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Modern agriculture faces several challenges due to climate change, limited resources, and
land degradation. Plant-associated soil microbes harbor beneficial plant growth-
promoting (PGP) traits that can be used to address some of these challenges. These
microbes are often formulated as inoculants for many crops. However, inconsistent
productivity can be a problem since the performance of individual inoculants/microbes
vary with environmental conditions. Over the past decade, the ability to utilize Next
Generation Sequencing (NGS) approaches with soil microbes has led to an explosion of
information regarding plant associated microbiomes. Although this type of work has been
predominantly sequence-based and often descriptive in nature, increasingly it is moving
towards microbiome functionality. The synthetic microbial communities (SynCom)
approach is an emerging technique that involves co-culturing multiple taxa under well-
defined conditions to mimic the structure and function of a microbiome. The SynCom
approach hopes to increase microbial community stability through synergistic interactions
between its members. This review will focus on plant-soil-microbiome interactions and
how they have the potential to improve crop production. Current approaches in the
formulation of synthetic microbial communities will be discussed, and its practical
application in agriculture will be considered.

Keywords: plant-associated microbes, rhizosphere, plant growth-promoting traits, synthetic communities
(SynCom), plant microbe interaction
INTRODUCTION

Agricultural production must increase by about 70% from its current level by 2050 to meet the
demand for a growing population (ELD Initiative, 2015; Singh et al., 2020). However, current
studies estimate that global food production will decrease by 12% over the next 25 years due to the
degradation of agricultural lands (ELD Initiative, 2015). After the second industrial revolution,
traditional agricultural practices shifted towards the use of synthetic chemical fertilizers and
pesticides to improve crop production (Melillo, 2012; Dixon, 2018). The intensive use of these
agrochemicals has led to the deterioration of the quality of both the soil as well as the environment
(Meena V. S. et al., 2017). A possible solution to mitigate some of these problems might be the
development of sustainable agriculture practices that harness crop-associated microbiomes to either
g June 2022 | Volume 4 | Article 8963071
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increase or sustain higher yields while maintaining overall soil
health and fertility (Toju et al., 2018; Singh et al., 2020).

Regardless of whether animals or plants are considered,
microbial communities play vital roles in their respective
ecosystems. The soil microbiome is defined as the microbial
communities present in the soil and their encoded functions.
Within the soil microbes can be found as both free-living or in
symbiotic relationships with higher organisms (Banerjee et al.,
2018), and are often considered key drivers of beneficial
processes such as nutrient cycling and carbon sequestration
(Fierer, 2017; Wallenstein, 2017; Qiu et al . , 2019).
Microorganisms that can form complex co-associations with
plants obtain their carbon sources and other metabolites from
the plant while performing these beneficial processes (Backer
et al., 2018; Trivedi et al., 2020).

With up to 20-40% of a plant’s photosynthate becoming root
exudate (Lynch and Whipps, 1990), it is not surprising that
plants encourage microbial growth, and that changes in the
exudation components can modify the composition of the
associated microbial community (Wallenstein, 2017; Vives-
Peris et al., 2020). Although many microorganisms can
respond to plant exudates, it is becoming clear that plants
harbor a specific subset of microorganisms, termed the core
microbiome, that is consistently associated with a particular
plant host across a wide range of environments (Toju et al.,
2018; Walters et al., 2018). The core microbiome has been shown
to provide several functional benefits to plants that include, but
are not limited to, enhancing plant mineral nutrient uptake, and
suppressing soil borne diseases (Lemanceau et al., 2017a;
Banerjee et al., 2018; Singh et al., 2020). Additionally, it has
also been observed that plants can recruit transient microbes that
vary in composition and abundance to alleviate environmental
stress (Berg et al., 2020).

Over the past two decades, microbes with plant growth-
promoting (PGP) traits have been isolated and used as
inoculants to improve crop production (Finkel et al., 2017;
Banerjee et al., 2018; de Souza et al., 2020). Microbes assist
plant growth either by enhancing nutrient acquisition such as
nitrogen fixation, phosphorus solubilization, and siderophore
production or producing plant growth promoting substances
(Olanrewaju et al., 2017; Saleem et al., 2018; Chaudhary et al.,
2021; Joshi et al., 2021). In addition, microbial inoculants have
the potential to suppress several pathogenic organisms (Yasmin
et al., 2016; Olanrewaju et al., 2017; Abbasi et al., 2021). The
main drawback of microbial application is that it often fails to
yield consistent results because the plant-microbe association has
not been considered with respect to various biotic and abiotic
stress conditions that can affect the outcome (Finkel et al., 2017;
de Souza et al., 2020; Hawkins & Oresnik, 2022). For inoculums
to be successful in the field, an in-depth knowledge of microbial
abundance, diversity, as well as plant-microbe interactions, is
essential to be able to predict overall functionality (Chodkowski
and Shade, 2017).

The synthetic community (SynCom) approach is an emerging
research field that incorporates a synthetic biology approach that
is coupled with the knowledge that has been generated from
Frontiers in Agronomy | www.frontiersin.org 2
microbial community analysis, metagenomic, and bioinformatic
approaches that have become more accessible with the advent of
Next Generation Sequencing technologies. Understanding the
dynamic interactions within microbial ecosystems is useful to
engineer microbial consortia with robust, stable, and predictable
behaviours (McCarty and Ledesma-Amaro, 2019).

