus molds. In these works, the

authors scanned infected kernels, and data analysis was

performed by PCA. Such model showed an accuracy of 97%–

100% in classifying infected kernels (Singh et al., 2007; Singh

et al., 2012).

4.1.5 Detection by multiple combinations of
sensors

Among the diverse methods to detect wheat pathogens,

recently it was highly informative to couple two or more

phenomics-based methods. RGB and chlorophyll fluorescence

measurements were both employed to detect leaf rust and

powdery mildew and to additionally distinguish between the

two wheat diseases and nitrogen deficiency. The authors

artificially inoculated wheat plants and induced nitrogen

deficiency in controlled conditions and successfully

discriminated between healthy and infected plants 1 and 2

days after inoculation for powdery mildew and leaf rust,

respectively (Bürling et al., 2011). RGB and multispectral

sensors were coupled to detect FHB in the field. Wheat

varieties with different levels of susceptibilities were artificially

inoculated and were scanned by RGB and multispectral sensors

associated with real-time image analysis software. The

phenomics-based data correlated with the visually detected

disease levels, but the multispectral system was more accurate

than RGB (Dammer et al., 2011). Chlorophyll fluorescence

coupled with spectral sensors was employed to detect powdery

mildew (Peteinatos et al., 2016) and FHB (Bauriegel et al.,

2011b). Peteinatos et al. (2016) performed pot experiments in

which spectral and fluorescence sensors distinguished between

non-stressed and stressed plants exposed to water stress, weed

invasion, and powdery mildew infection. Particularly, water

stress and powdery mildew were detected before symptoms

appeared (Peteinatos et al., 2016). In the second research

paper, FHB was detected by proximal sensors in the

laboratory. Data analysis revealed that such coupled methods

successfully classified healthy and diseased spikes since

photosynthetic efficiency decreased from 6 days after

inoculation and correlated with disease severity, while

hyperspectral imaging detected FHB at 7 days after inoculation

(Bauriegel et al., 2011b). Infrared thermal and fluorescence

sensors were used to detect F. culmorum, S. tritici, and B.

graminis in experiments conducted in a greenhouse. The

authors observed an increase in canopy temperature and a

decrease in chlorophyll content 2 days after inoculation (Wang

et al., 2014). Infrared and chlorophyll fluorescence sensors were

also used in another work to detect Septoria blotch. This method
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identified photosystem II quantum yield and vegetative indices

associated with the biochemical composition of leaves

(chlorophyll, carotenoid, and anthocyanin content) as the

most predictive variables for blotch detection (Odilbekov et al.,

2018). RGB and infrared sensors were both used to detect

powdery mildew (Zhang et al., 2014a) and FHB (Francesconi

et al., 2021). Zhang et al. (2014a) detected powdery mildew by

satellite-based and multi-temporal data of surface reflectance in

RGB and infrared bands for a disease survey during a field

campaign. Single-stage and multi-stage spectral features

sensitive to powdery mildew have been individuated and used

to generate maps showing a distribution pattern of powdery

mildew (Zhang et al., 2014a). Francesconi et al. (2021) employed

UAV-based RGB and infrared sensors to detect FHB in the field

during two field campaigns. Infrared and RGB data were

validated by proximal measurements, such as spike’s

temperature and photosynthetic efficiency as much as

molecular detection of FHB. This phenomics-based technique

detected FHB and anthesis halfway (Francesconi et al., 2021).

Finally, Mahlein et al. (2019) compared thermal, fluorescence,

and hyperspectral sensors to detect FHB. Under controlled

conditions, the authors acquired time-series measurements

with infrared thermography, chlorophyll fluorescence, and

hyperspectral imaging. Differences in temperature and

photosynthetic efficiency were detected at 5 days after

inoculation, while hyperspectral imaging discriminated

between infected and uninfected heads at 3 days after

inoculation. Moreover, the combination of the three methods

improved the detected accuracy to almost 90% (Mahlein

et al., 2019).
5 Conclusions and future
perspectives

POC diagnostics could potentially play an important role in

environmental monitoring, health, and food safety by effectively

detecting plant pathogens. Modern agriculture is nowadays

leading to the optimization of management practices; thus, the

assumption of a homogenous pesticide application must be

abandoned in order to decrease costs related to agrochemicals

and to increase sustainability and benefits for agroecological

health (Mahlein et al., 2018). POC molecular- and phenomics-

based detection techniques aim to realize real-time, robust

mapping systems for crop health status to facilitate a

management decision. The occurrence of plant disease depends

on specific environmental factors, spatial distribution in the field,

and the presence of resistant or susceptible hosts; POC

methodologies are useful to identify primary disease foci and

areas differing in disease severity in fields. Nevertheless, POC

detection techniques demonstrate some disadvantages that need
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to be further implemented for in-field applications. Despite

isothermal molecular methodologies do not require specific

facilities and are extremely specific, sensitive, fast, and suitable

for multiplex pathogens detection (especially for RCA), they are

not quantitative and can require specific expertise during primer

design (especially for LAMP), and DNA amplification can be

inhibited by impurities (especially LAMP and HDA), thus

requiring a time-consuming DNA extraction prior

amplification. Phenomics-based techniques are high-throughput

methodologies allowing the non-destructive acquisition of data

from hundreds of plants in a few minutes. They potentially

provide information with a high temporal resolution, and they

can furnish models for disease management scheduling.

Nevertheless, they are still expensive, and since they are based

on indirect pathogen detection by capturing spectral differences

due to physiological perturbations, it is nowadays not possible to

distinguish between different stresses (biotic or abiotic). Thus,

novel tools need to be implemented for potential multiple stress

detection to individuate peculiar spectra associated with certain

stresses. Probably, complementary methodologies will be

necessary in the near future to fill this gap. Moreover, some

approaches are crop-specific and local-specific; thus, there is a

need to validate them in different environments, and they are

weather-dependent, since applications may be compromised by

environmental factors. Indeed, the so-called envirotyping, defined

as next-generation and high-throughput technologies aimed at

investigating the environmental influences on phenomics

techniques, could potentially address this issue (Song et al.,

2021; Gill et al., 2022). For such reasons, these techniques, in

combination with advanced methods of real-time and less labor-

intensive data analysis, can be used for targeted and optimized

pest management programs in sustainable wheat production, thus

resulting in a potential reduction in pesticide use, economic

expense, and ecological impact in agricultural crop

production systems.
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