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Finger millet (Eleusine coracana Gaertn L.) is an important grain crop for small farmers in

many countries. Reliable estimates of crop parameters, such as crop growth and nitrogen

(N) content, through remote sensing techniques can improve in-season management

of finger millet. This study investigated the relationships of hyperspectral reflectance

with canopy height, green canopy cover, leaf area index (LAI), and N concentrations of

finger millet using an optimal waveband selection procedure with partial least square

regression (PLSR). Predictive performance of 13 vegetation indices (VIs) computed

from the original hyperspectral data as well as synthesized Landsat-8 and Sentinel-2

data were evaluated and compared for estimating various crop parameters with simple

linear regression (SLR) and multilinear regression (MLR) models. The optimal wavebands

determined by PLSR were mostly concentrated within 1,000–1,100 nm for both LAI and

dry biomass but were scattered for other canopy parameters. The SLR statistics resulted

in the simple ratio pigment index (SRPI) and red/green index (RGI) performing best when

predicting LAI (R2
v = 0.53–0.59) and canopy cover (R2

v = 0.72–0.76). The blue/green

index (BGI1) was strongly related to canopy height (R2
v = 0.65–0.78), dry biomass

(R2
v = 0.42–0.49), and N concentration (R2

v = 0.70–0.83) of finger millet, regardless

of spectral resolutions. The MLR approach, using four maximum VIs as input variables,

improved the prediction accuracy of N concentration by 14% compared to both SLR and

waveband selection methods. VIs computed from synthesized Landsat-8 and Sentinel-2

satellite data resulted in similar or greater prediction accuracy than hyperspectral data

for various canopy parameters of finger millet, indicating publicly accessible multispectral

data could serve as alternative to hyperspectral data for improved crop management

decisions via precision agriculture.
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INTRODUCTION

Finger millet is an annual grass that serves as an essential cereal
crop in several drought-prone areas globally. It is extensively
cultivated in Asia (India, Nepal, Myanmar, China, Sri Lanka, and
Japan), and Africa (Kenya, Uganda, Ethiopia, Zaire, Tanzania,
Somalia, and Rwanda) (Upadhyaya et al., 2010). The nutritious
fingermillet grain helps preventmalnutrition and is an important
component of diets for breastfeeding mothers, growing children,
and patients (Singh and Raghuvanshi, 2012). Furthermore, the
biomass of finger millet is used as forage for livestock in many
Asian and African countries (Sumathi et al., 2005).

Finger millet has been receiving increased attention as a forage
resource in the southern United States (US) due to its high
nutritive value. Research conducted in the Southern High Plains
reported that the nutrient concentrations of its forage were higher
than forage of corn and sorghum. Moreover, it can be mixed with
corn and sorghum to improve the overall quality of silage for
dairy cattle (Gowda et al., 2015). Finger millet could also serve as
an alternative to perennial pastures of bermudagrass [Cyanodon
dactylon (L.) Pers.] and old world bluestems (Bothriochloa spp.),
to fill declines in forage quality during late-summers in the
Southern Great Plains (Baath et al., 2018a,b). Extensive research
has focused on developing strategies for agronomicmanagement,
including optimum rates of nitrogen (N) application to sustain
forage production and quality of finger millet in the southern US.

Estimation and monitoring of biophysical and biochemical
characteristics are essential for agronomic research and forage
management of crops, including finger millet. Biophysical
parameters such as plant height, leaf area index (LAI),
green canopy cover, and biomass are important indicators of
plant growth, foliage density, canopy interception, and crop
productivity, respectively (Thenkabail et al., 2000). In contrast,
N concentrations in plant biomass represent an estimate of
forage quality and any stress associated with photosynthetic
activity of the parent plant (Feng et al., 2008). Although the
traditional approaches of measuring biophysical attributes or
plant N are reliable, they are time-consuming, laborious, and do
not provide real-time N status of crops (Foster et al., 2017). In
comparison, remote sensing techniques have potential to provide
real-time, non-destructive estimates of different biophysical or
biochemical attributes in many crops (Thenkabail et al., 2000;
Nguyen and Lee, 2006). Remote sensing can also capture seasonal
variations, which are often missed in traditional techniques due
to limitations associated with the time and human resources
(Hatfield and Prueger, 2010). While many diverse applications
of remote sensing have been developed for major crops (Bégué
et al., 2018), there are very few reports of such studies for finger
millet (Dayananda et al., 2019).