Briefly, SynComs are constructed by co-culturing multiple
taxa under well-defined conditions to mimic the structure and
function of a microbiome. The underlying principle is to reduce
the complexity of the original microbial community, while still
preserving some of the essential interactions between the
microbes and their hosts (Vorholt et al., 2017; Kaminsky et al.,
2019; de Souza et al., 2020). The goal is to facilitate an increase in
community stability through synergistic interactions between its
members (de Souza et al., 2020). Several studies have been
reported that SynCom application enhanced plant growth
under greenhouse conditions (Armanhi et al., 2021; Chai et al.,
2021; Lee et al., 2021) as well as field conditions (Santhanam
et al., 2015; Wang et al., 2021).

Advancements in high-throughput sequencing technologies
and their associated bioinformatics tools has provided the
opportunity to discover the complexities associated with plant-
microbe interactions and the functionality they can provide to
the plant. The aim of this review is to encapsulate factors which
can play contributing roles to the outcome of an engineered
plant-microbe interaction, the current state of SynCom
technology, and to consider whether this type of approach has
the ability to affect crop production.
MICROBES AT THE PLANT-
SOIL INTERFACE

The interaction of microbes with plants occurs across their entire
life cycle. These interactions can occur both above as well as
below ground level. Whereas some are due to chance, many
interactions are orchestrated by the plant. It can occur through
vertical transfer, such as when endophytes living within a plant
are transmitted via vascular connections or when bacteria
become incorporated within a developing seed and may play a
role in seed germination and the development of a root system to
aid in initial establishment and plant survival (Mitter et al.,
2016). In addition, plant roots interact with the soil and actively
exude carbon containing compounds that influences all
microbial growth around a root. Bacteria drawn to the plant in
this manner are horizontally transferred from bulk soil to
the rhizosphere.

The rhizosphere is defined as the soil under direct influence of
root exudates (Moe, 2013; Reinhold-Hurek et al., 2015; Hartman
and Tringe, 2019). This zone has been further subdivided into
the endorhizosphere, the ectorhizosphere, and the rhizoplane
(Figure 1). The endorhizosphere consists of the zone of tissue in
the plant root that can be occupied by microorganisms (McNear,
2013). The endorhizoshpere is delineated by the rhizoplane,
which is the surface of the root, and beyond this is the
June 2022 | Volume 4 | Article 896307
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ectorhizosphere which is influenced by root exudation and
rhizodeposition (Reinhold-Hurek et al., 2015).

The bulk soil microbiome acts as a potential source of
inoculants for the rhizosphere microbiome. Composition of the
rhizosphere microbiome is structured differently from the soil
microbiome (Crecchio et al., 2018). This differentiation is
initiated by plants through root exudates that attract specific
microbes to the rhizosphere to support plant growth and
development (Wallenstein, 2017; Vives-Peris et al., 2020). By
regulating the secretion of signaling compounds and activation
of plant immune responses, the plant can influence the
recruitment of a subset of microbes from the rhizosphere to
attach to the rhizoplane and subsequently to move from the
rhizoplane to the endorhizosphere (Hacquard et al., 2015;
Hartman and Tringe, 2019). In general, it has been observed
that plants modify their rhizosphere to attract organisms that
have beneficial traits such as plant growth promotion,
solubilization of nutrients, and inhibition of pathogen growth
(Andreote et al., 2014).

When compared to bulk soil, the rhizosphere microbiome has
a richer, and functionally, better-characterized microbiome.
Bulgarelli et al. (2015) reported that the rhizosphere and root
microbiomes of barley differentiated from the soil microbiomes
as a gradient. The soil microbiomes showed higher bacterial
richness and diversity compared with root samples, while the
rhizosphere microbiota composition was intermediate between
Frontiers in Agronomy | www.frontiersin.org 3
soil and root samples. Similarly, higher microbial richness was
reported in the bulk soil surrounding the rhizosphere soil of
maize (Walters et al., 2018). Additionally, it was observed that
the rhizosphere microbial communities had greater network
connectivity than the bulk soil in maize and wild oat (Peiffer
et al., 2013; Shi et al., 2016; Walters et al., 2018). Collectively this
suggests that roots can promote the development of niches with
dominant taxa that favor greater interactions and more complex
co-occurrence patterns over time.
MAJOR DRIVERS OF MICROBIAL
DIVERSITY IN PLANT ECOSYSTEM

