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Crop plants are continuously exposed to various abiotic stresses like drought, salinity,

ultraviolet radiation, low and high temperatures, flooding, metal toxicities, nutrient

deficiencies which act as limiting factors that hampers plant growth and low agricultural

productivity. Climate change and intensive agricultural practices has further aggravated

the impact of abiotic stresses leading to a substantial crop loss worldwide. Crop plants

have to get acclimatized to various environmental abiotic stress factors. Though genetic

engineering is applied to improve plants tolerance to abiotic stresses, these are long-term

strategies, and many countries have not accepted them worldwide. Therefore, use of

microbes can be an economical and ecofriendly tool to avoid the shortcomings of

other strategies. The microbial community in close proximity to the plant roots is so

diverse in nature and can play an important role in mitigating the abiotic stresses. Plant-

associated microorganisms, such as endophytes, arbuscular mycorrhizal fungi (AMF),

and plant growth-promoting rhizobacteria (PGPR), are well-documented for their role in

promoting crop productivity and providing stress tolerance. This mini review highlights

and discusses the current knowledge on the role of various microbes and it’s tolerance

mechanisms which helps the crop plants to mitigate and tolerate varied abiotic stresses.

Keywords: abiotic stress, AMF, endophytes, mitigation, nutrient uptake, PGPR, tolerance mechanism

INTRODUCTION

Agriculture is one among the most important essential sectors which is of utmost susceptible
to global climate changes. The rapid increase in population with unplanned industrialization,
intensive agriculture has led to the degradation of natural resources and environmental
contamination (Wan et al., 2012). The increase in the incidences of abiotic stresses affecting
crop productivity are being witnessed throughout the world. Crop plants are often exposed
to various environmental stresses such as drought, soil acidity, salinity, ultraviolet radiation,
high light and extreme temperatures, deficiencies and toxicities of mineral nutrients which
severely affects the soil productivity and crop production, worldwide. Based on the report
by Food and Agriculture Organization (FAO, 2016), the agricultural production has to be
increased by about 60% by 2050 to feed the increasing global population. Moreover, due
to the global climate change accompanied with the other abiotic stresses there will be a
decline in the production of major cereal crops (20–45% in maize yields, 5–50% in wheat,
and 20–30% in rice) by the year 2100. The adverse impacts on crop productivity are
progressing at an exponential rate due to the direct and indirect effects of abiotic stresses.
The worldwide drastic climatic changes along with the rapid increase in the global population
has become a major threat to Global food security (Lesk et al., 2016). The resilience
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of crops to various abiotic stresses has to be augmented to ensure
high crop productivity in challenging environments to meet the
demands of growing population (Pereira, 2016).

Oxygen is essential for the existence of aerobic life, but toxic
reactive oxygen species (ROS), which include the superoxide
anion radical (O•−

2 ), hydroxyl radical (OH•), and hydrogen
peroxide (H2O2), are generated in all aerobic cells during
metabolic processes. Injury caused by these ROS is known as
oxidative stress, which is one of the major damaging factors to
plants exposed to various environmental stresses which causes
extensive cellular damage disrupting the photosynthesis and
other physiological functions in plants (Mhamdi and Breusegem,
2018). To mitigate the adverse effect of ROS, plants do
respond through the release of enzymatic [superoxide dismutase
(SOD), catalase (CAT), ascorbate peroxidase (APX), glutathione
reductase (GR), and peroxidase (POD)] and non-enzymatic
antioxidants (glutathione, carotenoids, and ascorbates) as a
protective mechanism (Sharma et al., 2012).

To overcome the adverse effects of abiotic stresses, the
application of microbes is an effective, ecofriendly and
economically viable method. The nutrition required for the
microbial growth is provided by the root exudates which
makes the “rhizosphere” microbial population comparatively
diverse from that of its surroundings (Burdman et al., 2000).
The microbial biome either living inside or in close vicinity
to the plants play a vital role in fighting against the various
environmental stresses and has substantially impact on plant
growth and development (Hayat et al., 2010; Friesen et al., 2011;
Bhattacharyya and Jha, 2012; Bulgarelli et al., 2013; Naeem et al.,
2018). Thus, the present concise review highlights and discusses
the role of microbes as a biological tool for alleviating and
enhancing crop growth under environmental stress conditions.

