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Whole genome duplication via polyploidization is a major driver of diversification

within angiosperms and it appears to confer the most benefit during times of rapid

environmental change. Polyploidization offers expanded access to novel phenotypes

that facilitate invasion of new environments and increased resistance to stress. These

new phenotypes can arise almost immediately through the novel interactions among

or between transcription factors of the duplicated genomes leading to transgressive

traits, and general heterosis, or they can occur more slowly through processes like

neofunctionalization, and subfunctionalization. These processes are characterized by the

changes within homologs of the duplicated genomes, homoeologs. It has been proposed

that redundant homoeologs are released from selective constraints and serve as an

additional source of adaptive genetic variation, particularly in neo and meso-polyploids.

Current practices in weed management create rapid environmental change through the

use of chemicals, practices that are meant to cause the extirpation of the designated

weed, and represent a strong recurrent selective event—a scenario that should favor

polyploidy species. Here we ask the question, “Do polyploids make better weeds?” It is

our conclusion that such a question is impossible to answer at this time due to the lack

of resources and understanding in weed genomics. The growing contingent of research

in weed genomics, however, driven by herbicide resistance evolution is rapidly improving

our understanding of weed molecular biology and will aid in improving understanding of

the impacts of ploidy levels on weed evolution and adaptation in the future.

Keywords: polyploidy, herbicide resistance, evolution, genomics, glyphosate, weeds

INTRODUCTION

All extant diploid angiosperms have been traced back to polyploid ancestors (Scarpino et al., 2014).
Whole genome duplications (WGDs) are major drivers of adaptation and are responsible for the
trajectory of flowering plant evolution. Phylogenetic analyses and molecular dating have traced an
ancient genome-wide duplication event shared by all extant seed plants (Jiao et al., 2011). Ancient
whole genome duplications (WGD), served as a major force in speciation and diversification in
highly plastic angiosperm genomes. Compared to gymnosperms, angiosperms are more likely
to endure the impact that polyploidy has on a genome, as <5% of gymnosperms are polyploid
(Leitch and Leitch, 2008). While polyploidy is gaining traction as a viable and beneficial means
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of adaptation, polyploidization has previously been described
and is still commonly referred to as an evolutionary “dead end,”
as ancient WGD were seen scarce (Arrigo and Barker, 2012; Van
De Peer et al., 2017). Polyploidy studies are continuing to rise
in prevalence, and more cases of ancient and neopolyploid cases
are being discovered and suggests that polyploidization via whole
genome duplication is more common than previously thought
(Hohmann et al., 2015; Barker et al., 2016; Yang et al., 2018).
In rare instances polyploids could have had an evolutionary
advantage on their non-polyploid competition, especially in
times of stress or environmental upheaval, providing means
to survive over their counterparts (Van De Peer et al., 2017).
Recent studies provided evidence that there is an increased
tolerance to genomic changes in polyploids relative to diploid
progenitors, including how polyploid lineages were established
and the rates at which this occurs, and the mechanisms they
used to spread and maintain themselves (Schoenfelder and Fox,
2015; Shimizu-Inatsugi et al., 2017). Using a literature review and
a survey of reported weeds and their ploidy level, we propose
to show that polyploids make better weeds. The term weed is
a generally vague description designated to virtually any plant
deemed undesirable in the context of where it grows. This review
focuses on the undesirable plants in an agricultural perspective
that have adapted to the human condition (Harlan and de Wet,
1965). Polyploidization is especially important to understand
within the study of weed science in the view of climate change
and the ever-increasing size of highly managed tracts of land
around the world, since both of these selective forces may favor
polyploids. Here we ask if polyploidy confers an advantage in
the evolution of glyphosate resistance in comparison to their
diploid counterparts. Glyphosate resistance is an ideal trait to
test since understanding its evolution has both practical and
theoretical applications. As a herbicide it was highly effective and
the evolution of target site and non-target site required decades
(Pratley et al., 1999; Sammons and Gaines, 2014). Understanding
if polyploidy confers an advantage in the case of glyphosate
will elucidate how resistance to other herbicides will evolve
and if special consideration needs to be given to polyploids in
application of weed control.

DEFINITIONS ABOUT POLYPLOIDY

Polyploids are organisms that contain multiple copies of their
chromosomes, or simply, a species that has more copies than
diploids (Glover et al., 2016). Polyploidization itself is defined
as whole genome duplication, where it has doubled in the form
of either allopolyploidy or autopolyploidy, or as a combination
of both forms (Table 1). Allopolyploids are generated through
the hybridization of two or more different species each
contributing unique subgenomes, while autopolyploids arise from
the duplication of a single species’ genome. On a gene level, the
multiple copies of genes or chromosomes in allopolyploids are
referred to as homoeologs. Not to be confused with homologs,
homoeologs are related genes that lie in the different subgenomes
of an allopolyploid (Mason and Wendel, 2020). Homologous
genes share a common ancestor, while homoeologous genes have

the same parental origin (Mable, 2003). Within homologous
genes, there are orthologs and paralogs: orthologs are genes
descended from a common ancestor in different species that
share the same function or formed due to a speciation event.
Paralogs are genes derived from a single gene as the result
of a duplication event (Sonnhammer and Koonin, 2002).
Homoeologs and orthologs can be construed as analogous, as
homoeologs are orthologous genes within a polyploid species that
occur on different subgenomes. Homoeologs originated through
speciation and were recombined in the same genome through
allopolyploidization (Glover et al., 2016). The correct usage of
“homoeolog” has been debated and the sheer amount of different
terms can lead to some confusion.