Defining the major drivers for microbial diversity is a challenging
task since plant-microbe interactions form a complex
relationship. Several factors influence the composition of the
microbial communities such as plant, microbe-microbe
interaction, and edaphic factors. These factors influence the
selection of microbes primarily through root exudates. Root
exudates consist of a variety of chemicals, primary metabolites,
and secondary metabolites (Rasmann and Turlings, 2016;
Tsunoda and van Dam, 2017; Vives-Peris et al., 2020). Primary
metabolites, such as the labile carbon of root exudates, increase
the growth of fast-growing microorganisms with higher
FIGURE 1 | Root rhizosphere and factors affecting microbiome development. A diagrammatic representation of a root cross-section. Factors affecting microbial and
plant growth are presented as tables (see text for details). The rhizosphere is depicted as two tones (green and pale yellow) surrounding the root representing an
exudation gradient. The endorhizosphere, rhizoplane, ectorhizosphere and bulk soil are highlighted using red brackets, and lines. Endophytic bacteria and bacteria
living on the rhizoplane are depicted as green rods. Plant exudation is represented as purple wavy arrows emanating from the root surface. Microbial communities in
the rhizosphere are depicted as responding to exudates (single blue wavy arrow), and as bacteria involved in nutrient cycling. Major nutrients are depicted as
spheres with letters (N, nitrogen; P, phosphorus; K, potassium; S, sulfur). Wavy tan arrows represent nutrients and/or bacterial factors that benefit plant growth. This
figure was created with Biorender.com.
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nutritional requirements enabling them to outcompete slow-
growing microorganisms with lower nutritional requirements
(Terrazas et al., 2016). Several studies indicate that bacteria
belonging to the phylum Proteobacteria, which are known to
respond to labile carbon (Peiffer et al., 2013), are enriched in the
rhizosphere compared to bulk soils (Aira et al., 2010; Chauhan
et al., 2011; Lundberg et al., 2012; Peiffer et al., 2013; Zhang et al.,
2020). Likewise, secondary metabolites trigger varying responses
in organisms. Flavonoids, for example, attract symbionts in
nodule formation, stimulate mycorrhizal spore germination
and hyphal branching, and influence quorum sensing in
legumes (Philippot et al., 2013). By regulating the composition
of root exudates, the microbial diversity in the plant ecosystem
can be substantially altered.

Plant factors consist of the plant species, genotype, immune
system, physiological age, nutritional status, and pathogen
infection (Hawkes et al., 2007; van Overbeek and Elsas, 2008;
Sharma and Verma, 2018; Zhalnina et al., 2018; Vives-Peris et al.,
2020). Plant species strongly influences the structure of
rhizosphere communities through differences in root
morphology and exudation of different metabolites (Philippot
et al., 2013). Colonization of different bacterial populations due
to root exudates was observed in the rhizosphere of four plant
species – wheat, maize, rape, and barrel clover (Haichar et al.,
2008). Similarly, activity and dynamics of the indigenous
Pseudomonas spp. In the rhizosphere were significantly
influenced by host plant species (Bergsma-Vlami et al., 2005).
Enrichment of antifungal microbial communities was reported
in barley rhizosphere after the infection of Fusarium
graminearum (Dudenhoffer et al., 2016). A high rate of
nitrogen application increased the relative abundances of
ammonia-oxidizing and denitrifying bacterial communities in
maize rhizosphere (Zhu et al., 2016). It has also been reported
that plant genotypes in A. thaliana (Micallef et al., 2009),
Solanum tuberosum (Inceoglu et al., 2010), grapevine (Berlanas
et al., 2019), and Zea mays (Aira et al., 2010) influence the
production of root exudates thereby changing their microbial
communities. Aira et al. reported that the rhizosphere microbial
communities of two maize hybrids were strongly influenced by
plant genotype (Aira et al., 2010). In contrast, a large-scale
longitudinal study conducted in five fields with 27 maize
inbred lines reported that plant age was the strongest factor
shaping the rhizosphere microbial community followed by
location and genotype (Walters et al., 2018). However, within a
given field, plant genotype significantly influenced the richness of
the microbiome (Peiffer et al., 2013). A study focused on the
sugarcane microbiome under field conditions demonstrated that
microbial communities were primarily influenced by the plant
compartments followed by the growing region, the age and
variety of the crop (Hamonts et al., 2018). The influence of
plant factors on the composition of microbes is obvious under
the same environmental conditions.

In addition to host-microbe associations, microbe-microbe
interactions also affect the structure of microbial communities in
the rhizosphere (Bulgarelli et al., 2015). There are a wide range of
microbe-microbe interactions ranging from synergistic to
Frontiers in Agronomy | www.frontiersin.org 4
antagonistic which could shape the composition of the plant
microbiota (Hacquard et al., 2015; Terrazas et al., 2016). Soil
microbes can also affect the root exudation process by consuming
primary root exudates or releasing secondary compounds to
stimulate specific metabolite production (Canarini et al., 2019).
Specific microbial taxa on tomato rhizosphere were found to
modify the chemical composition of root exudates, for example
acylsucrose exudation was induced by Bacillus subtilis (Korenblum
et al., 2020). Further, microbial interactions assist the host plant to
mitigate several abiotic stresses through direct antagonization
against pathogens or induction of systemic resistance by
priming plants (Meena K. K. et al., 2017; Arif et al., 2020).
Several microbes secret an enzyme, 1-aminocyclopropane-1-
carboxylate (ACC) deaminase, which regulates the level of
stress hormone ethylene in the plant. Strains of Arthrobacter
spp., Bacillus spp., and Pseudomonas spp. Have been reported to
enhance plant growth through the production of ACC deaminase
(Compant et al., 2019). This indicates the bi-directional
relationship between plants and their microbial communities.