Hyperspectral reflectance has been established as a
valuable alternative to traditional methods of remote sensing.
Hyperspectral remote sensing provides many contiguous
narrow bands (<10 nm) of information related to biophysical
and biochemical characteristics, which are usually missed
by broadband multispectral reflectance due to low spectral
resolution (Sahoo et al., 2015). Past research showed the
potential of hyperspectral reflectance in estimating many

biophysical parameters, involving plant height (Yue et al.,
2017), leaf area index (LAI; Zhao et al., 2007a), canopy cover
(Muharam et al., 2015), biomass (Foster et al., 2017), and plant
N (Zhao et al., 2005). Therefore, the technique could be useful in
monitoring the growth parameters and plant N status of finger
millet and defining responses to different application rates of
fertilizers (Jain et al., 2007).

Though hyperspectral imaging can provide more
comprehensive analyses of the attributes of the canopy of finger
millet, the high-dimensional data captured by hyperspectral
sensors are challenging for conventional analytical techniques.
Such data are affected by relatively large volumes, require Big
Data analytics, have storage problems, and include redundant
data/wavelengths (Becker et al., 2005). One possible solution
is to reduce the dimensions of captured hyperspectral data by
extracting optimal bands of interest for specific crop parameters
(Wang et al., 2008). The partial least square regression (PLSR), an
extension of multiple linear regression, is one of themost efficient
methods used to extract relevant information from the large
dimensional hyperspectral data and generate reliable models for
predicting crop characteristics (Nguyen and Lee, 2006; Li et al.,
2014). As hyperspectral data often consist of highly collinear
wavebands, the use of PLSR is assumed more appropriate than
other statistical methods since it avoids model overfitting.

Hyperspectral analysis is not the only option for remote
sensing of canopy characteristics. In contrast to the complicated
selection procedure for wavebands in hyperspectral analyses, the
approach of spectral vegetation indices (VIs) has been widely
utilized for many crops due to its simplicity and straightforward
analytics (Fang and Liang, 2008). VIs are commonly-used
numerical computations derived from specific narrow bands
of the electromagnetic spectrum, primarily the visible and
near-infrared regions (Viña et al., 2011). Many VIs can be
developed from hyperspectral data and correlated individually
to different canopy parameters (Hatfield and Prueger, 2010).
Simple ratio (SR) and Normalized Difference Vegetation Index
(NDVI) are the most commonly used for estimating various
canopy characteristics (Zhao et al., 2007b; Hatfield et al., 2019);
however, other VIs such as Triangular Vegetation Index (TVI)
performed better at predicting LAI for soybean (Glycine max),
maize (Zea mays), and wheat (Triticum aestivum) (Jiang et al.,
2008). Likewise, indices that involve red-edge wavelengths were
found to be more robust at predicting canopy N in wheat than
normalized or simple ratio indices (Cammarano et al., 2014).
The suitability of VIs varies for specific applications, growth
stages and crop species (Thenkabail et al., 2002), and hence some
caution is needed when considering VIs for practical applications
in fingermillet. Also, a combination of different VIs could further
enhance the prediction accuracy of crop parameters (Tong et al.,
2019), but the approach is not yet well-established. As such,
the multilinear regression (MLR) models could prove effective
at selecting multiple non-correlated VIs to develop significant
correlations with various canopy parameters.

