
Frontiers in Agronomy

OPEN ACCESS

EDITED BY

David Ezra,
Agricultural Research Organization
(ARO), Israel

REVIEWED BY

Giorgio Gambino,
National Research Council (CNR), Italy
Garima Singh,
Pachhunga University College, India

*CORRESPONDENCE

Georgios Vidalakis
vidalg@ucr.edu

SPECIALTY SECTION

This article was submitted to
Disease Management,
a section of the journal
Frontiers in Agronomy

RECEIVED 02 April 2022
ACCEPTED 08 July 2022

PUBLISHED 18 August 2022

CITATION

Dang T, Bodaghi S, Osman F, Wang J,
Rucker T, Tan S-H, Huang A,
Pagliaccia D, Comstock S,
Lavagi-Craddock I, Gadhave KR,
Quijia-Lamina P, Mitra A, Ramirez B,
Uribe G, Syed A, Hammado S,
Mimou I, Campos R, Abdulnour S,
Voeltz M, Bae J, Dang E, Nguyen B,
Chen X, Siddiqui N, Hsieh YT,
Abu-Hajar S, Kress J, Weber K and
Vidalakis G (2022) A comparative
analysis of RNA isolation methods
optimized for high-throughput
detection of viral pathogens in
California’s regulatory and disease
management program for citrus
propagative materials.
Front. Agron. 4:911627.
doi: 10.3389/fagro.2022.911627

TYPE Original Research
PUBLISHED 18 August 2022

DOI 10.3389/fagro.2022.911627
A comparative analysis of RNA
isolation methods optimized for
high-throughput detection of
viral pathogens in California’s
regulatory and disease
management program for citrus
propagative materials

Tyler Dang1, Sohrab Bodaghi1, Fatima Osman2, Jinbo Wang1,3,
Tavia Rucker1, Shih-Hua Tan1, Amy Huang1,
Deborah Pagliaccia1, Stacey Comstock1,
Irene Lavagi-Craddock1, Kiran R. Gadhave1,4,
Paulina Quijia-Lamina1, Arunabha Mitra1, Brandon Ramirez1,
Gerardo Uribe1, Alexandra Syed1, Sarah Hammado1,
Iman Mimou1, Roya Campos1, Silva Abdulnour1,
Michael Voeltz1, Jinhwan Bae1, Emily Dang1, Brittany Nguyen1,
Xingyu Chen1, Noora Siddiqui1, Yi Tien Hsieh1,
Shurooq Abu-Hajar1, Joshua Kress5, Kristina Weber5

and Georgios Vidalakis1*

1Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside,
CA, United States, 2Department of Plant Pathology, University of California, Davis, Davis,
CA, United States, 3United States Department of Agriculture-APHIS-Biotechnology Risk Analysis
Program, Riverdale, MD, United States, 4Texas A&M, Department of Entomology Agrilife Research,
Amarillo, TX, United States, 5California Department of Food and Agriculture Nursery Services
Program, Sacramento, CA, United States
Citrus germplasm programs can benefit from high-throughput polymerase

chain reaction (PCR)-based methods for the detection of graft-transmissible

pathogens in propagative materials. These methods increase diagnostic

capacity, and thus contribute to the prevention of disease spread from

nurseries to citrus orchards. High quality nucleic acids, as determined by

purity, concentration, and integrity, are a prerequisite for reliable PCR

detection of citrus pathogens. Citrus tissues contain high levels of

polyphenols and polysaccharides, which can affect nucleic acid quality and

inhibit PCR reactions. Various commercially available RNA isolation methods

are used for citrus and include: phenol-chloroform (TRIzol®, Thermo Fisher

Scientific); silica columns (RNeasy® Plant Mini Kit, Qiagen); and magnetic

beads-based methods (MagMAX™-96 Viral RNA Isolation Kit, Thermo Fisher

Scientific). To determine the quality of RNA and its impact on the detection of
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graft-transmissible citrus pathogens in reverse transcription (RT) PCR-based

assays, we compared these three RNA isolation methods. We assessed RNA

purity, concentration, and integrity from citrus inoculated with different viruses

and viroids. All three RNA isolation methods produced high quality RNA, and its

use in different RT-PCR assays resulted in the detection of all targeted citrus

viruses and viroids with no false positive or negative results. TRIzol® yielded

RNA with the highest concentration and integrity values but some samples

required serial dilutions to remove PCR inhibitors and detect the targeted

pathogens. The RNeasy® kit produced the second highest concentration and

purity of RNA, and similar integrity to TRIzol®. MagMAX™ isolation also

provided high quality RNA but most importantly produced RNA with

consistent results clustered around a median value for concentration, purity,

and integrity. Subsequently, MagMAX™-96 was combined with the semi-

automated MagMAX™ Express-96 Deep Well Magnetic Particle Processor,

for high-throughput sample processing. MagMAX™-96 enabled the

diagnostic laboratory of the Citrus Clonal Protection Program-National Clean

Plant Network at the University of California, Riverside to process over 16,500

samples from citrus budwood source trees between 2010 and 2019. This high-

throughput approach dramatically reduced the incidence of viroids in citrus

nurseries and was key to the successful implementation of the mandatory

Citrus Nursery Stock Pest Cleanliness Program in California.
KEYWORDS

graft-transmissible pathogens of citrus, magnetic bead-based RNA isolation, RNA
quality, Citrus Clonal Protection Program (CCPP), National Clean Plant Network

(NCPN), California Department of Food and Agriculture (CDFA)
1 Introduction

Several citrus virus and viroid detection methods have been

developed over the years, including biological indexing

(Roistacher, 1991; Garnsey et al., 2005), enzyme-linked

immunosorbent assay (ELISA) (Bar-Joseph et al., 1979),

imprint hybridization (de Noronha Fonseca et al., 1996;

Palacio-Bielsa et al., 1999), sequential polyacrylamide gel

electrophoresis (Rivera-Bustamante et al., 1986), and direct

blot immunoassay (Garnsey et al., 1993). Currently, nucleic

acid-based molecular methods such as reverse transcription

polymerase chain reaction (RT-PCR) and RT-quantitative

PCR (RT-qPCR) are extensively used as standard detection

methods for citrus viruses and viroids, because of their high

sensitivity, specificity, and reproducibility (Bertolini et al., 2008;

Rizza et al., 2009; Ruiz-Ruiz et al., 2009; Loconsole et al., 2010;

Yokomi et al., 2010; Papayiannis, 2014; Osman et al., 2015;

Osman et al., 2017). These methods are of utmost importance

for citrus disease management programs, including citrus

germplasm programs. Indeed, they are routinely used to

monitor the sanitary status of budwood source trees and

propagative materials, nursery stock, and commercial
02
plantings (Bostock et al., 2014; Gergerich et al., 2015; Osman

et al., 2015; Albrecht et al., 2020; Fuchs et al., 2021).

Various RNA isolation methods have been successfully used

with different plant tissues for downstream detection of plant

pathogens (MacKenzie et al., 1997; Portillo et al., 2006; Osman

et al., 2012; Sun et al., 2014; Martinelli et al., 2015; Ali et al., 2017;

Inglis et al., 2018; Liu et al., 2018; Vennapusa et al., 2020). More

specifically, for citrus tissues, low-throughput phenol-

chloroform based methods with cetrimonium bromide

(CTAB) or TRIzol® (Thermo Fisher Scientific, Waltham, MA),

and silica column-based kits such as the RNeasy® Plant Mini Kit

(Qiagen, Valencia, CA) or Spectrum™ Plant Total RNA (Sigma-

Aldrich, St. Louis, MO) have been effectively utilized for RNA

isolation and detection of citrus viruses and viroids using RT-

PCR and RT-qPCR assays (Li et al., 2008; Saponari et al., 2008;

Damaj et al., 2009; Wang et al., 2013a; Wang et al., 2013b; Tan

et al., 2019; Bester et al., 2021; Benıt́ez-Galeano et al., 2021).

More recently, high-throughput semi-automated total nucleic

acid isolation systems such as the MagMAX™ Express-96

(Thermo Fisher Scientific, Waltham, MA) and BioSprint®

96 (Qiagen, Valencia, CA), capable of isolating RNA from up

to 96 samples at once, have been used successfully in citrus
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pathogen detection protocols including but not limited to viruses

and viroids (Osman et al., 2015; Osman et al., 2017; Braswell

et al., 2020; Dang et al., 2022).