Edaphic factors such as pH, soil type, indigenous microflora,
oxygen, nutrient, and light availability (Hacquard et al., 2015;
Kaul et al., 2018) exert considerable impact on the developmental
stage and physiological status of the host plant (Hacquard et al.,
2015). A recent plant phytometer study with six plant species,
across diverse edaphic conditions and land use gradient,
indicates that indigenous soil microflora were the direct drivers
of active bacterial communities (Vieira et al., 2020). The
composition of the rhizosphere microbiome was strongly
dictated by soil texture, water content, and soil type instead of
plant properties and root exudates (Vieira et al., 2020). Another
phytometer study was conducted on clonal oak saplings
(Quercus robur L., clone DF159) under different field sites with
similar climatic conditions. This study revealed that the effect of
environmental factors was greater than the plant effect in
shaping soil microbial communities. Similar microbial
compositions were observed in sites with comparable pH, soil
organic carbon, and C/N ratios (Habiyaremye et al., 2020). In
contrast, similar rhizosphere communities were reported in three
different fields having distinct physiochemical properties (Peiffer
et al., 2013). Thus, plant-soil-microbe interaction is highly
complex and their effect on the composition of the microbial
community is determined by the interaction between them
rather than each factor alone.
CORE MICROBIOMES AND THEIR
APPLICATION POTENTIAL

A core microbiome is comprised of microbes that are recruited
by a plant regardless of the environment (Figure 2). These core
microbiomes contain key microbial taxa carrying essential
functional genes for the plant host (Bergsma-Vlami et al.,
2005; Hacquard et al., 2015; Vandenkoornhuyse et al., 2015;
Astudillo-Garcıá et al., 2017; Naylor et al., 2017; Toju et al., 2018;
Berg et al., 2020; Trivedi et al., 2020). The functional redundancy
of microbes i.e., the coexistence of multiple taxa performing a
June 2022 | Volume 4 | Article 896307
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particular biochemical function, allows for environmental
variation without comprising plant host fitness (Lemanceau
et al., 2017b; Louca et al., 2018). In addition, the network of
interactions between organisms provides a buffer against
disturbance by recruiting different microbial combinations to
fulfil specific functions (Konopka et al., 2015). A dynamic
functional community can be formed by focusing on the core
microbiome instead of the highly complex native microbiota for
further studies (Ramirez-Villacis et al., 2020; Durán et al., 2021).

Recent advances in high throughput sequencing and
bioinformatic tools have enabled the discovery of the core
microbiomes of different crops. Marker gene amplicon
sequencing has been widely used to study microbial association
with different plant parts over a range of environmental
conditions (Hacquard et al., 2015; Durán et al., 2021). Through
co-occurrence network analysis of the resulting genomic data, it
is possible to identify a core microbiome. It also explores the
positive or negative relationship between members based on
their occurrence or abundance (Rodriguez et al., 2019; Berg et al.,
2020; Xue et al., 2022). Further, the positions of microbes in the
network can indicate their importance within the microbial
community. Highly interactive members of the core
Frontiers in Agronomy | www.frontiersin.org 5
microbiome, which are called “hub” microbes, have been
shown to have a strong influence in shaping the microbial
communities of plant hosts (Agler et al., 2016; Muller et al.,
2018; Trivedi et al., 2020).

Several studies have reported the taxonomy of core
microbiomes in different crops (Table 1). Walters et al. (2018)
found that seven bacterial operational taxonomic units (OTUs)
were observed consistently in the maize rhizosphere at different
ages and field conditions. All seven OTUs were taxonomically
assigned to the phylum Proteobacteria with differences at the
genus level. Likewise, the core microbiome of the citrus
rhizosphere was identified through an extensive study of soil
samples from twenty-three locations in eight citrus-producing
countries across six continents (Xu et al., 2018). These studies
show that the core microbiome can select for key members of the
microbial community that can be screened in vitro for microbe-
microbe interactions and putative functions (Lebeis, 2014).

Overall, there is general agreement in the literature that
organisms do have strong associations with certain microbes.
Many studies carry out their analysis at the genus level which
does give a descriptive analysis of what organisms can be
present. In some cases, more functional metatranscriptomic
A

B C

FIGURE 2 | Determination of a core microbiome. The same plants are grown in independent locations (A-C). The soil is then sampled, sequenced, and the bacterial
population (colored circles) are determined and compared (Venn diagram). The intersection represents the plants core microbiome. This figure was created with
Biorender.com.
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studies can provide more insight into which species are present
as well as what genes are being expressed under a given set of
conditions. Together these data are helping to develop
hypotheses of how microbes might be affecting plant
responses and are allowing work to be designed to ask key
ecological questions regarding plant microbe interactions to be
asked more directly.
SYNTHETIC COMMUNITY APPROACH IN
SUSTAINABLE AGRICULTURE

Numerous studies have reported that beneficial microbes can be
effectively used as inoculants for agricultural production since
the 19th century (Bhattacharjee et al., 2008; Bhattacharyya et al.,
2016; Mitter et al., 2016; Alori and Oluranti Babalola, 2018;
Kaminsky et al., 2019; Qiu et al., 2019). Rhizobia-legume
symbiosis and arbuscular mycorrhizal associations are
examples of well-studied plant-microbe relationships that have
been successfully used in agriculture (Bhattacharyya et al., 2016).
Conventionally, beneficial microbes are selected based on in vitro
screening for specific taxa with one or more PGP traits, such as
nitrogen fixation, phosphorus solubilization, production of
growth-regulating hormones, etc., with limited assessment
under controlled environmental conditions (Glick, 2012; Choi
et al., 2021).