EFFECT OF ABIOTIC STRESSES ON
CROPS

Abiotic stresses like salinity, drought, heavy metals, nutrient
deficiency, high and low temperatures remainmajor contributors
of agricultural losses, and cause more damage to the crops
(Figure 1). Soils contaminated with various heavy metals has
become a serious environmental concern because of its adverse
impact on the agricultural lands. Heavy metal contamination has
deleterious effects on several plant physiological functions which
ultimately decreases crop productivity which results in severe
quantity and quality losses (Hashem et al., 2016). The excess
accumulation of heavy metals in plant tissues can have adverse
effects on the plants directly or indirectly right from germination
of seeds, photosynthesis to poor crop yield (Uzu et al., 2009).
Rapid increase in the number of various industries and the use
of saline water for crop cultivation is yet another major problem
which affects the crop production. Salinity stress conditions has
become a major issue which leads to poor crop productivity
and is alarmingly increasing in arable land all over the world
(Yuan et al., 2015). High salinity significantly impacts various
physiological and biochemical processes in plants, such as seed
germination, seedling establishment, vegetative growth, ionic

toxicity, osmotic pressure, and oxidative damage (Zhao et al.,
2010; Feng et al., 2014; Guo et al., 2018). Moreover, high salinity
is interlinked with drought, yet another major issue, which can be
magnified by extreme temperatures (Slama et al., 2015). Drought
stress has significant negative impact on the two photosystems;
PSI and PSII, in Kentucky bluegrass and fescue (Fu and Huang,
2001) and can be detrimental to enzyme functioning such as
ascorbate peroxidase (APX), glutathione reductase (GR), and
superoxide dismutase (SOD) (Hoekstra et al., 2001). Tiwari et al.
(2016) have reported that two chickpea cultivars grown under
drought stress conditions had significant impact on various
growth parameters, water status, membrane integrity, osmolyte
accumulation, ROS scavenging ability and stress-responsive gene
expressions. Cold stress on the other hand, leads to cell and tissue
dehydration, cellular water crystallization, reduced membrane
conductivity, higher relative electrolyte leakage (REL), decreased
weight, lower relative water content (RWC), and ultimately
leading to poor crop yield (Browse and Xin, 2001; Pearce, 2001;
Jia et al., 2017). Stevia rebaudiana Bertoni grown under cold
stress conditions led to a significant decrease in the maximum
quantum yield of photosystem II (Fv/Fm), reductions in net
photosynthesis (PN), intercellular CO2 (Ci), water use efficiency
(WUE), and chl a, chl b, and carotenoids (Hajihashemi et al.,
2018).

The increase in global average temperature can have an
alarming impact on the crop production worldwide and can
change the pattern of agricultural crops distribution (Porter,
2005). High temperature stress can cause severe protein damage,
protein synthesis, enzyme inactivation, membrane damage, root
growth, uptake of water and nutrients, oxidative damage,
and decreased photosynthetic rate (Smertenko et al., 1997;
Wahid et al., 2007, Huang et al., 2012; Djanaguiraman et al.,
2018). The photosystem II (PSII) is extremely sensitive to high
temperature stress wherein it severely damages the oxygen-
evolving complex (OEC) and denaturation of D1 and D2
proteins (De Las Rivas and Barber, 1997; De Ronde et al.,
2004; Camejo et al., 2005). Soybean plants grown in open top
chambers which were exposed to elevated ozone or/and UV
radiations significantly decreased the seed which was directly
associated with changes in the concentrations of flavonoids,
abscisic, acid (ABA) and indole-3-acetic acid (IAA) (Mao et al.,
2017). Sugar beet plants under UV-B induced stress conditions
showed reduced height and significant decrease in fresh and
dry weight which was associated with reduced photosynthetic
O2 evolution, photosynthetic pigments, chlorophyll fluorescence,
and increased malondialdehyde (MDA) content (Rahimzadeh
and Razavi, 2019). Cape gooseberry plants showed reduced
plant height, leaf area, stem diameter, dry weight, root and
reproductive organs, followed by yellowing, epinasty, necrosis
and leaf abscission due to hypoxic conditions in the rhizosphere,
under water logging stress condition (Aldana et al., 2014).
Maize plants grown under waterlogging conditions significantly
decreased the leaf area index (LAI), chlorophyll content,
photosynthetic rate (Pn), photochemical efficiency (8PSII),
and resulted in an increased MDA content ultimately causing
deterioration of the membrane integrity (Ren et al., 2016).
Deficiencies of Fe and P in strawberry plants led to a significant
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FIGURE 1 | Abiotic stresses, it’s impact, and tolerance mechanisms by various Plant Growth Promoting Microbes.