Regardless of the RNA isolation approach used, the common

goal of all methods is to produce good quality nucleic acids for

downstream molecular analysis, including RT-PCR based assays

(Die and Román, 2012; Thatcher, 2015). For example, RNA

quality as determined by purity, concentration, and integrity, is

one of the most critical factors of RT-qPCR performance (Fleige

and Pfaffl, 2006; Becker et al., 2010; Taylor et al., 2010; Die and

Román, 2012). Therefore, for a properly designed, validated, and

executed RT-PCR based detection assay (Bustin et al., 2009;

Broeders et al., 2014; Tan et al., 2019), RNA quality becomes the

decisive factor for the successful identification of a sample

testing positive or negative for a target citrus virus or viroid.

RNA isolated from pulverized plant tissues is purified by

removing PCR inhibitors, such as polyphenols and

polysaccharides, which are commonly found in various woody

and perennial plants including citrus (Newbury and

Possingham, 1977; Porebski et al., 1997; Gasic et al., 2004;

Gambino et al., 2008). Phenolic compounds can bind nucleic

acids (Salzman et al., 1999) while polysaccharides can co-

precipitate with RNA, thus hindering absorbance readings

from spectrophotometers, and can inhibit enzymatic reactions

(Wilkins and Smart, 1996). This may eventually lead to the

inhibition of polymerase activity during PCR amplification and

compromise the accuracy of pathogen detection (Sipahioglu

et al., 2006; Schrader et al., 2012).

Optimal RNA concentrations, commonly measured via UV

absorbance (Manchester, 1996), are important, because: low

concentrations may not be sufficient for pathogen detection,

and high concentrations could inhibit the PCR reaction,

producing false negative results (Altshuler, 2006; Lorenz,

2012). Since the maximum absorbance of nucleic acids is at a

wavelength of 260 nm (Manchester, 1996), while that of proteins

is at 280 nm (Teare et al., 1997), and organic solvents and

chaotropic salts common to RNA extraction protocols have an

absorption maximum at 220–230 nm (Imbeaud et al., 2005; von

Ahlfen and Schlumpberger, 2010; Koetsier and Cantor, 2019),

the absorbance ratios of 260/280 and 260/230 provide insight

into the purity of extracted RNA. For RNA, 260/280 ratios of 1.9

to 2.0 indicate highly purified preparations; ratios above 1.8

typically indicate an acceptable level of RNA purity, whereas

ratios lower than 1.8 indicate the presence of contaminants such

as proteins. The 260/230 absorption ratio can be used as a

secondary measurement of RNA purity for the detection of

contaminants such as buffer salts, solvents and other impurities.

Even though the ratio of 1.8 has been used as a minimum RNA

purity metric by some researchers (Imbeaud et al., 2005), a

generally accepted range of optimum or minimum 260/230 ratio

values has not been defined (Cicinnati et al., 2008; von Ahlfen

and Schlumpberger, 2010; Gallagher, 2017; Zepeda and

Verdonk, 2022).
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Integrity of RNA is commonly measured by the 2100

Bioanalyzer Instrument (Agilent Technologies, Inc., Santa

Clara, CA), which computes an RNA integrity number (RIN).

The RIN software algorithm assigns a numerical score to the

analyzed RNA sample, ranging from 1 to 10, where 1 indicates

completely degraded and 10 the most intact RNA. The method is

reliable, independent of RNA concentration- and instrument-

based variabilities, but expensive for large sample sets (Mueller

et al., 2004; Schroeder et al., 2006). A more affordable option to

assess RNA integrity involves estimating the expression levels of

endogenous housekeeping genes by RT-qPCR (Imbeaud

et al., 2005).

In this study, we compared three commonly used RNA

isolation methods for citrus tissues: the MagMAX™-96 Viral

RNA Isolation Kit, the RNeasy® Plant Mini Kit, and TRIzol® to

determine the quality of the RNA isolated by each kit as

measured by its purity, concentration, and integrity, and its

suitability for downstream detection of citrus viruses and viroids

using various RT-PCR and RT-qPCR assays. In addition, we

show the application of the selected RNA isolation protocol in a

high-throughput sample processing system at the Citrus Clonal

Protection Program-National Clean Plant Network (CCPP-

NCPN), at the University of California (UC), Riverside and

the California Department of Food and Agriculture (CDFA),

which allowed testing of over 16,500 samples from citrus

budwood source trees between 2010 and 2019, and the

successful implementation of the mandatory “Citrus Nursery

Stock Pest Cleanliness Program” (California Senate Bill SB-140,

2009-10; California Code of Regulations, Title 3, Section §3701).
2 Materials and methods

2.1 Plant materials and sample collection
and handling

Thirty-three citrus trees infected with 11 different viruses

and viroids, in single and mixed infections, and ten non-infected

trees of nine different citrus varieties were used for the

comparative analysis of the tested RNA isolation methods

(Tables 1, 2). Trees were maintained in the greenhouses and

screenhouses of the Citrus Clonal Protection Program (CCPP) at

the Rubidoux Quarantine Facility, UC Riverside and at the

CCPP Lindcove Foundation Facility, UC Agriculture and

Natural Resources (UC ANR), Lindcove Research and

Extension Center (LREC).

Citrus budwood samples (i.e., stems without leaves and

thorns) were collected from the last mature vegetative flush

(approximately 12 to 18 months old), and at multiple locations

around the tree canopy to account for any unequal distribution

of the viruses or viroids in the plant. The pruners were sanitized

with a 10% household bleach solution (0.5% sodium

hypochlorite) and dried with a paper towel to avoid cross
frontiersin.org
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contamination between the sampling of each tree. Budwood

samples were packaged into a resealable plastic bag, placed on

ice, transported to the CCPP, and immediately stored at 4°C

until further processing within 10-14 days from collection.

Citrus budwood samples for regulatory virus and viroid

testing under California ’s Citrus Nursery Stock Pest

Cleanliness Program were collected by the CDFA from over

7,000 budwood tree sources in 39 commercially licensed

production citrus nurseries throughout the state. Budwood was

sampled, shipped, and handled at the CCPP as described above.

The RT-qPCR regulatory testing for citrus viruses began in 2014

(CDFA Permit, QC 1388). The citrus viroid regulatory testing

included RT-qPCR and bioindexing combined with imprint

hybridization for 2010 and 2011. After 2012 the regulatory

citrus viroid test was performed by RT-qPCR (CDFA Permit,

QC 1354). For viroid bioindexing, bark patches (i.e., blind buds)

from the budwood samples were graft-inoculated by T-cut on

‘Etrog’ citron (Citrus medica L.) ‘Arizona-861-S-1’grown on

rough lemon (Citrus jambhiri Lush. Rutaceae) rootstock, the

bioindicator and bio-amplification host for citrus viroids. Two

bark patches from each of two different budwood samples were

inoculated onto one ‘Etrog’ citron, for a total of four grafts, to

accommodate for the large number of samples (i.e., 3,600)
Frontiers in Agronomy 04
required for bioindexing, limited greenhouse space, and the

number of bioindicators. Graft-inoculations, care of

bioindicators, and monitoring for symptoms under warm

conditions (32–40°C day/24–27°C night) were performed as

previously described (Roistacher, 1991; Krueger and Vidalakis,

2022). Approximately 6-8 weeks post inoculation, the ‘Etrog’

citrons were cut back to 5-6 buds, and the second flush was

analyzed via imprint hybridization for the detection of the citrus

variants of the hop stunt viroid (HSVd, i.e., citrus viroid II) that

often causes very mild (i.e., faint leaf tip browning) or no

symptoms on ‘Etrog’ citron (Roistacher, 1991; Palacio-Bielsa

et al., 1999; Krueger and Vidalakis, 2022).
2.2 Sample processing and pulverization
for RNA isolation

For all budwood samples, the phloem-rich bark tissue was

peeled using a disposable, single edge razor blade. The peeled

bark tissue was finely chopped into small pieces (4-5 mm) on

small disposable chipboards, and 250 mg was then placed into a

2 mL safe-lock tube (Eppendorf, Hamburg, Germany). The

chipboards were discarded after each sample, and the bench

working area was decontaminated with 10% household bleach

followed by application of 70% ethanol to remove any residual

sodium hypochlorite. For each CCPP sample, three tubes were

prepared, one for each of the three different RNA isolation

methods tested (see below). For each CDFA sample, one tube

was prepared for RNA isolation and regulatory pathogen testing.