Inconsistent production under field conditions is a major
problem as inoculants often fail to compete with indigenous soil
microbes under different climatic conditions, soil type and other
environmental factors (Finkel et al., 2017; Baliyan et al., 2018;
Qiu et al., 2019; de Souza et al., 2020). A successful inoculant
must be able to compete with other microbes, efficiently colonize,
and establish a stable association with plants throughout the
growing season (Vessey, 2003; de Souza et al., 2020). Therefore, it
is not surprising that current inoculants, which are formulated
with pure isolates, can have problems with effectiveness. A
SynCom could be a great alternative to overcome the problems
associated with conventional inoculants as it can incorporate
different microbial communities that can partly mimic the
functional environment of those microorganisms (de Souza
et al., 2019; Kaminsky et al., 2019).
Frontiers in Agronomy | www.frontiersin.org 6
The SynCom approach has become a promising technology
as it integrates the concept of microbial ecology and genetics. A
SynCom can be constructed using either a top-down approach or
a bottom-up approach (Großkopf and Soyer, 2014). The top-
down approach focuses on functional definition for a community
to characterize its structure and dynamics in details. (Toju et al.
2020) applied the functional core microbiome concept to
discover the best combinations of species/strains that
potentially maximize functionality at the community/
ecosystem level. This method produces communities with
natural representation and high reproducibility while lowering
the chances of missing important species. However, the
effectiveness is dependent on the ability to accurately measure
species diversity in a complex community. The bottom-up
approach identifies common interaction patterns and processes
among species. Paredes et al. (2018) used binary-association
assays to design a SynCom for Arabidopsis thaliana that led to
predictable plant phenotypes. Even though it facilitates
establishing causality, it requires technological advances to
manage high complex communities and increases the chances
of missing important community members. Recently (Kehe et al.
2019) introduced a microfluidic droplet-based platform, the
kChip, to automatically construct SynComs with all possible
microbe combinations using a set of species. This has made the
SynCom approach more efficient and viable for large scale
studies but has limitations that may make it difficult to
replicate for field trials

An effective SynCom can be produced by identifying
functional communities through a top-down approach and
then applying the bottom-up approach to study the
interactions between the members of those communities.
Genomic information and gene expression profiles could be
used to select the microbes with beneficial functional traits or
metabolic capability to design the best microbial combination for
the microbial consortia (Toju et al., 2018; de Souza et al., 2020).
Since multiple genes are responsible for important traits, such as
colonization efficiency, and prevalence, genomic analysis for
multiple markers may be key to identifying relevant microbes
(de Souza et al., 2016; Cole et al., 2017; Levy et al., 2018; de Souza
et al., 2019; de Souza et al., 2020). Computational tools can be
used to screen for beneficial microbial candidates from existing
genomic datasets, which would be less laborious than traditional
TABLE 1 | Studies related with core microbiome identification in agricultural crops.

Crop Composition of core microbiomes Location References

Grape vine Bradyrhizobium, Steroidobacter, and Acidobacteria spp. New York (Suffolk County) (Zarraonaindia
et al., 2015)

Potato Bradyrhizobium, Sphingobium, Microvirga, Blastococcus and SMB53. Peru (Pazos,
Sincos, and Sicaya)

(Pfeiffer et al.,
2017)

Maize Agrobacterium, Bradyrhizobiaceae, Devosia, Comamonadaceae, Pseudomonas and
Sinobacteraceae.

New York (Urbana, Columbia,
Aurora, Lancing and Ithaca)

(Walters et al.,
2018)

Citrus Pseudomonas, Agrobacterium, Cupriavidus, Bradyrhizobium, Rhizobium, Mesorhizobium,
Burkholderia, Cellvibrio, Sphingomonas, Variovorax, and Paraburkholderia.

Eight citrus producing
countries (Six continents)

(Xu et al.,
2018)

Common bean
(Phaseolus
vulgaris)

Nearly 70% Proteobacteria (Rhizobium, Bradyrhizobium, Burkholderia, Novosphingobium, and
Sphingomonas), Acidobacteria, Actinobacteria, Verrucomicrobia and Planctomycetes.

Colombia (North-west region) (Pérez-
Jaramillo et al.,
2019)

Wheat Bradyrhizobium, Sphingomonadaceae, Massilia, Variovorax, Oxalobacteraceae, and
Caulobacteraceae.

United States (Inland Pacific
Northwest)

(Schlatter
et al., 2020)
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methods (Finkel et al., 2017). Then, the SynCom could be
constructed using a bottom-up approach by addition,
elimination, or substitution at the strain level (Vorholt et al.,
2017; Liu et al., 2019).