reduction in shoot biomass, leaf size, chlorophyll content,
affected the root exudate contents of galactaric acid, malic
acid, lysine, proline, sorbitol-6-phosphate, dehydroascorbic acid,
galactonate, and ferulic acid (Valentinuzzi et al., 2015). The
deficiencies and toxicities of B and Zn in soybean plants affected
the physiological processes and nutrient concentrations in the
different plant tissues has been reported by Pawlowski et al.
(2019).

PLANT GROWTH PROMOTING MICROBES

Endophytes
Plant endophytes grow inside healthy plant tissues but do
not cause any harm or disease to the host plant. Some
fungal endophytes promote plant growth despite environmental
constraints (Yang et al., 2013). They play a vital role by
supporting the host plant nutritionally through increased
nitrogen, phosphorus, iron, etc., helps in defending the host
plant from environmental stresses and aid in alleviating the stress
antagonistic effects (Bacon and White, 2015; White et al., 2017).

The bacterial endophyte Sphingomonas sp. LK11 isolated from
the leaves of Tephrosia apollinea alleviated salinity stress in
wild-type and Got-3 tomato plants by significantly improving
the shoot/root growth through the expression of peroxiredoxin-
, glutathione S-transferase-, and glutaredoxin-related genes in
LK11 genome (Khan et al., 2017). Rice plants inoculated with
the root endophytic filamentous fungus, Piriformospora indica,
showed significantly enhanced root / shoot lengths, fresh and

dry weights, increased photosynthetic pigment contents, which
may be attributed to the increased proline accumulation which
increased the plants stress tolerance to salinity (Jogawat et al.,
2013). The application of encapsulated Metarhizium brunneum
strain CB15 endophyte mitigated the nutrient deficiency by
significantly enhancing the quantum yields of photosystem II
(PSII), water use efficiency, plant biomass production, leaf area,
nitrogen, and phosphorus contents in potato plants (Krell et al.,
2018). Maize plants grown under drought stress conditions and
inoculated with the endophytic fungus Piriformospora indica, a
root-colonizing of Sebacinales family, resulted in an increased
root fresh and dry weight, leaf area, SPAD value, up-regulation
of antioxidants such as catalase and superoxide dismutase. It
also led to an increase in the proline content and a decline in
the accumulation of malondialdehyde (MDA). The maize plants
were able to mitigate the induced drought stress through up-
regulation of drought-related genes DREB2A, CBL1, ANAC072,
and RD29A (Xu et al., 2017).

Wheat plants infected with six endophytic fungi enhanced the
efficiency of PSII, increased Fv/Fm values, increased plants height,
seed weight, and seed germination rates under heat and drought
stress conditions (Hubbard et al., 2014). The japonica rice plants
inoculated with the fungal endophyte, Paecilomyces formosus
LWL1, significantly improved plant growth attributes, such as
plant height, fresh weight, dry weight, and chlorophyll content,
increased protein content, grown under heat stress conditions. P.
formosus LWL1 mitigated the heat stress in rice plants by down-
regulation of the stress-related signaling molecules, abscisic acid
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(ABA) and jasmonic acid (JA) (Waqas et al., 2015). Soybean
plants infected with endophytic fungi Paecilomyces formosus
significantly increased plant biomass and growth parameters,
reduced lipid peroxidation, and accumulation of linolenic acid,
GR, POX, CAT, and SOD under nickel (Ni) stress. This can
be attributed to its phytohormonal synthesis and expression of
indole-3-acetamide hydrolase, aldehyde dehydrogenase for indole-
acetic acid and geranylgeranyl-diphosphate synthase, ent-kaurene
oxidase (P450-4), C13-oxidase (P450-3) for gibberellins synthesis
(Bilal et al., 2017). Under water stress conditions, capsicum plants
inoculated with endophytic fungi Penicillium resedanum LK6
significantly increased the plant growth and yield parameters,
peroxidase, catalase and polyphenol oxidase, capsaicin content
which were attributed to the up-regulation of Phenylalanine
ammonia-lyase and Capsaicin synthase genes activating the
phenylpropanoid biosynthesis (Khan et al., 2014).