All sample tubes were barcoded, kept on ice during

processing, sanitized externally by dipping in a series of 10%

household bleach and water baths, and placed in a -80°C freezer

for at least two hours prior to lyophilization. Samples

were lyophilized for 24-26 hours in a FreeZone® Triad™

74000 freeze-dryer (Labconco®, Kansas City, MO). After

lyophilization, a single sterile 4 mm stainless steel grinding ball

was added into each sample tube and stored at -80°C until the

tissue pulverization and RNA isolation steps.

Sample tubes were placed in stainless steel Cryo-Blocks

(SPEX SamplePrep, Metuchen, NJ) and chilled with liquid

nitrogen using a Cryo-Station (SPEX SamplePrep) for 20

minutes. Samples were ground into a fine powder using a

Geno/Grinder® 2010 (SPEX SamplePrep) at 1,680 rpm for 20

seconds, in two cycles.

The pulverized citrus tissue samples were processed with

three different RNA isolation methods as described below.

2.2.1 Modified MagMax™ 96 viral RNA isolation
kit - magnetic bead-based method

The pulverized citrus tissues were treated with the

MagMAX™ 96 Viral RNA Isolation Kit, utilized with the

MagMAX™ Express-96 Deep Well Magnetic Particle

Processor (ThermoFisher Scientific, Waltham, MA) following
TABLE 1 List of polymerase chain reaction based assays, their targets
and respective references, used in this study.

PCR assay1and Targets2 Reference

RT-qPCR (SYBR® Green)

CBLVd, CDVd, CVd-V, CVd-VI, and CVd-
VII
(universal, CDFA regulatory test for
apscaviroids)

Vidalakis and Wang, 2013,
Chambers et al., 2018
Vidalakis et al., 2022

CEVd, HSVd, and CBCVd
(universal, CDFA regulatory test for pospi-,
hostu-, and cocad- viroids)

Vidalakis and Wang, 2013,
Vidalakis et al., 2022

nad5
(internal citrus gene control)

Saponari et al., 2008

RT-qPCR (TaqMan®)

CTV, CPsV, and CLBV
(multiplex, CDFA regulatory test)

Osman et al., 2015, Osman and
Vidalakis, 2022

CEVd, HSVd, and CBCVd
(multiplex)

Osman et al., 2017, Osman and
Vidalakis, 2022

RT-PCR (Conventional)

CVEV Vives et al., 2013

CTLV Roy et al., 2005

CBLVd Wang et al., 2013a

CDVd Wang et al., 2013a

CVd-V Wang et al., 2013a
1RT-qPCR, Reverse transcription quantitative polymerase chain reaction; RT-PCR,
Reverse transcription polymerase chain reaction.
2CBLVd, Citrus bent leaf viroid; CDVd, Citrus dwarfing viroid; CVd-V, -VI, and -VII,
Citrus viroid V, VI, and VII; CDFA, California Department of Food and Agriculture;
CEVd, Citrus exocortis viroid; HSVd, Hop stunt viroid; CBCVd, Citrus bark cracking
viroid; nad5, mitochondrial NADH dehydrogenase sub-unit 5; CTV, Citrus tristeza virus;
CPsV, Citrus psorosis virus; CLBV, Citrus leaf blotch virus; CVEV, Citrus vein enation
virus; CTLV, Citrus tatter leaf virus (syn. apple stem grooving virus).
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TABLE 2 Comparison of three RNA isolation methods for the detection of citrus viruses and viroids using reverse transcription (RT) polymerase
chain reaction (PCR) and quantitative PCR (qPCR).

A. Citrus tristeza virus (CTV) detection with RT-qPCR (Taqman®) in single and mixed infections

A/A Tree
ID

Experiment
Number

Citrus
Host

RT-qPCR (Taqman®)Cq values
(Mean±SD, n= 3)

CTV Infection

MagMAXTM TRIzol® RNeasy® Single (S) or Mix (M)

1 SY558 2987-56 SwO 24.50 ± 1.97 22.58 ±
0.14

24.30 ±
2.34

S CTV

2 SY568 2247-15 SwO 22.79 ± 4.90 24.10 ±
0.36

25.50 ±
4.50

S CTV

3 T517 3347-57 SwO 27.87 ± 4.40 33.46 ±
0.66

30.87 ±
5.64

S CTV

4 T525 3347-63 SwO 27.00 ± 6.51 31.25 ±
1.19

29.43 ±
5.88

S CTV

5 TL113 3291-10 SwO 27.59 ± 0.25 23.21 ±
0.8

28.53 ± 0.9 M
CTV+CBLVd+CTLV

6 TL114 3291-11 SwO 25.38 ± 3.92 29.39 ±
0.5

24.15 ±
0.23

M
CTV+CBLVd+HSVd+CTLV

B. Citrus psorosis virus (CPsV) detection with RT-qPCR (Taqman®) in single and mixed infections

A/A Tree ID Experiment Number Citrus Host RT-qPCR (Taqman®)
Cq values (Mean±SD, n= 3)

CPsV Infection

MagMAXTM TRIzol® RNeasy® Single (S) or Mixed (M)

7 P250
(LB)

3347-N/A SwO 26.46 ± 2.26 26.88 ±
3.12

25.80 ± 1.9 S CPsV

8 P250-3 3347-15 SwO 30.51 ± 5.24 32.55 ±
4.88

30.65 ±
2.80

S CPsV

9 P215 3347-14 SwO 29.11 ± 2.51 25.11 ±
3.84

30.31 ±
1.08

M
CPsV+CDVd

C. Citrus leaf blotch virus (CLBV) detection with RT-qPCR (Taqman®) in single and mixed infections

A/A Tree ID Experiment Number Citrus Host RT-qPCR (Taqman®)
Cq values (Mean±SD, n= 3)

CLBV Infection

MagMAXTM TRIzol® RNeasy® Single (S) or Mixed (M)

10 DMV931 2352-2 SwO 35.77 ± 0.69 29.72 ±
0.46

31.61 ±
0.62

S
CLBV

11 K-1 3069-2 RL 24.88 ± 3.13 25.09 ±
0.36

22.49 ±
2.62

S
CLBV

12 DMV930 2352-1 SwO 21.91 ± 1.59 22.43 ±
4.86

20.95 ±
1.50

M
CLBV+CDVd+HSVd

D. Citrus vein virus (CVEV) detection with RT-PCR (conventional) in single and mixed infections

A/A Tree ID Experiment Number Citrus Host RT-PCR
(Conventional, n= 3)

CVEV Infection

MagMAXTM TRIzol® RNeasy® Single (S) or Mix (M)

13 VE702 2923-2 SwO (+) (+) (+) S
CVEV

14 VE703 2923-3 SwO (+) (+) (+) S
CVEV

15 VE704 2923-4 SwO (+) (+) (+) S
CVEV

16 VE705 2923-5 SwO (+) (+) (+) S
CVEV

17 VE706 2833-1 SwO (+) (+) (+) S
CVEV

(Continued)
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TABLE 2 Continued

A. Citrus tristeza virus (CTV) detection with RT-qPCR (Taqman®) in single and mixed infections

A/A Tree
ID

Experiment
Number

Citrus
Host

RT-qPCR (Taqman®)Cq values
(Mean±SD, n= 3)

CTV Infection

MagMAXTM TRIzol® RNeasy® Single (S) or Mix (M)

18 VE709 3354-5 SwO (+) (+) (+) S
CVEV

19 VE823 2923-6 SwO (+) (+) (+) S
CVEV

20 VE708 3273-13 SwO (+) (+) (+) M
CVEV+CTV

21 VE701 2923-1 SwO (+) (+) (+) M
CVEV+HSVd

E. Citrus tatter leaf virus (CTLV) detection with RT-PCR (conventional) in single and mixed infections

A/A Tree ID Experiment Number Citrus Host RT-PCR
(Conventional, n= 3)

CTLV Infection

MagMAXTM TRIzol® RNeasy® Single (S) or Mix (M)

22 TL100 1713-1 Le (+) (+) (+) S

23 TL101 3347-76 SwO (+) (+) (+) CTLV

24 TL110 3288-4 SwO (+) (+) (+) S CTLV

25 TL113 3291-10 SwO (+) (+) (+) M
CTLV+CTV+CBLVd

26 TL114 3291-11 SwO (+) (+) (+) M
CTLV+CTV+HSVd+CBLVd

F. Citrus apscaviroid universal detection with RT-qPCR (SYBR® Green) in single and mixed infections followed by RT-PCR (conventional) for viroid species
identification