Paleopolyploidy is defined as polyploidy that occurredmillions
of years ago (Blanc and Wolfe, 2004; Soltis et al., 2009).
Genes associated with paleopolyploidy can also be referred to as
paleologs. Determining whether an organism is a paleopolyploid
or used to be a difficult task because progenitor species could
not be identified through cytological tools or DNAmarkers (Levy
and Feldman, 2002). Advances in genomics has eased the process
of identification with whole genome assemblies providing the
necessary data for synteny plots, gene trees constructed from
gene family analyses, and Ks plots from transcriptome assembles
(Husemann and Stoye, 2009; Gao et al., 2018; Leebens-Mack
et al., 2019). More recent polyploids have two different categories:
mesopolyploid, if formed within the last 17 million years, or
neopolyploids for the species that most recently experienced
polyploidization (Ramsey and Schemske, 2002; Cheng et al.,
2018). Neopolyploidy can also be described as a species that
has experienced an artificially induced chromosome duplication
(Comai, 2005). Aneuploidy is another term associated with
polyploidy, as it signifies when there is an abnormal number of
chromosomes compared to the wild type, which is commonly
found in triploid (and sometimes pentaploid) populations
(Müntzing, 1936; Huettel et al., 2008).

HISTORY OF POLYPLOID EVOLUTION

The earliest concepts of polyploidy came about in the early
1900s. The independent rediscovery of Mendel’s work by de
Vries, Correns, and Tschermak was the beginning of a golden
age of genetics (Corcos and Monaghan, 1990). Geneticists
originally associated specific characteristics with morphological
characteristics as opposed to genetic characteristics like
karyotype (DeVries, 1915; Ramsey and Ramsey, 2014). Using
morphological characteristics as a form identification was soon
displaced by the acceptance of chromosomes as hereditary units
(Roberts, 1929). While certain plants, like maize, had already
been determined to be polyploid (Kuwada, 1911), the term
polyploidy was coined by Winkler (1917), who created the
first artificial polyploid. Winge (1917) had some of the most
influential thoughts on the subject, proposing hybridization
followed by the doubling of chromosomes (Harlan and De Wet,
1975; Soltis et al., 2014). Stebbins (1950) could be considered one
of the most important thinkers on the importance of polyploidy,
with fourteen chapters in his book Variation and Evolution in
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TABLE 1 | Important terms relating to polyploidy and their definitions.

Term Definition References

Polyploidy Condition where an organism contains more than two sets of homologous

chromosomes, or more than a diploid, as a result of whole genome duplications

Glover et al., 2016

Allopolyploidy Polyploidy generated through hybridization between two distinct species

followed by genome doubling

Glover et al., 2016

Autopolyploidy Polyploidy generated through intraspecific hybridization Glover et al., 2016

Homolog A gene in two species that are derived from the same ancestor Mable, 2003

Ortholog A homologous gene within two species that share the same function, formed as

a result of a speciation event

Sonnhammer and Koonin, 2002

Paralog A homologous gene within the same species that do not have the same

function, formed as a result of a duplication event

Sonnhammer and Koonin, 2002

Homoeolog Genes that originated due to a speciation event but were recombined due to

allopolyploidization

Glover et al., 2016; Mason and Wendel, 2020

Paleopolyploidy Ancient polyploidy, formed millions of years ago Blanc and Wolfe, 2004; Soltis et al., 2009

Neopolyploidy The most recent cases of polyploidy, can be used to describe artificially created

polyploids

Ramsey and Schemske, 2002; Comai, 2005

Mesopolyploidy Bridge between paleo and neopolyploidy, has occurred within the last 17 million

years

Cheng et al., 2018

Aneuploidy Situation where there is an abnormal number of chromosomes in a cell Müntzing, 1936; Huettel et al., 2008

Subfunctionalization Process where newly formed genes will retain some subset of the ancestral gene

function

Force et al., 1999; Flagel et al., 2008

Neofunctionalization Process where newly formed genes will obtain some new function Force et al., 1999

Target site resistance Herbicide resistance mechanism that is the result of a change to the genetic

code

Sammons and Gaines, 2014

Non-target site resistance Herbicide resistance mechanism that is a result of a change in the metabolism of

a plant

Sammons and Gaines, 2014

Plants dedicated to the subject. Scientists were tasked with the
painstaking endeavor of manually counting chromosomes under
a microscope using the squash method, until the genomics era
eventually brought about flow cytometry, a more accurate way
to measure cellular contents, including DNA and chromosomes
(Kron et al., 2007; Windham et al., 2020).

Much of what is understood about the history of
polyploidization has come from studying crops (Beasley,
1940; Mcfadden and Sears, 1946). Thus far, genomic studies
on Triticum (wheat) and Gossypium (cotton) have contributed
the most to the current knowledge (Flagel et al., 2008; Moshe
Feldman and Levy, 2009). Cultivated wheat is a good example
of how studying polyploidization can be useful. Cultivated
wheat is classified in three different cytogenic categories: diploid,
tetraploid, and hexaploid. While the wild type progenitors for the
diploid and tetraploid varieties have been determined, studies
have shown that the hexaploidy varieties, like bread wheat (T.
aestivum) have formed as a byproduct of cultivated tetraploid
and wild diploid progenitors as a result of polyploidization
(Feldman, 2001; Feldman and Levy, 2005). In allohexaploid
bread wheat, there are three identifiable subgenomes, A, B, and
D, which is seen as an AABBDD genome. These subgenomes are
known to have derived from diploid progenitors T. uratu (AA)
and Aegilops tauschii (DD). The progenitor of the BB subgenome
is extinct, but is likely derived from a diploid closely related
to Aegilops speltoides (Dubcovsky and Dvorak, 2007; Gornicki
et al., 2014). The ability to identify these subgenomes provides a

history of polyploidization in wheat, visualizing its progenitors,
its center of origin (likely in southwest Asia), and estimating
when the polyploidization likely occurred (Vavilov and Love,
1992; Feldman, 2001).