An extensive microbial culture collection is essential to
building a SynCom since it is comprised of culturable microbes
(Finkel et al., 2017; Vorholt et al., 2017; de Souza et al., 2020;
Choi et al., 2021). The SynCom approach is initiated from the
isolation of microbial cultures from the natural ecosystem and
then formulated through manipulations of the selected
microbiota to perform the desired functions for the host plants
(de Souza et al., 2016). Since nearly 99% of bacteria are
unculturable, novel approaches are necessary to generate
extensive microbial collection. One approach is to use
metagenomic analysis to identify appropriate media and
culture conditions (Oberhardt et al., 2015). Also, high-
throughput bacterial cultivation methods, such as the limiting
dilution method (Zhang et al., 2019; Zhang et al., 2021), cell
sorting (Bai et al., 2015), and colony picking (Armanhi et al.,
2018) provide potential solutions for capturing diverse bacterial
species on a large scale (Liu et al., 2019).

The effectiveness of SynComs can be quantitatively and
qualitatively assessed with plant hosts under controlled
environments using different axenic systems such as agar-
based (highly artificial and uniformly controlled), clay-based
(mimic soil), and FlowPot (autoclaved and washed soil)
systems (Bai et al., 2015; Castrillo et al., 2017; Liu et al., 2018;
Paredes et al., 2018; Finkel et al., 2019; Zhang et al., 2019). Axenic
systems allow for detailed investigations of its components under
controlled and reproducible conditions, which facilitate the
establishment of causal links between genotypes and
phenotypes. Changes can also be made at the functional level
by removing or adding specific functions via gene expression
(Liu et al., 2019). Further, the consequences of biotic or abiotic
perturbations can be monitored at all levels (Liu et al., 2018; Liu
et al., 2019; Melnyk et al., 2019).

Finally, an efficient SynCom could be tested under real field
conditions to offset the limitations of the traditional approach.
Assessment of a SynCom on plant phenotypic traits could be
done through high-throughput phenotyping technologies as they
offer multiple advantages such as automated, non-destructive
and dynamic monitoring of morphological and physiological
traits related to growth, yield, and performance throughout their
entire lifecycle (Rouphael et al., 2018). This would facilitate an
effective SynCom with more compatible, efficient, and adaptable
microbes (Hart et al., 2018; Choi et al., 2021).
CURRENT APPROACHES IN SYNCOM
APPLICATION

SynCom approaches have been used in experimental ecology and
evolution studies to understand ecological interactions as well as
ecological processes (Castrillo et al., 2017; Finkel et al., 2017;
Cairns et al., 2018; Levy et al., 2018; Teixeira et al., 2021). The
SynCom approach started being used to test evolutionary
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interactions in plant-microbe studies. Then, the focus has
shif ted towards the improvement of plant growth
and production.

Several studies have been conducted in the model plant A.
thaliana as well as agricultural crops –maize, soybean, sorghum,
and tomato – to understand plant-microbe interactions using
SynComs under controlled environments (Table 2).
Bodenhausen et al. (2014) showed that host genotype
influences the phyllosphere community composition and
abundance using fifty-five A. thaliana plant mutants inoculated
with a SynCom. Castrillo et al. (2017) studied the effect of plant
Pi stress response on the A. thaliana immune system function
and microbiome assembly a SynCom composed of thirty-five
members. Niu et al. (2017) constructed a simplified seven-species
SynCom from microbes associated with maize root to investigate
the dynamics of root colonization, interspecies interactions, and
the role of each member in the community. The SynCom
approach has also been used to examine the role of specialized
metabolites on the colonization of bacteria in the A. thaliana
rhizosphere (Voges et al., 2019). In another SynCom study, it was
reported that root colonization was regulated by microbe-
associated molecular patterns (MAMPs) -triggered immunity
(Teixeira et al., 2021). Thus, SynComs can effectively be used to
explore plant-microbe interactions, which must be considered
when using microbes in large-scale agricultural applications.

Pathogens are a major threat in agriculture as they can lead to
complete yield loss. Several studies have reported that SynComs
can be effectively used to suppress pathogenic organisms while
improving the crop performance (Santhanam et al., 2015; De
Vrieze et al., 2018; Santhanam et al., 2019; Ali et al., 2021; Li et al.,
2021). Li et al. (2021) constructed two SynComs by adding both
high and low abundance bacteria isolated from diseased plants.
Results indicated that high abundance bacteria protected host
through plant growth promotion and inhibition of the
pathogenic fungus, while low abundance bacteria controlled
diseases by enhancing plant induced systemic resistance. It is
important to note that SynComs showed a superior effect on
disease suppression and growth promotion compared to the
mono-inoculated plants (Ali et al., 2021; Li et al., 2021).
Synergistic interactions between the members of SynComs
facilitate improved plant protection as well as growth.

Regardless of other benefits, crop productivity is always a
prime concern. Inoculation with a SynCom constructed from
sugarcane-associated microbes increased the biomass of maize
plants compared to the uninoculated controls (Armanhi et al.,
2018). The same SynCom also improved drought tolerance and
reduced yield loss in maize (Armanhi et al., 2021). Another
SynCom, composed of desiccation-tolerant bacteria, showed
increased plant growth parameters such as dry weight of shoot
and root, plant height, and plant diameter when compared with
either non-inoculated control or mono-inoculated treatments
(Molina-Romero et al., 2017). Further, Wang et al. (2021)
reported that functionally assembled SynComs improved
soybean yield up to 36% under field conditions. Thus, recent
studies suggest that SynCom could be effectively incorporated in
agriculture to enhance crop yield.
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The above studies reiterate that the SynCom approach is an
effective tool for exploring plant-microbe interaction and
microbe-microbe interaction. Even though most of the
SynCom experiments were conducted under controlled
conditions, it gives a valuable information about the
interaction between each member in the community
assemblage and identifying keystone members. For example,
Niu et al. (2017) reported that the removal of one species from
the SynCom led to drastic changes in community composition.
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The simplicity of this approach allows repeated experiments to
ensure reproducibility which could prevent the problems in the
future large-scale application. Recently, the interest in the
SynCom approach has been focused on improving crop yield
by extending the research in the greenhouse to field conditions
which is an important milestone of the SynCom application.
Despite there being a long way to go, the current application of
SynCom indicates the possibilities to be incorporated into the
large-scale application in the near future.
TABLE 2 | SynCom approaches used in different studies.