A/A Tree ID Experiment Number Citrus Host RT-qPCR (SYBR® Green)
Cq values (Mean±SD, n= 3)

Apscaviroid Infection RT-PCR (Conventional)

MagMAXTM TRIzol® RNeasy® Single (S) or Mixed (M)

27 CVd-Ia 2765-2 SwO 27.93 ± 2.19 26.36 ±
2.45

26.02 ±
1.68

S CBLVd

28 CVd-I-
LSS

3237-3 SwO 29.45 ± 0.47 28.74 ±
0.09

31.00 ±
0.12

S
CBLVd-LSS

29 CVd-IIIa 2765-11 SwO 31.28 ± 0.81 32.26 ±
2.3

30.79 ±
0.99

S CDVd

30 CVd-IIIb 2765-12 SwO 27.28 ± 0.4 28.02 ±
1.70

26.56 ±
2.10

S CDVd

31 CVd-V 3198-5 SwO 31.22 ± 0.8 32.26 ±
2.30

31.67 ±
1.10

S
CVd-V

32 IV402 2923-10 Ctrn 25.59 ± 1.35 25.59 ±
1.35

25.67 ±
1.40

S CDVd

33 P215 3347-14 SwO 28.50 ± 0.31 33.51 ±
0.95

33.55 ±
0.43

M
CDVd+CPsV

34 DMV930 2352-1 SwO 29.47 ± 0.15 28.75 ±
1.52

25.59 ±
1.45

M
CDVd+CLBV+HSVd

35 TL113 3291-10 SwO 26.36 ± 0.6 25.12±
0.92

26.37 ± 0.6 M
CBLVd+CTV+CTLV

36 TL114 3291-11 SwO 30.01 ± 1.13 25.75 ±
2.98

27.02 ±
1.47

M
CBLVd+HSVd+CTV+CTLV

G. Citrus pospiviroid, hostuviroid and cocadviroid universal detection with RT-qPCR (SYBR® Green) in single and mixed infections followed by RT-qPCR (Taqman®)
for viroid sp

A/A Tree ID Experiment Number Citrus Host RT-qPCR (SYBR® Green)
Cq values (Mean±SD, n= 3)

Pospi-, Hostu-, and Cocad- viroid Infection RT-qPCR
(Taqman®)

(Continued)

D. Citrus vein virus (CVEV) detection with RT-PCR (conventional) in single and mixed infections

RT-PCR
(Conventional, n= 3)
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the manufacturer’s recommended protocol adjusted and

optimized for citrus tissue. The protocol was as follows; 750

µL of 4 M guanidine lysis buffer (4 M guanidine thiocyanate, 0.2

M sodium acetate pH 5.0, 2 mM EDTA, 2.5% (w/v) PVP-40 at

pH 5.0) was added to each sample. Samples were homogenized

using the Geno/Grinder® 2010 at 1,680 rpm for 20 seconds,
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twice. The crude homogenized extracts were incubated at 4°C for

15 minutes and centrifuged at 4°C for 45 minutes at 17,200 x g.

RNA was isolated using the default MagMAX™ program

“AM1836_DW_50_V2” of the magnetic particle processor, as

recommended by the manufacturer. Two mL deep well plates

were used for the MagMAX™ Express-96 and were prepared as
TABLE 2 Continued

A. Citrus tristeza virus (CTV) detection with RT-qPCR (Taqman®) in single and mixed infections

A/A Tree
ID

Experiment
Number

Citrus
Host

RT-qPCR (Taqman®)Cq values
(Mean±SD, n= 3)

CTV Infection

MagMAXTM TRIzol® RNeasy® Single (S) or Mix (M)

MagMAXTM TRIzol® RNeasy® Single (S) or Mix (M)

37 CEVd 2765-1 SwO 30.26 ± 0.95 27.89 ±
0.69

26.64 ±
2.18

S CEVd

38 CVd-IIb 2765-6 SwO 27.5 ± 0.51 24.21 ±
0.51

24.36 ±
0.82

S HSVd

39 CVd-IV 3200-1 SwO 27.04 ± 1.81 26.22 ±
0.89

24.42 ±
2.45

S CBCVd

40 DMV930 2352-1 SwO 23.36 ± 0.15 21.62 ±
1.02

21.13 ±
0.29

M
HSVd+CLBV+CDVd

41 TL114 3291-11 SwO 22.61 ± 0.79 22.08 ±
1.45

20.39 ±
0.68

M
HSVd+CTV+CTLV+CBLVd

42 VE701 2923-1 SwO 22.9 ± 1.19 20.82 ±
0.29

21.09 ±
0.69

M
HSVd+CVEV

H. Citrus gene NAD dehydrogenase (nad5 ) detection with RT-qPCR (SYBR® Green) in non-infected citrus hosts

A/A Tree ID Experiment Number Citrus Host RT-qPCR (SYBR® Green)
Cq values (Mean±SD, n= 3)

Targeted Citrus Viruses-Viroids Detected

MagMAXTM TRIzol® RNeasy® Single (S) or Mix (M)

43 VI 708 3003025 PL 19.82 ± 0.28 20.22 ±
0.25

19.38 ±
0.60

None

44 VI 11 1005788 Pm 20.76 ± 0.43 22.6 ±
0.23

26.13 ±
1.12

None

45 VI 227 1005769 Le 20.5 ± 0.30 18.99 ±
0.25

16.87 ±
0.52

None

46 VI 58 1005767 Mand 20.53 ± 0.23 20.76 ±
0.09

17.61 ±
0.55

None

47 VI 471 3003016 SwO 21.46 ± 0.11 20.29 ±
0.16

16.63 ±
0.55

None

48 VI 28 1005784 SwO 21.09 ± 0.42 19.6 ±
0.30

16.45 ±
0.30

None

49 VI 276 3003084 Kmqt 20.9 ± 0.16 18.14 ±
0.04

16.78 ±
0.54

None

50 VI 31 3015231 Gf 21.48 ± 0.45 18.84 ±
0.28

20.08 ±
0.28

None

51 VI 97 1005682 Citrange 24.37 ± 0.73 19.54 ±
0.28

17.11 ±
0.04

None

52 VI 441 3015224 Trif 22.39 ± 0.08 17.74 ±
0.09

18.66 ±
0.21

None
SwO, Sweet orange-Citrus sinensis L. Osbeck; RL, Rough lemon-C. jambhiri Lush. Rutaceae; Ctrn, Citron-C. medica L.; Le, Lemon-C. limon L. Burm.f.; PL, Persian lime-C. latifolia Tan.;
Pm, C. grandis (L.) Osb.; Mand, Mandarin-C. reticulata Blanco; Kmqt, Kumquat-Fortunella margarita (Lour.) Swing.; Gf, Grapefruit-C. paradisiMacf.; Citrange, C. trifoliata x C. sinensis;
Trif, Trifoliate-C. trifoliata (L.) Raf.; SD, Standard Deviation; N/A, Not applicable; Cq, quantitative cycle; (+), DNA bands of expected size detected on 1.5% TAE agarose gel, stained with
ethidium bromide and observed under UV light; all RT-PCRs and qPCRs were performed with the appropriate positive, negative, and healthy controls; CBLVd, Citrus bent leaf viroid; LSS,
low similarity sequence; CDVd, Citrus dwarfing viroid; CVd-V, -VI, and -VII, Citrus viroid V, VI, and VII; CEVd, Citrus exocortis viroid; HSVd, Hop stunt viroid; CBCVd, Citrus bark
cracking viroid. The concentration and purity of the samples were evaluated by a spectrophotometer instrument. An acceptable concentration and purity for downstream applications is 25
ng/µL ≥ to ≤ 100 ng/µL and A260/280 1.8 ≥ to ≤2.5, respectively.
frontiersin.org

https://doi.org/10.3389/fagro.2022.911627
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Dang et al. 10.3389/fagro.2022.911627
follows; lysis plate (position 1) which consisted of 139 µL of