Polyploidization is a seemingly irreversible process, but all
polyploid plants eventually undergo the process of diploidization.
The process of a polyploid becoming a diploid again is a result
of genomic downsizing, where genomes have been significantly
reduced as a result of loss of DNA fragments, segmental DNA
loss, and gene silencing, mainly to stabilize the genome (Wendel
and Adams, 2005; Bird et al., 2019). Genomic downsizing most
likely occurs immediately following a chromosomal duplication
event. Drastic alterations to the genome are referred to as genome
shock; a plant might not be prepared for such intense changes
to its genome and these stabilization events could possibly
occur to counteract the shock (Mcclintock, 1983). There is a
case to be made that there are no true extant diploids, and
should be considered to be paleopolyploids (Levy and Feldman,
2002). Combined with the fact that all diploid angiosperms
are descended from polyploid ancestors, genomic downsizing
over the course of millions of years could contribute to this
claim (Force et al., 1999; Feldman and Levy, 2005). An example
of this is present in corn (Zea mays); it has paleopolyploid
characteristics and has origins as a segmental allopolyploid, but
its genome was so drastically altered and silenced that it is a
cytogenic diploid (Gaut and Doebley, 1997; Soltis and Soltis,
1999).
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Duplicate genes in polyploids have many different
pathways they can take: they can develop a new function
(neofunctionalization), retain the ancestral function
(subfunctionalization), or accumulate deleterious mutations and
decay (Force et al., 1999). In the process of trying to maintain
its status as a diploid, some plants will undergo the process of
instantaneous subfunctionalization, which occurs immediately
following genomic merger in order to retain all duplicate genes
(Flagel et al., 2008). Different loss-of-function mutations can
develop in both copies, but both copies must be retained in order
to keep its ancestral function (Cheng et al., 2018). Upland cotton
(Gossypium hirsutum) demonstrates subfunctionalization in the
reciprocal silencing of its adhA homoeolog; the homoeolog is
silenced rather than deleted, retaining all copies present (Adams
et al., 2003). Larger populations are more likely to experience
neofunctionalization rather than subfunctionalization because
the genetic drift in large populations is going to be so slow that
parental alleles are likely going to be silenced by deleterious
mutations before fixation can occur (Soltis et al., 2010).

ADVANTAGES OF POLYPLOIDY IN
EVOLUTION

Polyploidization allows organisms to react and survive; by their
very nature, polyploids have a much higher range of genetic
diversity than diploids, which certain environmental factors,
such as habitat disturbance, nutritional stress, physical stress,
and climate changes, can trigger new phenotypes, like increased
allelopathic effect (Hegarty and Hiscock, 2007; Ramsey, 2011;
Te Beest et al., 2012; Omezzine et al., 2017). New phenotypes
may arise through heterosis, gene redundancy, or the formation
of transgressive traits (Comai, 2005; McCarthy et al., 2016; Wei
et al., 2019). The effects of heterosis was first identified byDarwin,
whose experimental crosses resulted in more vigorous hybrids,
i.e., heterosis (Darwin, 1876). There are two main models
involved in heterosis: the dominance model and overdominance
model. The dominance model hypothesizes that the slightly
deleterious recessive alleles are complemented by superior
dominant ones in hybrids (Hochholdinger and Baldauf, 2018).
The overdominance model is used to describe polyploidization,
as the progressive heterosis associated with polyploids is more
complex due to the increasing vigor with increasing number
of genomes (Birchler et al., 2010). While heterosis generally
results in polyploids with better phenotypic performance than
its parent species, plants with transgressive traits display
extreme phenotypes outside of the range of its progenitors
(McCarthy et al., 2016). Heterosis and transgressive traits
have been shown to be potential improvements for epigenetic
mechanisms in allopolyploids, like histone modification or
cytosine methylation (Renny-Byfield and Wendel, 2014). Gene
redundancy acts as a protective feature, shielding polyploids
from the effects of deleterious mutations with the numerous
copies present (Wendel, 2000). Even allelopathy (the ability
to suppress growth in another plant), which is present in
both diploids and polyploids, has been shown to increase in
polyploids compared to diploids (Colquhoun, 2006; Omezzine

et al., 2017). Hexaploid barnyardgrass (Echinochloa crus-galli)
shows considerable allelopathic tendencies and Omezzine et al.
(2017) was able to show that allelopathy increased as ploidy
increased in fenugreek (Trigonella foenum-graecum) (Omezzine
et al., 2017).