Spectroradiometer equipment involves a high monetary
cost, which limits its availability to small farmers and crop
consultants. New multispectral sensors, including Sentinel-2
and Landsat-8, that accompanied improvements in spectral
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and spatial resolution, could serve as useful platforms for
precision agriculture-based applications (Flynn et al., 2020).
Since the applicability of VIs could also differ depending on
the spectral resolution and instrument used (Xue and Su,
2017), it is important to evaluate whether VIs developed from
hyperspectral data can successfully translate to the multispectral
bands captured by Sentinel-2 or Landsat-8 for the estimation of
crop parameters of finger millet.

The main objectives of this study were to: (i) investigate
the relationships of hyperspectral reflectance with biophysical
characteristics and N status of finger millet using the PLSR
optimal waveband selection procedure, and (ii) evaluate
capabilities of VIs developed from the original hyperspectral
data and those derived from synthesized Landsat-8 and Sentinel-
2 data for estimating various crop parameters through simple
linear regression (SLR) and multilinear regression (MLR)
models. Finally, an overall comparison of prediction accuracies
obtained using different methods was performed to define
their capacity as a remote sensing tool in agronomic research
and forage management of finger millet. We hypothesized
that the optimal waveband selection procedure and VI based
models developed using hyperspectral and multispectral band
resolutions would result in similar prediction accuracy for
various canopy parameters of finger millet.

MATERIALS AND METHODS

Experimental Setup
The experiment was conducted at the United States Department
of Agriculture-Agricultural Research Service (USDA-ARS)
Grazinglands Research Laboratory (35◦34′N, 98◦02′ W,

elevation 409m above mean sea level), near El Reno, Oklahoma,
US. The experimental field soil type was described as Brewer silty
clay loams with a pH of 6.9, slope of 0–1%, water permeability
ranging between 0.2 and 1.5 cm h−1, and rarely flooded (USDA-
NRCS, 1999). Finger millet cv. PI302662 was planted 2-cm deep
at 38-cm row spacing using a Monosem planter (Monosem,
Kansas City, KS) on 16 June 2018. Inter-plant spacing was
adjusted to achieve 15 seeds m−1 row length. About 50mm of
irrigation water was applied with a sprinkler system at planting
to assure good emergence. Five nitrogen treatments of 0, 30, 60,
90 and 120Kg N ha−1 were arranged in a randomized complete
block design with four replicated plots per treatment. Nitrogen
treatments were top-dressed in two equal split doses at 10 and
50 days after planting (DAP), using dry urea (46-0-0) fertilizer.
The site received a total of 235mm of rainfall during the growing
season of finger millet and encountered a mean air temperature
of 19 ◦C during the experiment (Figure 1).

Crop Characteristics and Hyperspectral
Reflectance
Biophysical and reflectance data were collected simultaneously
at 38, 46, 52, and 76 days after planting (DAP). The spectral
data were measured with a spectroradiometer [FieldSpec Pro
FR: Analytical Spectral Devices (ASD), Boulder, CO, USA] by
choosing a random location within each plot. The reflectance
measurement of the spectroradiometer used ranges between 350
and 2500 nm, comprising a spectral interval of 1.4 and 2.0 nm
from 350 to 1,000 and 1,000 to 2,500 nm, respectively. Spectral
data were collected from 1.2m above ground with a 25-degree
cone of acceptance, generating a 0.53m diameter footprint for
each sample. The LAI values were collected using a plant canopy

FIGURE 1 | Daily maximum (Tmax) and minimum (Tmin) temperatures and rainfall encountered during the summer growing season of 2018 at El Reno,

Oklahoma, USA.
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analyzer (LAI-2200C, LI-COR Inc., Lincoln, Nebraska, USA),
canopy cover was collected using the Canopeo app (Patrignani
and Ochsner, 2015), and canopy height were observed at the
same location within the plot. Sampled areas were then harvested
to 5.0 cm aboveground from 0.5m row lengths. Biomass samples
were oven-dried at 60◦C to constant weight, and dry weights
were determined to define aboveground biomass. Each biomass
sample was ground to 2-mm in a Wiley mill, and total N content
was determined using an auto-analyzer (Model Vario Macro,
Elementar Americas, Inc., Mt. Laurel, NJ, USA). The measured
crop characteristics are summarized in Table 1.