Lysis/Binding Solution Concentrate (premixed with 40 mL of

isopropanol), 22 µL of Bead Mix (10 µL of RNA Binding Beads,

10 µL of Lysis/Binding Enhancer, and 2 µL of Carrier RNA), 139

µL of isopropanol, and 150 µL of the processed supernatant; a

first set of wash plates (positions 2-3) which consisted of 500 µL

of MagMAX™ Wash Solution 1; a second set of wash plates

(positions 4-5); which consisted of 500 µL of MagMAX™Wash

Solution 2; the elution plate (position 6) which consisted of 100

µL of elution buffer; and the tip comb plate (position 7) loaded

with the MagMAX™ Express-96 Deep Well Tip Comb. Upon

completion of the magnetic particle processor run, the elution

plate was placed on a magnetic rack for 5 minutes to collect any

residual beads. The isolated RNA was transferred to individual

1.5 µL microcentrifuge tubes and stored in a -80°C freezer.
2.2.2 TRIzol®reagent- phenol chloroform-
based method

The pulverized citrus tissues were treated with TRIzol®

following the manufacturer’s recommended protocol adjusted

and optimized for citrus tissue. The protocol was as follows; 2.5

mL of TRIzol® reagent was added to each sample. Samples were

homogenized with a vortex for 20 seconds, centrifuged at 4°C for

5 minutes at 12,000 x g, and the supernatant was then

transferred to a new 5 mL tube (Eppendorf, Hamburg,

Germany). Five hundred µL (500 µL) of chloroform was added

to each sample and incubated at room temperature for 3

minutes. Samples were centrifuged at 4°C for 15 minutes at

12,000 x g. The aqueous phase was transferred to a new 1.5 mL

microcentrifuge tube and 1.25 mL of isopropanol was added to

each sample. Samples were then incubated at room temperature

for 10 minutes and subsequently centrifuged at 4°C for 10

minutes at 12,000 x g. The supernatant was discarded, and 2.5

mL of 75% ethanol was added to each sample to wash the RNA

pellet. The samples were vortexed briefly and centrifuged at 4°C

for 5 minutes at 7,500 x g. Ethanol was discarded and the pellet

was left to air dry for 30 minutes to 1 hour. The RNA pellet was

resuspended in 100 µL of UltraPure™ DNase/RNase-free

distilled water (Thermo Fisher Scientific, Waltham, MA) and

stored at -80°C.
2.2.3 Qiagen RNeasy® plant mini kit - silica
column-based method

The pulverized citrus tissues were treated with the Qiagen

RNeasy® Plant Mini Kit following the manufacturer’s protocol

adjusted and optimized for citrus tissue. The protocol was as

follows; 1,125 µL of RLT buffer and 11.25 µL (0.01%) of b-
mercaptoethanol were added to each sample and subsequently

vortexed. The lysate was transferred to a QIA shredder spin

column and centrifuged at room temperature for 2 minutes at

17,200 x g. The flow-through was transferred to a clean 2 mL

collection tube and 562.5 µL of 200 proof ethanol was added and
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mixed by pipetting. Six hundred and fifty µL (650 µL) of sample

were transferred to the RNeasy Mini spin column and

centrifuged for 15 seconds at 8,000 x g; this step was repeated

until the remaining sample was used up. The RNeasy spin

column was washed with 700 µL RW1 Buffer and centrifuged

for 15 seconds at 8,000 x g at room temperature. A second wash

with 500 µL of RPE was added to the column and centrifuged for

15 seconds 8,000 x g, twice. The column was centrifuged at room

temperature for 1 minute at 12,000 x g to remove the excess

wash buffer. The column was transferred to a clean 1.5 mL

standard microcentrifuge tube and 100 µL of UltraPure™

DNase/RNase-free distilled water were added to each sample

and incubated at room temperature for 2 minutes. The samples

were centrifuged at room temperature for 1 minute at 8,000 x g

and the eluted RNA was stored at -80°C.
2.3 RNA quality assessment and
RT-qPCR pathogen detection

For all samples, the RNA concentration and purity (ratio of

absorbance at a wavelength of 260 nm and 280 nm, 260/280, and

260 nm and 230 nm, 260/230) was assessed using the Infinite

M1000 Pro plate reader (Tecan, Männedorf, Switzerland).

Integrity of RNA was assessed by an RT-qPCR (SYBR®

Green) assay targeting the single-copy endogenous citrus

mitochondrial NADH dehydrogenase sub-unit 5 (nad5) gene

and a subset of 15 samples (five randomly chosen samples per

RNA isolation methodology) were processed with the Agilent

2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA) using

the RNA 6000 Nano kit (Agilent Technologies, Santa Clara, CA)

to obtain RNA integrity number (RIN) and visualize the RNA

qualitative profile.

For the three RNA isolation methods comparison, 10 assays

of conventional RT-PCR and RT-qPCR (SYBR®Green and

TaqMan®), developed previously by various researchers, were

performed to detect five citrus-infecting viruses and seven citrus-

infecting viroids following the PCR protocols as described in

their respective publications (for specific PCR references

see Table 1).

For the regulatory testing of citrus nursery budwood tree

sources, all samples were processed by the MagMAX™ protocol.

Universal RT-qPCR (SYBR® Green) and multiplex RT-qPCR

(TaqMan®) assays were performed for the detection of citrus-

infecting viroids and viruses, respectively, according to

California’s Citrus Nursery Stock Pest Cleanliness Program

(for specific PCR references see Table 1).

Universal RT-qPCR reactions (Saponari et al., 2008;

Vidalakis and Wang, 2013; Chambers et al., 2018; Vidalakis

et al., 2022) were performed using the CFX96 Touch Real-Time

PCR Detection System (Bio-Rad, Hercules, CA) and multiplex

RT-qPCR reactions (Osman et al., 2015; Osman et al., 2017;
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Osman and Vidalakis, 2022) were carried out using the

QuantStudio 12K Flex System (Thermo Fisher Scientific,

Waltham, MA).RT-qPCR data was collected and analyzed

with the Bio-Rad CFX Manager version 3.1 and the

QuantStudio Flex software version 1.3, respectively.

Conventional RT-PCR reactions (Roy et al., 2005; Vives

et al., 2013; Wang et al., 2013a) were performed with the ProFlex

PCR System (Thermo Fisher Scientific, Waltham, MA). PCR

products were analyzed using electrophoresis on a 1.5% Tris-

acetate-EDTA (TAE) agarose gel, stained with ethidium

bromide and visualized with the ChemiDoc™ Imaging System

(Bio-Rad, Hercules, CA).

All RT-PCR and RT-qPCR assays were repeated at least

twice for each sample and performed with inclusion of the

appropriate positive, negative, and non-template (water)

PCR controls.
2.4 Statistical analysis

Mean differences in the concentration (ng/mL), purity (260/
280 and 260/230 absorbance ratios), and integrity (Cq values) of

RNA obtained from the different RNA isolation methods were

analyzed by ANOVA. Prior to performing statistical analysis, the

RNA concentration data was log transformed to reduce skewing

the original data. Furthermore, Dunn’s test of multiple

comparisons was performed to determine significant pair wise

differences between different treatment groups (i.e., RNA

isolation methods). Interquartile range (IQR), was defined as

the distance between the upper (Q3) and lower quartiles (Q1) of

the box plots, and calculated as IQR= Q3-Q1, where Q1 (or 25th

percentile) is the median of the lower half of the dataset and Q3

(or 75th percentile) is the median of the upper half of the dataset.
3 Results

3.1 Quality assessment of RNA isolated
from citrus tissues using three
different methods

The concentration, purity, and integrity of the RNA

obtained from the three RNA isolation methods tested, were

assessed to determine RNA quality and its suitability for

downstream use in RT-PCR and RT-qPCR assays for citrus

pathogen detection.

Dunn’s multiple comparison test showed significant

differences between the RNA concentrations among the three

isolation methods tested (adjusted P values < 0.0002). On

average, MagMAX™ yielded lower but more consistent RNA

concentrations around a median value of 54.4 ng/mL (mean=

57.74 ± 15.93 ng/mL, IQR= 22.65, n= 43) in comparison to

TRIzol® and RNeasy® (Figure 1A). The MagMAX™ RNA
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concentration values clustered within the narrow range of 84.4

ng/mL, with a minimum and maximum of 28.0 and 112.40 ng/mL
(Figure 1A). On average, TRIzol® (mean= 473.59 ± 132.44 ng/

mL, IQR= 167.4, n= 43) and RNeasy® (mean= 147.83 ± 72.69 ng/

mL, IQR= 100.96, n= 43) yielded RNA at higher (ANOVA P <

0.0001) but more variable concentrations than MagMAX™

(Figure 1A). TRIzol® RNA concentrations clustered around a

median value of 466.16 ng/mL and ranged within 733.76 ng/mL
between a minimum and a maximum of 160.88 and 894.64 ng/

mL, respectively (Figure 1A). RNeasy® RNA concentration

values were clustered around a median value of 142.00 ng/mL
and ranged within 278.88 ng/mL between a minimum and a

maximum of 19.12 and 298.00 ng/mL (Figure 1A).