Allopolyploids provide some evidence of increased fitness
over their progenitors. When diploid parents are crossed,
typically their offspring have an increase in performance;
polyploids produced more viable seed in extreme heat and
drought conditions and differences in stomatal pore sizes that
improved drought survival over their diploids counterparts
(Madlung, 2013; Godfree et al., 2017). For example, cultivated
wheat (T. aestivum) is an allohexaploid that has managed to
survive over its B genome donor (Feldman and Levy, 2009).
Allopolyploids also have more potential for ecological adaptation
over their diploid counterparts, as shown through diploid
and allopolyploid species of Cardamine; while different diploid
species had a tendency to prefer only one environment, the
allopolyploid species was able to grow and survive in all the
environments tested (Shimizu-Inatsugi et al., 2017). The ability to
alter phenotypes, as in functional trait divergence or generalized
trait plasticity is one of the leading hypotheses regarding overall
increased fitness in polyploid species (Van De Peer et al., 2017;
Wei et al., 2019). Polyploid crops have huge adaptation potential
and further studies are necessary to show the role of genetic
variation resulting from polyploidy in this potential (Ramsey and
Ramsey, 2014; Schiessl et al., 2017).

The study of neopolyploids furnishes strong insights in
the evolution of polyploid species. Spartina anglica (common
cordgrass), is an invasive neoallopolyploid weed species that
arose in the last 200 years (Baumel et al., 2002). The neo-
dodecaploid weed arose at the end of the nineteenth century as a
result of a genome duplication between the already hybrid species
Spartina X townsendii, which is a cross between hexaploids
Spartina alterniflora and Spartina maritima (Ainouche et al.,
2004). The duplication of the two unique subgenomes in Spartina
X townsendii cements S. anglica as an allopolyploid as opposed
to an autopolyploid. Compared to its progenitors, S. anglica
has been shown to have increased fitness with its prolific seed
production, fertility, and extensive lateral clonal growth, which
was not seen in its sterile progenitor Spartina X townsendii.
Baumel et al. (2002) was able to demonstrate that rapid, non-
Mendelian changes involving preferential sequence elimination
or modification of methylation patterns may occur in the
earliest stages of polyploid stabilization. Other neopolyploids,
like Senecio and Tragopogon have also been established within
the last 200 years (Abbott and Lowe, 2004; Soltis et al., 2004).
The development new polyploids aids in understanding gene
silencing, cytosine methylation, and parental “non-additivity”
play an active role in polyploidization and improving overall
understanding of the process (Adams and Wendel, 2005).

WEEDS AND UNCONSCIOUS SELECTION

Aside from polyploidy, one way weeds have been able to thrive in
a world that strives to exterminate them is through unconscious
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selection, or actively breeding plants in an environment different
from their wild habitat, usually human-made (Zohary, 2004).
Crops once considered weeds have been domesticated through
unconscious selection, as they could not be differentiated from the
crop they were growing alongside. The phenomenon of weeds
imitating desired crops was noticed and thoroughly discussed
by Nikolai Vavilov, who covered the process in “Origin and
Geography of Cultivated Plants” (Vavilov, 1922). Vavilov looked
into the centers of origins of crops, determining that there is
more diversity in a species in an area where a species originated
(McElroy, 2014). The process of an undesirable species evolving
tomimic desirable ones as ameans of survival has become known
as Vavilovian mimicry (Pasteur, 1982). This phenomenon was
first noticed, and well-established, between rye (Secale cereale)
and wheat (Triticum) (Vavilov, 1922).

Before the time of chemical management, the only way to
eliminate weeds when harvesting was by hand or hand-held
implements. Since rye is remarkably visually similar to wheat,
farmers often could not differentiate the two. When harvesting,
rye would be selected for alongside the wheat, and when the
harvested seed was replanted, unwanted rye would grow as
well. Eventually, rye evolving alongside a desirable crop made
it desirable as well. Rye could also perform better in colder
climates than weaker wheat species did, but its increased fitness
could possibly be contributed to crossing between the weed
species and the crop it grew alongside (Harlan, 1965). This
same principle of mimicry can be applied to modern day
crop and companion weeds with cultivated rice (Oryza) and
barnyardgrass (Echinochloa crus-galli, specifically ssp. oryzicola).
In the seedling stage, barnyardgrass growing in paddy fields
are virtually indistinguishable from rice, which makes manual
weeding extremely difficult (Barrett, 1983). Barnyardgrass has
also demonstrated allelopathetic tendencies in rice paddies,
which provides even more difficulty in its management (Khanh
et al., 2007; Guo et al., 2017)?

Another subset of Vavilovian mimicry is seed mimicry, where
weeds may or may not look morphologically similar to the
crop they contaminate, but the seeds produced by both crop
and weed are identical in size and shape. While this might
not be a problem when weeding by hand, but once mechanical
winnowing came into play, the weed seeds only need to trick the
machine (Harlan, 1982). An example of this is evident between
balloonvine (Cardiospermum halicacabum) and soybean (Glycine
max), which are morphologically dissimilar, however their seeds
are indistinguishable in size and shape by a machine, which aids
in the weed survival (Johnston et al., 1979). One final way weeds
are unconsciously selected is through genetic mimicry. As weeds
continue to grow, it is likely that they will develop herbicide
resistance as an adaptation to human management practices.