Plant Growth
condition

SynCom size & origin Objective Reference

A. thaliana Gnotobiotic
system

7 strains (representatives of the
most abundant phyla in the
phyllosphere)

To identify plant genetic factors that influence community composition and/or the
bacterial abundance of the leaf-associated community.

(Bodenhausen
et al., 2014)

A. thaliana Growth
chamber

38 (37 A. thaliana root associated
strains and E. coli)

To study the colonization ability of isolated bacterial strains and the effect of
exogenous application of salicylic acid on root microbiome assembly

(Lebeis et al.,
2015)

A. thaliana In vitro 35 (34 root associated strains
that represent the taxonomic
diversity and E. coli)

To study Pi stress on microbiome assembly (Castrillo et al., 2017) and effect on
immune system of Arabidopsis (Teixeira et al., 2021)

(Castrillo et al.,
2017; Teixeira
et al., 2021)

A. thaliana Hydroponics-
based
gnotobiotic
setup

22 (A. thaliana root-derived
bacterial commensals)

To explore the role of root-specialized metabolites in rhizosphere bacterial
assembly

(Voges et al.,
2019)

Astragalus
mongholicus

In vivo and
greenhouse
condition

2 SynComs
13 (disease-resistant bacterial
community with 10 high- and 3
low-abundance bacteria enriched
in diseased roots)
4 (composed of three high-
abundance bacteria and one low-
abundance bacterium)

To investigate the roles of low-abundance bacteria in the control of root rot
disease

(Li et al., 2021)

Maize In vitro and
Pot
experiment

4 (desiccation-tolerant bacterial
strains)

To test their effect on maize growth under normal and desiccated conditions. (Molina-Romero
et al., 2017)

Maize Gnotobiotic
system

7 (Isolated from maize root
representing three of the four
most dominant phyla)

To study the dynamics of root colonization (Niu et al., 2017) and the effect of
microbial communities on heterosis of root biomass and other traits in maize
(Wagner et al., 2021)

(Niu et al., 2017;
Wagner et al.,
2021)

Maize Greenhouse 17 (community-based isolates
comprising 26 bacterial strains
collected from sugarcane
rhizosphere, endophytic root, and
stalk)

To assess the SynCom performance on colonization and growth of maize
(Armanhi et al., 2018), explore the bacterial traits associated with successful
colonization of plants (de Souza et al., 2019) and study the impact of the SynCom
on three commercial maize hybrids under drought stress (Armanhi et al., 2021)

(Armanhi et al.,
2018; de Souza
et al., 2019;
Armanhi et al.,
2021)

Maize Greenhouse 12 (maize seed-borne bacterial
strains)

To assess the effect of SynCom on germination and seedling growth of maize (Figueiredo dos
Santos et al.,
2021)

Maize Greenhouse 6 (Bacillus strains isolated from
maize roots and leaves)

To examine their suppressive effect on fungal pathogen of maize (Ali et al., 2021)

Potato In vitro
assays

9 Pseudomonas strains isolated
from the rhizosphere and shoots
of field grown potato plants

To compare the disease inhibition capacity (De Vrieze et al.,
2018)

Soybean Greenhouse
and field

3 different SynComs were
constructed from 12 isolates

To assess the influence of root associated microbes on host plant growth and
nutrient acquisition.

(Wang et al.,
2021)

Sorghum Greenhouse 5 SynComs (36 bacterial strains
isolated from soil and roots of
sorghum growing fields with
different combination)

To determine the effect of SynCom inoculation on the growth dynamics and
microbial communities of four genotypes with different N status

(Chai et al., 2021)

Tobacco In vitro and
Field
conditions

6 (native root-associated isolates
from field-grown tobacco plants)

To study the effect of bacterial consortium on protection against a sudden wilt
disease

(Santhanam
et al., 2015)

Tomato Greenhouse 4 (isolated from healthy tomato
rhizospheric soil)

To explore the effect of SynCom on wilt disease suppression in tomato and
underlying mechanism

(Lee et al., 2021)
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CONCLUSIONS AND FUTURE
PERSPECTIVES-ARE SYNTHETIC
MICROBIAL COMMUNITIES A
WAY FORWARD?