RNA purity was assessed by the 260/280 absorbance ratio

focusing on the optimum value of 2.0 associated with highly

purified RNA preparations (Gallagher, 2017), and the lowest

acceptable value of 1.8 for RNA preparations with low protein

contamination (Imbeaud et al., 2005). Dunn’s multiple

comparison test showed significant differences in the 260/280

ratio for the three RNA isolation methods tested (adjusted P

value < 0.0179) (Figure 1B). MagMAX™ (mean= 2.30 ± 0.12, n=

43) and RNeasy® (mean= 2.20 ± 0.08, n= 43) isolated RNA with

higher 260/280 absorbance ratios than TRIzol® (mean= 1.97 ±

0.09, n= 43) (ANOVA P value: < 0.0001). MagMAX™ yielded

RNA with 260/280 ratios around a median value of 2.3 (IQR=

0.18) consistently higher than the optimum ratio of 2.0. The

MagMAX™ RNA purity values did not drop below the

acceptable 260/280 ratio of 1.8 (minimum=2.05) (Figure 1B).

TRIzol® RNA 260/280 ratios clustered around a median value of

1.95 (IQR= 0.09) and the minimum absorbance ratio recorded

was 1.71 (Figure 1B). RNeasy® yielded RNA with 260/280 ratios

around a median value of 2.21 (IQR= 0.13) consistently higher

than the optimum 2.0 value. The RNeasy® RNA purity values

did not decrease the acceptable 260/280 ratio of 1.8

(minimum=2.01) (Figure 1B).

A secondary assessment of RNA purity was performed by

measuring the 260/230 absorbance ratio, using 1.8 as the

acceptable value for the RNA preparations with a small

carryover from the extraction reagents (Imbeaud et al., 2005).

MagMAX™ (mean= 1.01 ± 0.84, n= 43) and RNeasy® (mean=

1.61 ± 1.19, n= 43) isolated RNA with higher 260/230

absorbance than TRIzol® (mean= 0.92 ± 0.30, n= 43).

MagMAX™ yielded RNA with 260/230 ratios around a

median value of 0.77 (IQR= 0.96), RNeasy® yielded ratios

around a median value of 1.64 (IQR= 1.45), and TRIzol®

yielded ratios around a median value of 0.92 (IQR= 0.52).

Regardless of extraction method, the average 260/230 ratios

for the three extraction protocols fell below one of the

recommended values of 1.8 for RNA preparations (Figure 1C).

To determine the integrity of the isolated RNA, RT-qPCR of

the citrus housekeeping gene mitochondrial NADH

dehydrogenase sub-unit 5 (nad5) was performed. Dunn’s

multiple comparison test showed significant differences between
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nad5 Cq values for RNA isolated by MagMAX™ vs. TRIzol® and

MagMAX™ vs. RNeasy® (adjusted P value: <0.0001). There was

no significant difference between TRIzol® vs. RNeasy® (adjusted

P value: 0.172). MagMAX™ yielded higher but more consistent

Cq values for the citrus housekeeping gene nad5 around a median

value of 21.12 (mean= 21.30 ± 0.89, IQR= 1.15) in comparison to

TRIzol® and RNeasy® (Figure 1D). The MagMAX™ RNA

integrity Cq values clustered within the narrow range of 4.55

with a minimum and maximum of 19.82 and 24.37, respectively

(Figure 1D). TRIzol® (mean= 18.18 ± 1.46, IQR= 1.74) and

RNeasy® (mean= 18.97 ± 1.69, IQR= 1.43) yielded RNA with

lower (ANOVA P < 0.0001) but more variable Cq values for nad5

than MagMAX™ (Figure 1D). TRIzol® RNA Cq values for nad5

were lower and more consistent than those of RNeasy® clustered

around a median Cq value of 17.8 and ranged within 6.66 Cq

values with a minimum and maximum value of 15.94 and 22.60,

respectively (Figure 1D). RNeasy® RNA Cq values for nad5 were

clustered around a median of 18.83 and had the widest range of
Frontiers in Agronomy 10
9.67 Cq values with a minimum and maximum of 16.45 and

26.12, respectively (Figure 1D).

RNA integrity of a subset of samples was analyzed using the

Agilent 2100 Bioanalyzer and the RNA 6000 Nano kit (Agilent

Technologies, Santa Clara, CA). Fifteen samples of RNA were

randomly selected across the three RNA isolation methodologies

(five samples per RNA isolation method) and subjected to

analysis to obtain their RIN values and a visual profile of RNA

quality. In the case of the five samples extracted by TRIzol®, due

to their high concentrations, the RNA was diluted prior to

loading into the RNA 6000 Nano chip. Distinct bands were

observed at the 18S and 28S in the majority of the samples

isolated with TRIzol® (4/5) and MagMAX™ (3/5). Samples

isolated with RNeasy® were degraded and the average RIN score

was the lowest (mean= 4.32 ± 2.42, n= 5) compared to TRIzol®

(mean= 4.36 ± 3.01, n= 5) and MagMAX™ (mean= 5.40 ± 2.69,

n= 5) methods. The bioanalyzer results are summarized in

Supplementary Figure 1.
A B

DC

FIGURE 1

Comparison of (A) RNA concentration (ng/mL) (data transformed to Log 2) (B) RNA purity (absorbance ratio 260/280), (C) RNA purity
(absorbance ratio 260/230), and (D) RNA integrity (Cq values for RT-qPCR targeting the NAD dehydrogenase, nad5, citrus housekeeping gene)

for three different RNA isolation methods: MagMAX™, TRIzol®, and RNeasy® (n=43). Error bars represent the minimum and maximum values.
For the box plot, the lower, middle, and upper lines represent the 25th quartile, median value, and the 75th quartile, respectively. Asterisk (*)
indicate statistically significant differences based on Dunn’s test of multiple comparisons (p<0.05), while “ns” indicate not statistically significant.
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3.2 RT-PCR and RT-qPCR citrus
pathogen and housekeeping gene
detection using RNA isolated by three
different methods

RNA obtained from MagMAX™, TRIzol®, and RNeasy®

was used in 52 tests with different types of conventional RT-PCR

and RT-qPCR assays (i.e., universal, multiplex, singleplex,

TaqMan®, and SYBR® Green), targeting 11 citrus-infecting

viruses and viroids and one citrus housekeeping gene in

various citrus hosts (Table 2).

RNA isolated via the MagMAX™ and RNeasy® protocols

was used in PCR reactions without any further manipulation.

Some of the TRIzol®isolated RNA had very high concentrations

(Figure 1A), and as a result, PCR reactions were inhibited (data

not shown). Ten of these samples required a dilution of 1:100 for

successful PCR reactions.

Regardless of the RNA isolation method, all types of PCR

assays detected consistently their targeted citrus-infecting

viruses (Tables 2A-E) and viroids (Tables 2F, G) in single or

mixed infections in four different citrus host types. For citrus-

infecting viruses, both quantitative (Tables 2A-C) and

conventional (Tables 2D, E) PCR assays detected all targeted

pathogens using RNA from all three isolation methods tested.

For citrus-infecting viroids, the RNA isolated from all three

methods was successfully used for both the universal detection

and the species-specific identification of the targeted viroids

(Tables 2F, G).

The citrus housekeeping gene nad5 was reliably detected in

nine different non-infected citrus hosts using RNA from all three

isolation methods tested in this study. No pathogens were

detected in the non-infected citrus by any of the PCR assays

using the RNA isolated by the three tested methods (Table 2H).

The positive, negative, and non-template controls used in over

500 PCR tests presented in Table 2 produced the expected results

with no evidence of cross contamination or false negative and

false positive results (data not shown).
3.3 Application of MagMAX™ RNA
isolation method for high-throughput
RT-qPCR pathogen detection in
California’s citrus nursery stock pest
cleanliness program

MagMAX™ was selected for application and further large-

scale evaluation in the California’s Citrus Nursery Stock Pest

Cleanliness Program for two reasons. Firstly, MagMAX™

produced RNA with the most consistent values of

concentration, purity, and integrity without large fluctuations

between minimum and maximum values (Figure 1). In addition,

MagMAX™ could be used in conjunction with the semi-
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automated MagMAX™ Express-96 Deep Well Magnetic

Particle Processor for high-throughput RNA isolation from

citrus tissues.