As chemical herbicides became the primary weed
management practice, herbicide resistance developed as
the weed’s survival mechanism. The more herbicides are
continuously sprayed on crops, the more likely resistance to
such herbicides will result in those weeds (Powles and Yu, 2010).
Gene flow works in both ways; crops and weeds don’t grow
independently, genetic material can be shared between them,
which is what leads to hybridization between the two (Harlan

and De Wet, 1975; Gould, 1991). While unconscious selection
plays a major role in basically how all weeds are bred, the real
question is are polyploids the better weed? Do more polyploids
exhibit characteristics of Vavilovian mimicry within the genetic
subset? Before we answer these questions, it is important to look
further into modern day weed management practices, specifically
regarding herbicide and the effect it has on crops and weeds
in general.

HERBICIDE RESISTANCE

In this modern era, herbicide resistance is the biggest problem
currently faced with weeds. The two types of herbicide resistance
typically dealt with are target site resistance (TSR) and non-target
site resistance (NTSR). TSR develops directly against a mode of
action, specifically as a mutation to the genetic code, as a single
nucleotide polymorphism (SNP). NTSR relates to metabolism,
as there are no direct changes to the genetic code (Sammons
and Gaines, 2014). This can be seen as reduced absorption,
translocation, or sequestration of the herbicide in the vacuole
(Powles and Yu, 2010). To simplify our analysis of the effect of
polyploidization on the formation of herbicide resistance traits,
we have chosen to focus on well-described TSR mechanisms,
specifically the glyphosate mechanism. Target site resistance
provides a stronger case for increased weed survivability in
polyploids, as multiple chromosome copies alone provide an
environment for mutations to occur in at least one copy, and if
that copy is expressed resistance should occur (Otto, 2007).

Polyploids develop glyphosate resistance at a faster rate
than their diploid relatives. Glyphosate was first introduced by
Monsanto in 1974 with the trade name “Roundup” and in the
last decade has become the most used herbicide worldwide.
It is a non-selective herbicide that targets the shikimic acid
pathway and its ability produce folates and aromatic amino acids
(Malik et al., 1989; Valavanidis, 2018). Target site resistance in
glyphosate resistant plants results in mutations at the Pro106
location to either Thr, Leu, Ser, Ala, or a double substitution of
Thr102 to Ile + Pro106 to Ser (TIPS) (Yu et al., 2015). With
the introduction of Roundup Ready R© (RR) crops as a staple
in crop production, gene flow from RR crops has the potential
to result in glyphosate resistant weeds, which presents a major
problem for weed management (Mallory-Smith and Zapiola,
2008). Based on data from weedscience.org, weedy polyploid
species like annual bluegrass (Poa annua), oat (Avena), junglerice
(Echinochloa colona), and barnyardgrass (Echinochloa crus-galli)
are just a few of the species reported resistant to glyphosate
(Heap, 2019).

SHOULD POLYPLOID SPECIES SHOULD
MAKE BETTER WEEDS AND BE MORE
COMMON WITH HERBICIDE
RESISTANCE?

Theoretically, target site resistance should be more common
in polyploid weeds, since theoretically polyploids have a more
flexible expression profile that allows them to silence adaptive
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TABLE 2 | Weed species currently (9 June 2020) reported as resistant to glyphosate according to The International Survey of Herbicide Resistant Weeds and

corresponding reported genomic data.

Family Common name Species Chromosome

number (2n)

Ploidy 1C

(Mbp)

Glyphosate

Resistant

TSR NTSR Genome References

Amaranthaceae Palmer amaranth Amaranthus palmeri1 32 ? 465 Yes ? Yes No Gaines et al., 2011

Amaranthaceae Spiny amaranth Amaranthus spinosus1 34 2X 929 Yes Yes Maybe No Nandula et al., 2014

Amaranthaceae Tall waterhemp Amaranthus tuberculatus

(syn. rudis)1

32 ? 701 Yes Yes Yes Yes Nandula et al., 2013

Amaranthaceae Smooth pigweed Amaranthus hybridus

(syn: quitensis)

? ? 686 Yes Yes Yes No Perotti et al., 2019

Amaranthaceae Kochia Kochia scoparia 18 2X 1095 Yes Yes Maybe No Wiersma et al., 2015

Asteraceae Common ragweed Ambrosia artemisiifolia1 36 4X 1134 Yes ? ? No Ganie and Jhala, 2017

Asteraceae Giant ragweed Ambrosia trifida1 24 2X 1868 Yes ? ? No Norsworthy et al., 2010

Asteraceae Hairy fleabane Conyza bonariensis 18 ? 2043 Yes ? Yes No Kleinman and Rubin,

2017

Asteraceae Horseweed Conyza canadensis 18 2X 440 Yes Yes ? Yes Beres et al., 2020

Asteraceae Sumatran fleabane Conyza sumatrensis 54 ? ? Yes ? ? No Santos et al., 2014

Asteraceae Hairy beggarticks Bidens pilosa 72 ? 1666 Yes Yes Yes No Alcántara-de la Cruz

et al., 2016

Asteraceae Greater

beggarticks

Bidens subalternans 48 ? 2915 Yes Yes ? No Takano et al., 2020

Asteraceae Plumeless thistle Carduus acanthoides 22 ? ? Yes* ? ? No Heap, 2019

Asteraceae Ragweed

partenium

Parthenium hysterophorus 34 ? ? Yes Yes Yes No Bracamonte et al.,

2016

Asteraceae Common

sunflower

Helianthus annuus 34 2X 3596 Yes No Yes Yes Singh et al., 2020

Asteraceae Willow-leaved

lettuce

Lactuca saligna 18 2X 2332 Yes ? ? Yes Amjad et al., 2018

Asteraceae Prickly lettuce Lactuca serriola 18 ? (likely

2)