Arbuscular Mycorrhizal Fungi (AMF)
Symbiotic association of AMF helps the host plants to overcome
various environmental stress conditions like pathogens, acidity,
desiccation, and heavymetal toxicity by enhanced photosynthetic
rate, water and nutrient uptake and leaf gas exchange (Zuccaro
et al., 2009; Sun et al., 2018). AMF are broadly applied as
biofertilizers in agriculture and more than 70% of the vascular
plants can have a symbiotic association with AMF specifically
under drought conditions by osmotic adjustment and enhanced
antioxidant enzyme activity (Kohl et al., 2016; Wu and Zou,
2017). AMF colonization have the ability to enhance the uptake
of macro-nutrients and micro-nutrients in plants leading to
increased photosynthetic rate and biomass accumulation (Smith
et al., 2003; Nell et al., 2010; Chen et al., 2017).

The cyclamen plants inoculated with AMF Glomus
fasciculatum markedly enhanced biomass production, increased
antioxidant enzymes activity like SOD, APX, as well as an
increase in ascorbic acid and polyphenol contents which
made the plants tolerant to heat stress conditions (Maya and
Matsubara, 2013). Mathur et al. (2016) have reported that the
maize plants colonized with AMF tolerated the high temperature
stress by increased PSII active reaction centers, quantum
efficiency of PSII, excitation energy trapping, performance
index, net photosynthetic rate, and hence protecting the
oxygen evolving complex (OEC). The AMF Glomus etunicatum
protected the maize plants against low temperature stress
conditions through improved water conservation (WC) and
water use efficiency (WUE) which could play an indirect role
in enhancing nutrient uptake, osmotic adjustment, the capacity
of gas exchange and the efficiency of photochemistry of PSII
(Zhu et al., 2010). AM fungus, Glomus mosseae alleviated
the low temperature stress on tomato plants by reduced
malondialdehyde (MDA) content, increased photosynthetic
pigments, soluble proteins and antioxidant enzyme activities like
SOD, POD, APX, and CAT (Abdel Latef and Chaoxing, 2011).
AMF can alleviate the heavy metal stress by any of the following
mechanisms as reported earlier: (i) uptake and storing the heavy
metals in the vacuoles of the fungi; (ii) adhering heavy metals to
siderophores and sequester into the root apoplasm or soil; (iii)
catalyse the transport of heavy metals from cytoplasm through

transporters at the plasmalemma or tonoplast (Galli et al., 1994;
Leyval et al., 1997; Schützendübel and Polle, 2002). Pigeon pea
plants inoculated with the AMF Glomus mosseae under saline
and cadmium (Cd) combined stress conditions enhanced the
uptake of Cd, higher concentrations of stress metabolites (sugars,
proteins, free amino acids, proline, and glycine betaine) and
accumulation of phytochelatins thus enhancing growth, nutrient
status, and yield of the host plant (Garg and Chandel, 2012).

Several reports are available that under drought stress
conditions, AMF—host plant symbiotic association alleviated
the stress effects by increased osmotic adjustment, proline
accumulation, enhanced leaf gas exchange, leaf water relations,
stomatal conductance, and transpiration rate (Morte et al.,
2000; Kubikova et al., 2001; Mena-Violante et al., 2006;
Yooyongwech et al., 2013). Tomato plants inoculated with
(AM) fungus Rhizophagus irregularis and the plant growth
promoting rhizobacteria (PGPR) Variovorax paradoxus 5C-
2 alleviated the drought stress by enhanced photosynthetic
activity, root hydraulic conductivity, and phosphorylation status
(Calvo-Polanco et al., 2016). Sweet basil plants inoculated
with AMF Glomus desrticola mitigated the reduction of K,
P, and Ca uptake, improved photosynthetic efficiency, gas
exchange, and water use efficiency under saline stress condition
(Elhindi et al., 2017). A mycorrhizal consortium of Glomus sp.,
Sclerocystis sp., and Acaulospora sp., enhanced the salt tolerance
of date palm plants grown under saline conditions through
improved Ca/Na and K/Na ratios, enhanced concentrations of
photosynthetic pigments and protein content, increased activities
of antioxidant enzymes (SOD, CAT, POD, and APX) (Ait-
El-Mokhtar et al., 2019). Sheng et al. (2011) have reported
that the AMF Glomus mosseae inoculation has enhanced the
accumulation of soluble sugars, reducing sugars, soluble protein,
total organic acids, oxalic acid, fumaric acid, acetic acid, malic
acid, and citric acid, subsequently enhancing the up-regulation
of osmoregulation process in the host maize plants grown
under salinity stress condition. Citrus seedlings inoculated with a
mixture of AM fungi (Rhizophagus irregularis and Funneliformis
mosseae) inhibited the uptake of Na or Cl while favoring the
uptake of P, K, Fe, and Cu under saline condition (Navarro
et al., 2014). Tomato plants inoculated with Scolecobasidium
constrictum alleviated the combined drought and salinity stress
condition by enhanced biomass production, leaf water relations,
stomatal conductance, and Fv/ Fm (Duc et al., 2018).