Between 2010 and 2019, 16,656 samples from citrus nursery

budwood source trees, were processed with MagMAX™ and the

RNA quality of multiple samples was assessed. Purity of the

isolated RNA was high (260/280 ratio 2.22 ± 0.28, n= 6,461)

with 85.6% of the 260/280 ratios ranging from 1.8 to 2.5, which is

within the desirable values denoting low protein contamination

(Figure 2A). Secondary purity assessment for extraction buffer

salts and reagents contamination using the 260/230 absorption

ratio indicated high amounts of reagent carryover (260/230 ratio

mean= 0.93 ± 0.77, n= 6,461). Even though there are no generally

accepted values for optimum 260/230 ratios for RNA extraction

protocols (Cicinnati et al., 2008; Ahlfen and Schlumpberger, 2010;

Gallagher, 2017; Zepeda and Verdonk, 2022), taking into

consideration one of the recommended ratio values of 1.8

Imbeaud et al., 2005, 87.5% of the ratios were below that value

(Figure 2B). The concentration of the isolated RNA ranged from

8.16 to 256.96 ng/mL, with a mean of 67.97 (± 33.13 ng/mL, n=
6,461), while most of the samples (78.1%) had concentrations

from 25 to 100 ng/mL (Figure 2C). RNA integrity was also high

and the nad5 citrus gene-targeting RT-qPCR Cq values ranged

from 15.4 to 25.43 with a mean of 19.39 (± 1.54, n= 255),

regardless of the RNA concentration (Figure 2D).

Between 2004 and 2010, the yearly diagnostic capacity of the

citrus nursery testing program in California was on average 455

samples (Figure 3). This was primarily because of the voluntary

nature of the program and the limited sample throughput of the

approved regulatory test of bioindexing (Mather and McEachern,

1974; Calavan et al., 1978). This low diagnostic capacity in

combination with the ease of viroid transmission by grafting or

even by a single slash with a knife blade (Barbosa et al., 2005),

resulted in viroid infections that persisted in nurseries budwood

source trees at an average of 5.67% (Figure 3).

Between 2010 and 2011, the first two years of the

implementation of the mandatory Citrus Nursery Stock Pest

Cleanliness Program, the CCPP received 3,600 citrus nursery

samples for viroid testing. Bioindexing and imprint

hybridization identified 237 samples as viroid-positive with

‘Etrog’ citron expressing the typical symptoms of stem, petiole,

and midvein necrosis resulting in various degrees of stunting

and leaf epinasty (data not shown). MagMAX™ and the two

RT-qPCR SYBR® Green assays for the universal detection of

citrus-infecting viroids (Table 1) identified as positive, both in

single and mixed infections, the same 237 samples as those

identified as positive by bioindexing (Cq apsca viroids: 27.29 ±

4.41, n= 384 and Cq pospi-, hostu-, and cocad- viroids: 27.53 ±

3.34, n= 276).

Following the successful evaluation of the high-throughput

MagMAX™ - RT-qPCR system, against bioindexing, the CCPP

processed with MagMAX™ and tested with RT-qPCR 13,056

additional samples for citrus-infecting viroids between 2012 and
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2019 (Figure 3). The first year of the application of the high-

throughput testing (i.e., 2010), viroid infection rate was at 7.81%,

then progressively decreased each year. By 2013, the viroid

infection rate dropped to 2.22% and from 2014 onwards it

decreased further and remained below 0.78% (Figure 3).

Since 2014, when the RT-qPCR regulatory test for citrus

viruses was approved, only three samples tested positive for

citrus psorosis virus (CPsV, Cq: 24.39 ± 8.74, n= 10) using the
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MagMAX™ - RT-qPCR system. No citrus tristeza virus (CTV)

or citrus leaf blotch virus (CLBV) has been detected in the

budwood tree sources of California citrus nurseries. In 2020,

after a series of workshops and ring tests, the CCPP completed

the technology transfer to CDFA, and the MagMAX™ - RT-

qPCR system for the Citrus Nursery Stock Pest Cleanliness

Program is now operated by CDFA’s Nursery, Seed, and

Cotton Program.
A B

DC

FIGURE 2

Large scale evaluation of MagMAX™ with citrus nursery samples (A) RNA purity (absorbance ratio 260/280)(n= 6,461) the red lines indicates the
optimum range for RNA purity (1.8–2.2, minimal protein contamination), (B) RNA purity (absorbance ratio 260/230)(n= 6,461) the red line
indicates one acceptable metric for RNA purity (1.8, buffer salt contamination) (Imbeaud et al., 2005) (C) RNA concentration (ng/mL) (n= 6,461),
and (D) RNA integrity (Cq values for RT-qPCR targeting the NAD dehydrogenase, nad5, citrus housekeeping gene)(n= 255).
FIGURE 3

Citrus viroid infection rate and number of citrus nursery samples tested by the Citrus Clonal Protection Program for a 16-year period. From
2004 to 2009 (n= 2,735), viroid testing was limited to biological indexing, combined with imprint hybridization, using ‘Etrog’ citron, Arizona 861-

S-1 (Citrus medica L.) indicator plants. From 2010 to 2019 (n= 16,656), viroid testing was performed with the high-throughput MagMAX™-RNA
isolation method followed by the RT-qPCR SYBR®Green assays for the universal detection of citrus viroids. For 2010 and 2011 (n= 3,600) both
bioindexing and RT-qPCR citrus viroid detection assays were performed.
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4 Discussion

The California citrus industry has tripled in size in the last 20

years, and it was recently valued at $3.63 billion with an

estimated economic impact of $7.6 billion (Babcock, 2022).

The spread of the deadly Huanglongbing (HLB) disease in

conjunction with a long list of other graft-transmissible

diseases (e.g., tristeza stem pitting-CTV, exocortis-CEVd and

cachexia-HSVd) all threatening the economy of the industry,

make reliable citrus pathogen detection tools an absolute

requirement to ensure the production and maintenance of

pathogen-tested citrus propagative materials for use by the

citrus nurseries (Gottwald, 2010; Gergerich et al., 2015; da

Graça et al., 2016; Zhou et al., 2020; Graham et al., 2020).

With the advent of new technologies in recent years, tools

for the detection of graft-transmissible pathogens of citrus have

significantly evolved. More specifically, the adoption of PCR-

based assays in citrus pathogen detection plays a critical role in

disease management programs monitoring the sanitary status of

germplasm and propagative materials, nursery stock, and

commercial plantings of citrus and other agriculturally

significant crops (Bostock et al., 2014; Gergerich et al., 2015;

Osman et al., 2015; Albrecht et al., 2020; Fuchs et al., 2021).

While the protocols for the development and validation of PCR

assays are focused primarily on primer and probe sequence

design, conditions, composition and efficiency of the reaction as

well as the specificity, sensitivity, transferability and robustness

of the PCR assay (Bustin et al., 2009; Broeders et al., 2014; Tan

et al., 2019), the importance of the quality of nucleic acids

isolated from a specific type of plant tissue that is used in the

PCR assays cannot be overlooked (Fleige and Pfaffl, 2006; Becker

et al., 2010; Taylor et al., 2010; Die and Román, 2012; Huma

et al., 2020).

Our study demonstrated that the three tested RNA isolation

methods could be reliably used in citrus surveys or germplasm

programs as they produced high quality RNA from citrus

phloem-rich tissues (Figure 1). MagMAX™ yielded lower but

more consistent RNA concentrations while TRIzol® and

RNeasy® yielded RNA at a higher, but far more variable

concentration range that often required serial dilution for

downstream application. All three isolation methods produced

RNA with desirable 260/280 absorbance ratios, averaging very

close to the target value of 2.0, indicating low protein

contamination (Figure 1B). The low values of the 260/230

absorption ratios also indicated that all three isolation

methods performed comparably with extraction reagents

carryover into the isolated RNA (Figure 1C). Since all three

tested RNA isolation methods are guanidine-based, the observed

low 260/230 absorption ratio values were most likely due to

guanidine carryover, which absorbs very strongly at 220–230 nm

(Ahlfen and Schlumpberger, 2010). Despite these low 260/230

ratio values, all three isolation methods produced RNA that was

successfully used for the detection of all targeted graft-
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transmissible pathogens of citrus using various RT-PCR-based

assays without any reaction inhibition (Table 2). Our

comparative and regulatory testing results using over 6,000

samples are in agreement with multiple studies that have

demonstrated that there is no correlation between 260/230

absorbance ratios of RNA extracts and performance of

downstream RT-PCR or RT-qPCR analysis (Figure 2B)

(Cicinnati et al., 2008; Ahlfen and Schlumpberger, 2010;

Gallagher, 2017; Zepeda and Verdonk, 2022). Specifically for

guanidine, it has been calculated that up to 100 mM in an RNA

sample does not compromise RT-PCR reactions (Ahlfen and

Schlumpberger, 2010). Therefore in the case of RNA isolation

from citrus tissues using guanidine, the 260/230 absorption

ratios should be used as a complimentary RNA purity

measurement, and should never be used as a major

determinant of a sample’s suitability for pathogen testing using

RT-PCR and RT-qPCR based assays (Zepeda and

Verdonk, 2022).