Spectral Preprocessing
Three spectral measurements were averaged to obtain a
single spectral curve for each location/sample point before
preprocessing. The resulting spectral curves were subjected
to the Savitzky-Golay smoothing method to reduce spectral
noise (Savitzky and Golay, 1964). Further, wavelength centered
bands were created based on the average value derived from
a set of 5 nm wavelengths (Kawamura et al., 2008, 2018);
for instance, a band centered at 450 nm was averaged from
wavelength reflectance values observed from 448 to 452 nm.
The procedure for creating centered bands aids in reducing
the noise of data and removes wavelengths considered to be
similar. Bands ranging between 1,290 and 1,495, 1,705 and
2,045, and 2,355 and 2,500 nm were removed due to atmospheric
moisture absorption noise, while 350–395 and 1005–1015 were
removed to avoid overlapping noise within the two sensors of the
spectroradiometer. The spectral preprocessing resulted in a total
of 277 spectral wavebands ranging from 400 to 2,350 nm.

The 5 nm bands matching Landsat-8 (L8) and Sentinel-2
(S2) bands were synthesized using hyperspectral (Hy) data.
Bandwidths used for both L8 and S2 are presented inTable 2. The
reflectance values for Hy bands within a given bandwidth were

TABLE 1 | Descriptive statistics of the measured parameters for the finger millet.

Parameter n Minimum Maximum Mean SD

Canopy height (cm) 80 15.24 111.76 38.70 23.41

Leaf area index (LAI) 56 0.43 4.26 2.11 0.94

Canopy cover (%) 79 7.60 84.40 47.3 20.53

Dry biomass (Mg ha−1) 80 0.57 16.77 3.70 3.65

N concentration (%) 80 1.27 4.53 3.32 0.79

n, number of samples; SD, standard deviation.

added together and divided by number of wavebands to calculate
each of L8 and S2 bands.

Data Analyses
The canopy reflectance data collected over four sensing dates for
finger millet grown under five nitrogen treatments were analyzed
as a randomized block design using PROC MIXED procedure in
SAS 9.4 (SAS Institute Inc., Cary, NC, USA). Nitrogen treatment
and spectral wavelength served as fixed effects within the analysis
of variance (ANOVA) model, while block was considered as a
random element and individual plots were treated as a subject.
Sensing dates were taken as repeated elements, and compound
symmetry covariance structures were used to take covariance and
auto-correlation into account. All possible three-way and two-
way interactions among nitrogen treatment, sensing date and
wavebands were accounted for within the final model.

Partial Least Square Regression (PLSR) and Optimal

Waveband Selection
The PLSR technique projects both dependent and independent
variables into a new higher dimensional space to develop a linear
regression model. It generates latent variables, also known as
score vectors, to capture the variability related to the dependent
variable(s). Technically, PLSR develops a model by deriving X-
scores from latent variables to predict Y-scores (Baath et al.,
2020). A redundancy analysis on the X- and Y-scores brings
directionality in the factor space to obtain the most accurate
prediction (Wu and Yu, 2016). While applying PLSR on spectral
data, the number of latent variables (NLV) should not exceed
the number of independent variables as it can lead to overfitting
(Kawamura et al., 2008).

The waveband selection is a modified PLSR method generally
used for spectroscopic analyses. The selection process involves
reducing the number of wavebands to the most relevant
bands based on plant/crop characteristics before carrying out
the regression. The method resembles step-wise regression as
it eliminates the least important wavebands. PLSR assigns a
weighed regression coefficient (βw) to each independent variable
based on its contribution to the model. The waveband selection
starts with all 277 wavebands and removes the waveband with the
least contribution to the model. This removal process is repeated
with 276 wavebands and continues until it is reduced to one
waveband. After every iteration, the predictive ability is assessed
for each set of wavebands by computing the root mean squared
error (RMSE), and the PLSR model resulting in the lowest RMSE

TABLE 2 | Convolved hyperspectral wavelengths (nm) to match Landsat-8 OLI (L8) and Sentinel-2 MSI (S2) bands (B).