Plant Growth-Promoting Rhizobacteria
(PGPR)
PGPR are microorganisms that successfully colonize plant roots
and positively enhance plant growth, after been inoculated on
seeds. Rhizosphere is the area surrounding a plant root that
is inhabited by a distinctive microbial population which are
influenced by root exudates like organic acids, amino acids,
proteins, sugar, phenolics, and other secondary metabolites
(McNear, 2013). The symbiotic relationship between N-fixing
rhizobia and legumes has been extensively studied wherein the
legumes provide reduced carbon (C) to the rhizobia and in
turn, biologically available N is provided by the rhizobia to the
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legumes. The legume develops root nodules, to host the rhizobia
and the rhizobia changes from rod-shaped cell to branched,
N-fixing bacteroid (Oke and Long, 1999).

PGPRs are able to synthesize phytohormones such as IAA,
gibberellins, ethylene, abscisic acid and cytokinins that help the
plants to become tolerant various abiotic environmental stresses.
Inoculation of PGPR helps in increased plant dry biomass, grain
production, and flowering, which can be related to increase
in root development, further enhancing the water and mineral
uptake by the host plant roots (Okon et al., 1998). Certain
bacteria such as Azospirillum, Bacillus, Burkholderia, Erwinia,
Pseudomonas, Rhizobium, or Serratiaare have been reported as
phosphate solubilizing bacteria which helps in increasing the
biological nitrogen fixation efficiency, improve the availability
of Fe and Zn, and alter the growth of roots or shoots by
production of plant hormones (Kucey et al., 1989; Mehnaz
and Lazarovits, 2006). Potassium-solubilizing bacteria/fungi
have been isolated from rhizosphere soil of different crops,
which cause solubilization of potassium by the production of
organic/inorganic acids or polysaccharides (Sindhu et al., 2016).
PGPR plays a vital role in plant growth and development under
stressful conditions through different mechanisms like fixation
of nitrogen, solubilization of phosphorus, zinc solubilization,
siderophores production, growth regulators, organic acids,
enzymes like ACC-deaminase, chitinase, and glucanase (Glick
et al., 2007; Berg, 2009; Hayat et al., 2010; Kamran et al., 2017).

Phytohormones are molecular signals (auxin, cytokinin,
gibberellic acid, brassinosteroids, ethylene, abscisic acid, salicylic
acid, and jasmonic acid) that play a crucial role in plant
growth and development, and are expressed in response to
environmental stress factors (Fahad et al., 2015). Many PGPR
can produce auxins (Omer et al., 2004), gibberellins (Jha and
Saraf, 2015), and cytokinins (Ruzzi and Aroca, 2015) which lead
to enhanced plant shoot growth and root exudate production.
PGPR has the ability to synthesize indole acetic acid (IAA), an
important hormone of auxin class, helps in the regulation of
differentiation of vascular tissue, differentiation of adventitious
and lateral root, cell division, and shoot growth under drought
stress conditions (Goswami et al., 2015). Maize plants inoculated
with PGPR ameliorated drought stress by enhancing the abscisic
acid (ABA) concentration levels, regulating transcription of
drought related gene and root hydraulic conductivity (Jiang et al.,
2013). Soybean plants inoculated with Pseudomonas putida H-2-
3 mitigated salinity and drought stress by increased chlorophyll
content, enhanced shoot length and biomass, enhanced the
abscisic acid and salicylic acid, polyphenol, flavonoids, SOD
and 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) scavenging
activity (Kang et al., 2014).