Although all three RNA isolation methods were proven

valuable and could have different citrus applications, the

consistency of the RNA quality isolated from citrus tissues

with the semi-automated MagMAX™ method, as previously

reported for grapevine and lily (Osman et al., 2012; Sun et al.,

2014) allowed its application in the high-throughput Citrus

Nursery Stock Pest Cleanliness Program in California. Beyond

the development and validation of the MagMAX™ - RT-qPCR

system, its successful implementation was supported by the

integration of robotic pipetting systems and a series of

standard operating procedures for swab testing and

decontamination protocols allowing the technical personnel,

regardless of experience level, to use the method with

consistent results with little or no troubleshooting needs

(Osman and Vidalakis, 2022; Vidalakis et al., 2022; Dang

et al., 2022). This systems approach allowed the use of

MagMAX™ isolated nucleic acids not only for pathogen

detection but also for high-throughput sequencing-based

microbiome field and greenhouse studies for different citrus

tissue types (i.e., stems, leaves, and roots) (Ginnan et al., 2018;

Ginnan et al., 2020; Pagliaccia et al., 2020).

It is worth noting here that this project was just a small but

important piece of a complex collaborative effort among

industry, university, and regulators. Following the first Asian

citrus psyllid (ACP) (Diaphorinacitri Kuwayama) detection in

southern California in 2008 (Kumagai et al., 2013), the CDFA in

collaboration with the citrus industry of the state, organized a

series of stakeholder’s meetings to discuss actions to protect

nurseries and citrus propagative materials. In 2009, the draft

regulations for the “Citrus Nursery Stock Pest Cleanliness

Program”, as prepared by the California Citrus Nursery Board,

Registration and Certification Protocol Committee, which

included pathogen testing and insect protective structures,

were finalized at the “Meeting the Challenge of the Asian

Citrus Psyllid in California Nurseries” workshop (June 11-12,
frontiersin.org

https://doi.org/10.3389/fagro.2022.911627
https://www.frontiersin.org/journals/agronomy
https://www.frontiersin.org


Dang et al. 10.3389/fagro.2022.911627
2009, https://acpnurseryworkshop.ucr.edu/), a meeting

organized by the California Citrus Nursery Society, UC

Riverside and the United States Department of Agriculture

(USDA). Subsequently, the 2009 California Senate Bill 140 was

approved on November 2, 2009. On May 17, 2010, the

regulations were filed as an emergency action based on the

authority conveyed to CDFA by the California Food and

Agricultural Code Sections 6940-6946. The importance of a

high-throughput nucleic acid isolation protocol from citrus

tissues for the success of the Citrus Nursery Stock Pest

Cleanliness Program was not fully appreciated at the time.

The timely testing for viruses and viroids of the 7,245

samples from nursery owned budwood source trees of

commercially used citrus varieties in the first three years of the

program (i.e., 2010-12, Figure 3) became the key for the

successful implementation of the new citrus nursery testing

program, which, in addition to testing for HLB, included

mandatory testing for CTV, CPsV and all known citrus viroid

species. From 1933, when the viral nature of the citrus psorosis

disease was discovered by Dr. H. S. Fawcett at the Citrus

Experiment Station at Riverside, California, until 2010, when

the MagMAX™ RNA isolation protocol for citrus tissues was

developed by the CCPP, California’s citrus nursery testing

program relied on symptom observation and biological

indexing for the detection of viruses and viroids (Hiltebrand,

1957; Mather, 1968; Mather McEachern, 1974; Calavan et al.,

1978; Dang et al., 2022). Therefore, the number of samples tested

was limited by the availability of appropriate greenhouse space

for plant indicator growth, graft-inoculation, and observations

for symptom development for six or more months (Roistacher,

1991; Krueger and Vidalakis, 2022). During this study, in 2010-

11, the diagnostic capacity of the bioindexing program increased

from approximately 500 to 1,800 samples per year with the use

of double nursery sample inoculation on ‘Etrog’ citron.

However, even with such an increase, it would have taken five

years or more to test the 7,000 nursery owned budwood source

trees without the high-throughput MagMAX™ - RT-qPCR

system, significantly delaying the rollout of the new critical

citrus nursery program. By 2015-16, the risk for the citrus

propagative material in California would have increased

dramatically since the ACP had already spread throughout

southern California by 2014, and the first HLB-positive tree

was detected in Los Angeles in 2012 (Kumagai et al., 2013; Bayles

et al., 2017).

The collaborative efforts of the industry in adopting the idea

and funding the research, the university that performed the

research and provided extension and outreach services, and the

regulatory agencies that approved the new MagMAX™ - RT-

qPCR protocols and participated in the technology transfer that

the research and regulatory efforts described here were

successful. Every collaborative step happened in a timely

manner and helped the California citrus industry to transition

successfully into the HLB era with a minimal risk of graft-
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transmissible diseases contaminating its germplasm sources and

nursery production. The success of the Citrus Nursery Stock Pest

Cleanliness Program was an integral part and complemented the

successful implementation of the ACP and HLB management

programs by the CDFA and the California Citrus Pest and

Disease Prevention Committee (California Assembly Bill AB-

281, 2009) (Albrecht et al., 2020; Graham et al., 2020; Garcia-

Figuera et al., 2021; McRoberts et al., 2019).
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SUPPLEMENTARY FIGURE 1

Electronic gel image of RNA isolated by the MagMAX™, TRIzol®, and
RNeasy® extraction protocols. RNA integrity was analyzed using the RNA

6000 Nano kit in the Agilent 2100 Bioanalyzer system. First lane on the left

is the RNA molecular size ladder, followed by the RNA samples. Five
samples per extraction method (four virus/viroid-infected and one

healthy control) were analyzed. TRIzol®-extracted RNA samples were
diluted prior to analysis. RNA quality assessment for each sample

summarized below the gel image. The RNA integrity can be evaluated
based on the 18S (2kb) and 28S (5kb) rRNA. Well defined bands and a high

RNA integrity number (RIN) indicate intact RNA, while faint and shorter

fragment size would indicate degradation. Samples extracted with
TRIzol® maintained intact RNA, while the RNeasy® extraction showed

the most degradation.
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Barbosa, C. J., Pina, J. A., Pérez-Panadés, J., Bernad, L., Serra, P., Navarro, L.,
et al. (2005). Mechanical transmission of citrus viroids. Plant Dis. 89, 749–754. doi:
10.1094/PD-89-0749

Bar-Joseph, M., Garnsey, S. M., Gonsalves, D., Moscovitz, M., Purcifull, D. E.,
Clark, M. F., et al. (1979). The use of enzyme-linked immunosorbent assay for
detection of citrus tristeza virus. Phytopathology 69, 190–194. doi: 10.5070/
C586v8r487

Bayles, B. R., Thomas, S. M., Simmons, G. S., Grafton-Cardwell, E. E., and
Daugherty, M. P. (2017). Spatiotemporal dynamics of the Southern California
Asian citrus psyllid (Diaphorinacitri) invasion. PLoS One 12, e0173226.
doi: 10.1371/journal.pone.0173226

Becker, C., Hammerle-Fickinger, A., Riedmaier, I., and Pfaffl, M. W. (2010).
mRNA and microRNA quality control for RT-qPCR analysis. Methods 50, 237–
243. doi: 10.1016/j.ymeth.2010.01.010

Benıt́ez-Galeano, M. J., Hernández-Rodrıǵuez, L., Dalmao, F., Bertoni, E.,
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