2606 Yes* ? ? No Heap, 2019

Asteraceae Annual sowthistle Sonchus oleraceus 32 4X 1568 Yes ? ? No Cook et al., 2014

Asteraceae Russian thistle Salsola tragus 36 ? ? Yes ? ? Yes** Kumar et al., 2017

Asteraceae Coat buttons Tridax procumbens 36 ? ? Yes Yes No No Li et al., 2018

Poaceae Wild oat Avena fatua 42 6X 12,646 Yes* ? ? No Heap, 2019

Poaceae Sterile oat Avena sterilis ssp.

ludoviciana

42 6X 12,617 Yes ? Yes No Fernández-Moreno

et al., 2016

Poaceae Australian

fingergrass

Chloris truncate 40 ? ? Yes No Yes No Ngo et al., 2018b

Poaceae Tall windmill grass Chloris elata ? ? ? Yes No Yes No Brunharo et al., 2016

Poaceae Radiate

fingergrass

Chloris radiata 40 ? ? Yes* ? ? No Heap, 2019

Poaceae Feather

fingergrass

Chloris virgate 20 ? ? Yes Yes No Yes** Ngo et al., 2018a

Poaceae Sweet summer

grass

Brachiaria eruciformis 18 ? ? Yes* ? ? No Heap, 2019

Poaceae Ripgut brome Bromus diandrus 56 8X 11687 Yes No Yes No Malone et al., 2016

Poaceae Rescuegrass Bromus catharticus 42 ? ? Yes* ? ? No Heap, 2019

Poaceae Red brome Bromus rubens 28 4X 4802 Yes? ? ? No Heap, 2019

Poaceae Gramilla mansa Cynodon hirsutus ? ? ? Yes? ? ? No Heap, 2019

Poaceae Sourgrass Digitaria insularis 36 ? ? Yes* ? Yes No Lopez Ovejero et al.,

2017

Poaceae Junglerice Echinochloa colona 54 ? 1320 Yes Yes Yes No Alarcón-Reverte et al.,

2015

Poaceae Barnyardgrass Echinochloa crus-galli 54 ? 1372 Yes* ? ? Yes Heap, 2019

Poaceae Goosegrass Eleusine indica 20 2X 709 Yes Yes No Yes Yu et al., 2015

Poaceae Tropical

sprangletop

Leptochloa virgata 40 ? ? Yes Yes Yes Yes Alcántara-de la Cruz

et al., 2016

(Continued)
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TABLE 2 | Continued

Family Common name Species Chromosome

number (2n)

Ploidy 1C

(Mbp)

Glyphosate

Resistant

TSR NTSR Genome References

Poaceae Annual ryegrass Lolium multiflorum 14 2X 2661 Yes Yes No No Jasieniuk et al., 2008

Poaceae Perennial ryegrass Lolium perenne 14 2X 2695 Yes Yes Yes Yes Yang et al., 2018

Poaceae Rigid ryegrass Lolium rigidum 14 2X 2687 Yes Yes Yes No Pratley et al., 1999

Poaceae Smooth barley Hordeum murinum ssp.

Glaucum

14 2X 5390 Yes* ? ? No Heap, 2019

Poaceae Annual bluegrass Poa annua 28 4X 2812 Yes Yes No No Cross et al., 2015

Poaceae Johnsongrass Sorghum halapense 40 ? (sus.

4)

1614 Yes No Yes No Vila-Aiub et al., 2012

Poaceae Liverseedgrass Urochloa panicoides 44 ? ? Yes* ? ? No Heap, 2019

Poaceae Arrocillo Paspalum paniculatum 20 ? ? Yes* ? ? Yes** Heap, 2019

Plantaginaceae Buckhorn plantain Plantago lanceolata 12 2X 1174 Yes* ? ? No Heap, 2019

Brassicaceae Birdsrape mustard Brassica rapa syn

campestris

20 2X 784 Yes* ? ? Yes Heap, 2019

Brassicaceae Wild radish Raphanus raphanistrum 18 ? ? Yes ? ? Yes Ashworth et al., 2014

Rubiaceae Woody borreria Hedyotis verticillata ? ? ? Yes ? ? No Chuah et al., 2005

*Indicates that there was no paper associated with the article, just reported on weedscience.org (Heap, 2019).

? indicates that there was no data available for that column.

**Indicates that there is only a partial genome present.

TABLE 3 | Ploidy and glyphosate resistance status of the world’s worst weeds as

described by Holm and Herberger (1969), Holm et al. (1977).

Common name Scientific name Ploidy Glyphosate

resistant?

1969

Purple nutsedge Cyperus rotundus ? No

Bermudagrass Cynodon dactylon 6X No

Barnyardgrass Echinochloa crus-galli 6X? Yes

Junglerice Echinochloa colona ? Yes

Goosegrass Eleusine indica 2X Yes

johnsongrass Sorghum halapense 4X? Yes

Cogongrass Imperata cylindrical 2X? No

Water hyacinth Eichhornia crassipes 4X No

Purslane Portulaca oleracea ? (mixed) No

Common lambsquarter Chenopodium album 2X No

1977

Purple nutsedge Cyperus rotundus ? No

Bermudagrass Cynodon dactylon 6X No

Barnyardgrass Echinochloa crus-galli 6X? Yes

Junglerice Echinochloa colona ? Yes

Goosegrass Eleusine indica 2X Yes

Johnsongrass Sorghum halapense 4X? Yes

Cogongrass Imperata cylindrical 2X? No

Spiny amaranth Amaranthus spinosus 2X Yes

Sour paspalum Paspalum conjugatum 2X? No

Tropic ageratum Ageratum conyzoides ? (mixed) No

? Indicates that the data was not available.