Under salinity stress condition, lettuce seeds inoculated
with Azospirillum showed better seed germination and
vegetative growth (Barassi et al., 2006). Tolerance to salinity
stress has been exhibited by two bacterial strains, Bacillus
aryabhattai H19-1 and Bacillus mesonae H20-5 in tomato
plants by enhancing ABA levels, accumulating significant
levels of proline, abscisic acid (ABA), and antioxidant enzyme
activities which might be attributed by the up-regulation
of 9-cisepoxycarotenoid dioxygenase 1 (NCED1) and abscisic

acid-response element-binding proteins 1 (AREB1) genes (Yoo
et al., 2019). Qiyuan et al. (2016) have reported that the
rhizobacterium Variovorax paradoxus 5C-2 mitigated salinity
stress in pea plants by the secretion of 1-aminocyclopropane-1-
carboxylase (ACC) deaminase, which helped in improving water
relations, ion homeostasis, reduced ethylene production and
photosynthesis. Wheat plants inoculated with Piriformospora
indica and Azotobacter chroococcum significantly increased
shoot and root biomass, photosynthetic pigment contents,
decreased malondialdehyde (MDA) content, increased ascorbate
peroxidase (APX) and peroxidase (POD) activity, and alleviated
the Zn deficiency conditions. The enhanced zinc uptake might
be one of the major mechanisms to improve the wheat plants to
cope with Zn deficiency (Abadi and Sepehri, 2015).

TOLERANCE MECHANISMS BY
PLANT-MICROBE INTERACTION

Endophytes exhibit a symbiotic association residing within the
plant for the majority of their life cycle and has the ability to
colonize plant’s internal tissues by entering into the seed, leaf,
stem, and root of a host plant. Endophytes help in nitrogen
fixation, secrete phytohormones and nutrient acquisition thus
improving plant growth. Plants do produce root exudates
which acts as the energy source for endophytic microorganism
associated with it (Kandel et al., 2017; Shen et al., 2019).
During the early stages of endophytic colonization, the bacterial
cells synthesize exopolysaccharides (EPS) which facilitate it’s
attachment onto the root surface and also protects the bacterial
cells from oxidative damage (Meneses et al., 2011). Arbuscular
mycorrhizal fungi are soil-borne fungi that can significantly
enhance plant nutrient acquisition and tolerant to various abiotic
stress conditions. The AMF establishes a symbiotic association
with its host plant, regulating the growth and development of
plants. The AMF mycelial network extends under the roots
of the plant, hence promoting nutrient uptake. The common
mycorrhizal network (CMN) has a profound effect on the fungal-
mediated transport of phosphorus (P) and nitrogen (N) to
plants and hence support plant development under stressful
environmental conditions (Navarro et al., 2014; Sun et al., 2018).

Through plant-microbe interaction, microbes use various
biochemical andmolecular mechanisms which help in mitigating
the negative impact of various abiotic stress on plant growth and
development (Figure 1 andTable 1). Phytohormones like auxins,
gibberellins and cytokinins play a major role in changing the root
morphology, thus enabling the plants to get adapted and tolerant
to various abiotic stresses like salinity, heavy metal, drought
and nutrient deficiency. Secretion of auxins such as indole
acetic acid (IAA) enhances cell elongation, resulting in enhanced
root growth, promotes lateral root development and hence,
has a positive effect on water acquisition and nutrient uptake
by the plants. Plant growth promoting rhizobacteria (PGPR)
helps to mitigate the negative impact of abiotic stress through
induced systemic tolerance (IST) which includes: (i) production
of phytohormones such as indole-3-acetic acid (IAA), cytokinins
and abscisic acid (ABA), (ii) production of antioxidants like
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TABLE 1 | Microbial mediated abiotic stress tolerance.