Interest in rhizosphere research has continually grown
exponentially since 1994 to the present day,with the term
“plant microbiome” first being used as a key word in
publications in 2011 (Oresnik et al., 2016). The application of
microorganisms in agriculture has emerged as a promising,
sustainable approach to improve crop production as the
microbiome play an essential role in several plant processes
and soil fertility. Poor performance of microbial inoculants is a
challenge in developing stable inoculants for agriculture.
However, recent advances in high-throughput sequencing
technologies create an opportunity to identify the core
microbes associated with plants and facilitate the formation of
effective SynComs.

Although the SynCom approach is a promising technology,
several challenges must be addressed before it can be used in
large-scale applications. Designing SynComs with hundreds of
microbes is not practical due to a lack of industrial technologies
and difficulties in handling them. This issue can be addressed by
constructing SynComs with microbes that have multiple
beneficial traits and synergistic interactions. Nevertheless,
keeping multiple species is challenging as medium composition
plays a critical role in population dynamics. Stochastic events can
also cause fluctuations of population in mixed communities.
Therefore, it will be necessary to monitor the population
dynamics of a SynCom to ensure all members are functioning
and having enough viable cell counts.

Prediction of SynCom interaction with host plant and soil
microbes in natural environment is challenging due to the
influence of the native microbes. Thus, maintaining the long-
term stability of SynCom is another task to be attained as
introduced inoculants are exposed to an environment with
competitive species. The SynCom may change over time due to
genomic evolution and horizontal gene transfer. In addition, some
microbes show differential expression with varying environmental
conditions. Sustaining the community robustness and function
over a timescale is a crucial aspect. Biosensors and marker gene
technologies could be incorporated to trace the interaction and
behaviors of introduced SynCom.

The ability to genetically modify or to engineer both host plants
as well as microbes has increased dramatically over the last five
years. Whereas in the past, there were relatively few microbial
genetic model systems (Miller, 1991), the ability to sequence
genomes as well as tools such as CRISPR/Cas9 have allowed the
genetic modification of many diverse bacteria (Shelake et al., 2019;
Rubin et al., 2021). With respect to the development of a SynCom,
this can lead to modifying certain community member(s) to allow
desired interactions with target crops. Recently it has been shown
that endophytic bacteria could be engineered to contain inducible
nitrogenase activity (Ryu et al., 2020), which in principle can be
combined with plants which have been modified to produce
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signals for targeted regulation of bacterial genes (Geddes
et al., 2019).

So far, most studies have been conducted in controlled
systems which are opposite to diverse natural environments.
Assessing their stability and plant performance under field
conditions is the ultimate target. Production of the required
amount of SynComs for large-scale application is also
problematic as it would require additional technologies like
bioreactors. Determining the effective method of application,
whether it is liquid application or seed coating, is another hurdle
to be overcome. Extensive field studies with a range of climatic
conditions are required to ensure the activity of the
applied inoculants.

The development of an effective SynCom is a novel opportunity
to improve sustainable food production. It is clear from the
literature that microbes are capable of positively affecting plant
health and productivity. However, the complexity of dealing with
multiple microorganisms that are interacting with field crops with
real world climate is challenging. It has been previously pointed out
that these types of technologies would have to be transformative to
growers for them to be adopted (Oresnik et al., 2016). In the short
term, the SynCom approach is an opportunity to delve into the
intricacies of plant-microbe interactions as well as microbial
ecology. These advances are crucial to better understand how
microbes can be manipulated to deliver desired traits to plants.
The complex SynComs constructed are clearly important for an
academic understanding but are not a pragmatic agronomic
solution. The lessons that will be learned from these approaches
however can provide valuable information to either produce
SynComs that contain fewer microbes, or to develop SynComs
that can work synergistically with the native microbial communities
already present in the field. The utilization of this technology will
require a long-term multidisciplinary approach that includes
microbiologists, plant biologists, agronomists, as well as
fermentation specialists to facilitate the delivery of a working
system. Even though the application of SynCom for crop
production is in its infant stage, advances in technologies are
occurring at a remarkable pace and it is an approach that has
the potential to deliver a solution in our quest toward
sustainable agricultural.
AUTHOR CONTRIBUTIONS

AS, PO, and IO conceived and wrote the manuscript. All authors
contributed to the article and approved the submitted version.
All authors contributed to the article and approved the
submitted version.
FUNDING

This work was supported by a grant from the Canadian
Agriculture Partnership and Manitoba Pulse and Soybean
Growers (grant number 1000227246) to IO.
June 2022 | Volume 4 | Article 896307

https://www.frontiersin.org/journals/agronomy
http://www.frontiersin.org/
https://www.frontiersin.org/journals/agronomy#articles


Shayanthan et al. SynComs in Sustainable Agriculture
REFERENCES

Abbasi, S., Spor, A., Sadeghi, A., and Safaie, N. (2021). Streptomyces Strains
Modulate Dynamics of Soil Bacterial Communities and Their Efficacy in
Disease Suppression Caused by Phytophthora Capsici. Sci. Rep. 11, 9317.
doi: 10.1038/s41598-021-88495-y

Agler, M. T., Ruhe, J., Kroll, S., Morhenn, C., Kim, S.-T., Weigel, D., et al. (2016).
Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome
Variation. PloS Biol. 14 (1), e1002352. doi: 10.1371/journal.pbio.1002352
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Pérez-Jaramillo, J. E., de Hollander, M., Ramıŕez, C. A., Mendes, R., Raaijmakers, J.
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