alleles or loci with fitness costs when the allele offers no adaptive
advantage (Otto and Whitton, 2000; Otto, 2007). TSR fitness
costs have been identified, but the level of costs varies among

different plant species (Vila-Aiub et al., 2009) and modes of
action. In general, fitness costs have been associated with ALS,
ACCase, and photosystem II (PSII) herbicides, which is especially
evident in PSII herbicides because of the reduced photosynthetic
capacity (Jansen and Pfister, 1990). Fitness costs in ACCase
inhibitors should have no association with polyploidy because
ACCase inhibitors only affect the plastid isoform (Murphy
and Tranel, 2019). Glyphosate’s role as the most widely used
herbicide provides the lens for the focus of herbicide resistance
in polyploids compared to other herbicides due to the possibility
of both target and non-target-site resistance. Studies have shown
that herbicide resistance alleles do not universally endow some
type of fitness cost, but there is more of a cost in diploid species
over polyploid (Vila-Aiub et al., 2009; Yanniccari et al., 2016). A
reduction in fitness has been identified in glyphosate resistant
goosegrass (Eleusine indica), rigid ryegrass (Lolium rigidum),
and perennial ryegrass (Lolium perenne) (Preston et al., 2009;
Yanniccari et al., 2016; Han et al., 2017). However, fitness costs in
glyphosate resistant biotypes seem to be present on a case-by-case
basis. The TIPS double mutation in the E. indica population came
at a very high resistance cost, resistant L. rigidum populations
may or may not have a fitness penalty, depending on the
resistance allele present, and the fitness cost in L. perenne is not
associated with a target-sire mutation, but rather high EPSPS
activity. The Pro-106-Ser mutation, the most common target-site
in glyphosate resistant biotypes, endows a low-level glyphosate
resistance and is seemingly negligible in fitness costs compared
to mutations endowing high level resistance, like the TIPS
mutation (Vila-Aiub et al., 2019). There has been no investigation
comparing the fitness cost of herbicide resistant polyploid species
to the cost seen in diploid species, or even delving into the costs
of herbicide resistance in any polyploid species. While there have
been reviews showing the fitness costs of different herbicides,
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all data and conclusions are drawn from diploid species (Vila-
Aiub et al., 2009). More studies should be performed in order
to ascertain whether polyploidy plays a role in reduced fitness in
association with herbicide resistance.

In order to examine how polyploidy affects weed survival,
a survey of weeds was done on those reported as glyphosate
resistant (Heap, 2019). A list of weeds reported as glyphosate
resistant was assembled and the polyploidy, chromosome counts,
and C-values were compared in Table 2. Out of 48 species
selected, 12 are known to be diploid, four tetraploid, two
hexaploid, one octoploid, and the remaining 29 species have a
ploidy level that has not been confirmed, based on data from the
Kew C-value database and the Chromosome Counts Database
(Rice et al., 2015; Pellicer and Leitch, 2020). A few assumptions
can be drawn about the species with unconfirmed ploidy: they
could be diploid, polyploid, or have mixed ploidy, but thus
far no studies have been done to confirm their ploidy. Ploidy
determination is just one part of a bigger issue; according to the
genome database from NCBI, out of the 48 species surveyed,
only nine have fully sequenced genomes and two have RefSeq
genomes. So along with the fact that there is little to no data
to draw conclusions from, the majority of studies reporting
glyphosate resistant are lacking in research beyond spray trials.
Target site resistance should be considered a major factor for
resistance and studies that just ignore the benefits of sequencing
data can be detrimental. When sequencing data is in play, one
can more accurately confirm TSR or NTSR, rather than just
claiming NTSR.

BUT, DO POLYPLOIDS MAKE BETTER
WEEDS?

Two questions need to be asked: “Are polyploids better weeds?”
and “Are polyploids more likely to be resistant to herbicides?”
The weeds historically referred to as the “world’s worst weeds,”
has had relatively no changes, or at least no reported changes,
to this list since first reported in 1969, and last updated in
1977 (referenced in Table 3) (Holm and Herberger, 1969; Holm
et al., 1977). Based on data from the Plant C-Value database
and the International Herbicide-Resistant Weed database, little
can be determined whether ploidy or glyphosate resistance has
any determining factor on what makes a better weed (Heap,
2019; Pellicer and Leitch, 2020). Barnyardgrass (E. crus-galli),
which is known to be glyphosate resistant, a possibly hexaploid
weed, would support the case for polyploidy providing better
weeds; barnyardgrass has easily adapted to human activity,
along with other polyploids like rye (S. cereale) and annual
bluegrass (Poa annua) (Ye et al., 2014; Cross et al., 2015). A
case could also be supported with the glyphosate resistant diploid
species goosegrass (Eleusine indica), as there is a fitness cost
associated with the double EPSPS gene mutation TIPS endowing
glyphosate resistance (Han et al., 2017). Polyploids have adapted
and survived due to polygenic selection over millennia (Stebbins,
1950). Comparatively herbicide resistance, both TSR and NTSR,
is more often than not monogenic: this can be seen as a divergent
single nucleotide polymorphism (SNP), a single unregulated

metabolic enzyme, or even as a widely duplicated gene (Délye,
2013; Jugulam and Shyam, 2019).