Plants Microbes Stress Tolerance mechanism References

Panicum turgidum Funneliformis mosseae

Rhizophagus intraradices

Claroideoglomus etunicatum

Salinity Increased chl a, chl b, carotenoids,

increased antioxidant enzyme activities

like SOD, POD, CAT, and GR, increased

uptake of essential elements like

phosphorous, potassium, and calcium

Hashem et al., 2015

Cucumis sativus,

cv. Dasher II

Arbuscular mycorrhizal fungi Salinity Synthesis of pigments, activity of

antioxidant enzymes, including SOD,

CAT, APX, GR, and ascorbic acid,

accumulation of phenols and proline,

jasmonic acid, salicylic acid, and several

important mineral elements (K, Ca, Mg,

Zn, Fe, Mn, and Cu) were enhanced

Hashem et al., 2018

Pisum Sativum L. Rhizoglomus intraradices,

Funneliformis mosseae,

Rhizoglomus fasciculatum and

Gigaspora sp.

Salinity Higher nutrient uptake, accumulation of

compatible osmolytes, and lower

cellular leakage of electrolyte

Parihar et al., 2020

Zea mays L. Kocuria rhizophila Salinity Regulating plant hormones (IAA and

ABA) levels and improving nutrient

acquisition, higher transcript levels of

genes encoding antioxidants (ZmGR1

and ZmAPX1), and genes involved in

salt tolerance (ZmNHX1, ZmNHX2,

ZmNHX3, ZmWRKY58, and

ZmDREB2A)

Li et al., 2020

Robinia

pseudoacacia L.

Funneliformis mosseae

Rhizophagus intraradices

Lead (Pb) Higher gas exchange capacity,

non-photochemistry efficiency, and

photochemistry efficiency, enhanced

superoxide dismutase (SOD), ascorbate

peroxidases (APX), and glutathione

peroxidase (GPX)

Yang et al., 2015

Helianthus annuus

L.

Funneliformis mosseae

Rhizophagus intraradices

Claroideoglomus etunicatum

Cadmium (Cd) Increase in shoot/root fresh and dry

weight, chl a, chl b, carotenoids,

antioxidant enzymes like SOD, POD,

CAT, GPX, and GR, decreased fatty

acid content

Abd_allah et al., 2015

Glycine max L. Paecilomyces formosus Heavy metals (Ni,

Cd, and Al),

drought, high

temperature

Enhanced glutathione, catalase, and

SOD activities, decreased lipid

peroxidation, enhanced macronutrient

uptake, down-regulating heavy metal

ATPase gene, up-regulation of

drought-related and heat shock protein

genes

Bilal et al., 2020

Poncirus trifoliata Glomus versiforme Iron (Fe) Promoted growth and phenolic

synthesis, increase in phenylalanine

ammonia-lyase activity (PAL) enzyme

activity and pal1 gene expression

Li et al., 2015

Nicotiana tabacum

L. cv Petit

Havanna

Rhizophagus intraradices Phosphorus (P)

deficiency

Decreased rate of root respiration and

exudation of citrate and malate

Del-Saz et al., 2017

Sorghum bicolor

L.

Glomus intraradices, Glomus

mosseae, Glomus aggregatum,

Glomus etunicatum

Iron (Fe) deficiency Increase in phytosiderophore,

upregulation of SbDMAS2

(deoxymugineic acid synthase 2),

SbNAS2 (nicotianamine synthase 2),

and SbYS1 (Fe-phytosiderophore

transporter yellow stripe) in roots,

enhanced S-containing antioxidant

metabolites (Met, Cys, and GSH) as

well as enzymes (CAT, SOD, and GR)

Prity et al., 2020

Cucumis sativus L.

cv. Zhongnong

No. 26

Rhizophagus irregularis Low temperature Improved phosphorus (P) uptake,

induced of Pi transporter gene

belonging to the Pht1 gene family

Ma et al., 2015

(Continued)
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TABLE 1 | Continued

Plants Microbes Stress Tolerance mechanism References

Solanum

lycopersicum L.

cv. Zongza 9

Funneliformis mosseae Low temperature Reduced level of MDA, H2O2, and O.−
2 ,

induced activities of antioxidant

enzymes APX, MDHAR, GR, and

DHAR, expression levels of APX,

MDHAR, GR, and DHAR genes

Liu et al., 2015

Solanum

melongena L.

Funneliformis mosseae,

Claroideoglomus etunicatum,

Rhizophagus irregularis, and

Diversispora versiformis

Low temperature Improved photochemical reactions,

activating antioxidant defense systems,

accumulating protecting molecules,

and reducing membrane damages

Pasbani et al., 2020

Colobanthus

quitensis

Fungal endophytes UV-B Radiation Expression of genes associated to

UV-B photoreception, accumulation of

flavonoids

Barrera et al., 2020

Solanum

lycopersicum cv.

ACE 55

Fusarium solani Water Increased net CO2 assimilation rate

(PN), stomatal conductance (gs), leaf

relative water content (RWC), and

maximum potential quantum yield of

PSII, enhanced antioxidant enzyme

activities like SOD, POD, APX, and CAT,

decreased oxidative membrane

damage

Kavroulakis et al.,

2018

Triticum aestivum Rhizophagus intraradices

Funneliformis mosseae

Funneliformis geosporum

Drought Increased RWC, maximum

photochemistry, higher Chl content,

restoration of electron transport in PSII,

higher PI(abs), PSI photochemistry

Mathur et al., 2018

Zea mays L. Glomus versiforme Drought Improved chlorophyll content, mineral

uptake and assimilation, increased

content of compatible solutes, such as

proline, sugars, and free amino acids,

Up-regulation of the antioxidant system

Begum et al., 2019

Cicer arietinum L. Bacillus subtilis, Bacillus

thuringiensis and Bacillus

megaterium

Drought Increased leaf proline content, activities

of antioxidant enzymes (CAT, APOX,

POD, and SOD), significant

accumulation of riboflavin,

L-asparagine, aspartate, glycerol,

nicotinamide, and

3-hydroxy-3-methyglutarate

Khan et al., 2019

Triticum aestivum

and Zea mays

Bacillus sp. and Enterobacter

sp.

Drought Production of indole-3-acetic acid (IAA)

and salicylic acid (SA)

Jochum et al., 2020

SOD, POD, APX, CAT, GR, and (iii) degradation of the ethylene
precursor ACC by bacterial ACC deaminase (Farooq et al., 2009;
Porcel et al., 2014). Inoculating plants with PGPR containing
1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme,
can help to mitigate abiotic stresses by regulating the ethylene
production by metabolizing ACC (an immediate precursor of
ethylene biosynthesis) into alpha-ketobutyrate and ammonia
(Saleem et al., 2007). Microbes do have the capability to promote
plant growth and development under abiotic stress condition by
enhancing the production of low-molecular-weight osmolytes,
including glycinebetaine, proline and other amino acids, organic
acids, nitrogen fixation, mineral phosphate solubilization and
producing key enzymes such as ACC-deaminase, chitinase, and
glucanase (Ahmad et al., 2011; Gupta et al., 2013). Microbes
have enhanced heavy metal tolerance through transportation
across cell membrane, accumulation on cell wall, intra as well
as extracellular entrapment, formation of complexes and redox
reactions (Nanda et al., 2019). Arbuscular mycorrhizal fungi

(AMF) play an important role in mitigating the abiotic stresses
through various mechanisms like increased osmotic adjustment,
enhanced accumulation of proline, increased glutathione level,
down regulation of stress related genes, enhanced synthesis
of jasmonic acid, salicylic acid, several important inorganic
nutrients and expression of stress resistance genes to enhance the
defense system (Kubikova et al., 2001; Ouziad et al., 2005; Lim
and Kim, 2013; Yooyongwech et al., 2013; Hashem et al., 2018).

CONCLUSION

The various abiotic stresses pose a major threat to world
food security by exerting their deleterious effects on the crop
growth, physiological and biochemical plant functions, and
ultimately affecting the crop yield. Of the various strategies
adapted by the plants to tolerate the abiotic stresses, the
plant-microbe interactions provide an efficient eco-friendly
manner in which the plants can cope up with the adverse
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environmental stress conditions. The microbial consortium
present in the root microbiome promotes plant growth by
regulating phytohormones synthesize, osmolytes, organic acids,
improved nutrition uptake, enhanced antioxidant system, and
up-regulation of stress tolerant genes. However, further studies
are required at molecular level to understand the exact
mechanism of stress tolerance imparted by the various microbial
community. Moreover, the search for even more potential stress
tolerant microbes and application of those microbial consortia

on field conditions has to be extensively researched in the future
which will be of prime importance in solving the future food
security worldwide.
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