Applying what is known about polyploidization in crops to
weeds, one could try to assume an advantage for polyploid weeds.
Factors that favor polyploid crop domestication should translate
over to polyploid weed species. Heterosis, gene redundancy, and
high genetic variability discussed above should act the same
in weeds as they do in crops. Even in older, more established
polyploid populations, you can see the benefit compared to
diploids. Studies have shown that polyploids in general have the
capacity to be more invasive over diploid species. Stevens et al.
(2020) showed that tetraploid seeds tended to be larger than
those of diploids, which contributed to tetraploid seeds being
more dormant than the diploid seeds, less likely to germinate
in stressful environments and therefore better adapted to said
environments. Polyploid species have also been found to be more
fecund and competitive than diploids, as seen in studies done
with spotted knapweed (Centaurea stoebe) (Broz et al., 2009;
Rosche et al., 2017). Studies on the three geo-cytotypes of C.
stoebe, a native Eurasian diploid, a native Eurasian tetraploid,
and an introduced North American tetraploid provided evidence
that the polycarpic nature of the tetraploid biotypes allowed
these biotypes to survive after the initial flowering and flower
more than the monocarpic diploid biotype, and the introduced
biotype even more than the native (Broz et al., 2009). Pandit et al.
(2011) showed in an extensive study on rarity and invasiveness
that diploid plants were more likely to be rare, while polyploids
were more likely to be invasive. It has also been determined
that polyploid species are less likely to experience inbreeding
depression, due to the balancing effect of the presence of
multiple gene copies (Rosche et al., 2017). The combination
of higher seedling growth rates and diminished inbreeding
depression creates an argument that polyploids are more
invasive and therefore more competitive than diploids. Annual
bluegrass (P. annua) has established itself on every continent
and barnyardgrass continue to invade rice paddies, and when
combined with the likelihood for developing herbicide resistance,
namely glyphosate resistance, it creates some formidable weed
species. And as mentioned before, there is even evidence that
target site resistance in diploid plants significantly reduces fitness
levels (Preston et al., 2009; Yanniccari et al., 2016; Han et al.,
2017).

However, there are currently more reported diploid species
resistant to glyphosate than there are polyploid. There are diploid
species that are considered to be some of the most widespread
and difficult weed species to manage, like smooth pigweed
(Amaranthus hybridus) and horseweed (Conyza canadensis), that
have high levels of glyphosate resistance with no fitness cost
reported (Beres et al., 2018, 2020; Perotti et al., 2019). Purple
nutsedge (Cyperus rotundus) and yellow nutsedge (Cyperus
esculentus), whose ploidy levels (according to the Plant C-
Value database) have not been reported, are considered some
of the worst weeds on the planet because of control difficulty
(Pereira et al., 1987; Arias et al., 2011; Pellicer and Leitch,
2020). And although its ploidy has, surprisingly, not yet been
reported, Palmer amaranth (Amaranthus palmeri), is increasing
one of the most difficult weeds to control (Rayburn et al.,
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2005; Gaines et al., 2011). Such fitness costs have not yet been
reported in polyploid species and further investigation is required
to determine if herbicide resistance has any negative effects
in polyploids.

The sheer magnitude and complexity of polyploid genomes
makes it difficult to perform large-scale genetics studies (Schiessl
et al., 2017). While there have been polyploid genomes fully
sequenced, the genomes sequenced have been relatively small,
genome size wise, outside of the massive undertaking of
sequencing the allohexaploid wheat genome (Zimin et al., 2017).
Advances in genomics has made whole genome sequencing
easier and cheaper as a whole, but it improving the possibility
of sequencing polyploid genomes. Despite this, barnyardgrass
remains the only polyploid weed genome sequenced (Kyriakidou
et al., 2018). There is an obvious need for a well-established
weed genomics database; while there are still challenges to this
undertaking, it is a necessary step that needs to be taken in order
to advance the understanding of polyploidy in weeds, and weed
genomics in general (Patterson et al., 2019).

CONCLUSIONS

Based on the data that is available to us, no conclusions can be
drawn that polyploids make better weeds than non-polyploids.
At this point in time, there is no truly reliable database for
genetic data on weed species, and even the available data on
polyploid crops is lackluster. The Plant C-Value database is
currently the most reliable, and while it offers data some data

on polyploidy, including ploidy level and chromosome numbers,
its purpose is to provide C-value data, not polyploid data.
Even the list of the worst weeds in the world has not changed
in the past 40 years, which should be highly unlikely, as the
science is constantly changing. Research into weed genomics
has room for improvement, and the development of weed
genomics provides potential for greater understanding in how
weed species evolve and the role polyploidy is playing and has
played in weed evolution (Ravet et al., 2018; Patterson et al.,
2019). The International Weed Genomics Consortium provides
an outlet for collaborative research into weed genomics, with a
growing genomics repository for weed species. The complexity
of polyploids makes genomic work difficult; ploidy needs to be
determined, chromosome copy number, and even then, certain
genes might have more copies than are actually being tested. Next
generation sequencing lends itself to providing more insight into
polyploidy and its role in weed genomics. While there are more
sources providing insight into weed genomics and a pathway
for polyploid weeds, more extensive and in-depth research is
required in order to fully comprehend the scale that polyploidy
plays in understanding weeds.
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