Satellite B1 B2 B3 B4 B5 B6 B7 B8

Landsat-8 Ultra Blue Blue Green Red NIR – – –

435-451 452-512 533-590 636-673 851-879 – – –

Sentinel-2 Ultra Blue Blue Green Red Red-Edge 1 Red-Edge 2 Red-Edge 3 Narrow NIR

430-457 447-546 538-583 646-684 695-713 731-749 770-797 848-882
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determines the optimal wavebands and the number of wavebands
to be used.

Spectral Indices and Linear Regression Models
Original Hy, and synthesized L8 and S2 bands were used
to compute 13 vegetation indices (Table 3). The relationships
between each index and measured parameters were best-fit
with the simple linear regression (SLR) models. In addition,
multilinear regression (MLR) models were developed for each of
Hy, L8 and S2 datasets using the stepwise regression and Akaike
information criterion (AIC) approach (Zhang, 2016). The MLR
approach is based on a primary hypothesis that a subset of VIs
is more predictive than others for tested canopy parameters.
It starts with no VI in the regression model and then keeps
on adding the most statistically significant VIs (with the lowest
p-value) at every step. The process stops at the point when the
regression model shows no improvement on adding more VIs
(Fritz and Berger, 2015). A multicollinearity analysis of datasets
was conducted based on the Variance Inflation Factor (VIF)
calculated using the ‘car’ package in R (Fox et al., 2012), and
predictors with a VIF > 5 were not included in the regression
models. The maximum number of VIs (nvmax) selected by the
MLR models were limited to four using the ‘caret’ package in R
(Kuhn, 2008).

The predictive capabilities for the PLSR based waveband
selection method, and SLR andMLRmodels developed using VIs
were evaluated using a bootstrapping procedure. The procedure
involves dividing the data into two random subsets: calibration
(75%) and validation (25%), with 1,000 replacements (Efron,
1979). The prediction accuracy of models was compared using
the resulting coefficient of determination (R2

v) and root mean
squared error (RMSEv) values for the validation.

RESULTS

Significant three-way interaction (P < 0.0001) among nitrogen
treatment, sensing date and waveband was noticed for canopy
reflectance spectra. The responses of various spectrum regions
changed across five nitrogen treatments on different sampling
dates (Figures 2A–D). Although there were differences in
intensity, reflectance showed a typical increase in the NIR
region (>700 nm) with increasing nitrogen fertilizer level at all
sampling dates, except some relatively mixed responses observed
at 52 DAP.

Each of the crop parameters showed a wide range and high
standard deviation among observed values (Table 1), which
represents the variability caused by different N rates applied
and age of plant materials at sampling dates during the

TABLE 3 | Formulas of vegetation indices computed for hyperspectral (Hy) data and synthesized Landsat-8 OLI (L8) and Sentinel-2 MSI (S2) data [derived from

Zarco-Tejada et al. (2005) and le Maire et al. (2004)].

Type Vegetation Index Hyperspectral (Hy) Indices Synthesized Landsat-8 OLI

(L8) Indices

Synthesized Sentinel-2 MSI

(S2) Indices

References

Band

Ratios

Normalized Difference

Vegetation Index (NDVI)

Hy_NDVI = (R900−R685 )
(R900+R685 )

L8_NDVI = (B5−B4 )
(B5+B4 )

S2_NDVI = (B7−B4 )
(B7+B4 )

Rouse et al., 1974

Simple Ratio (SR) Hy_SR =
R900
R685

L8_SR =
B5
B4

S2_SR =
B7
B4

Jordan, 1969;

Rouse et al., 1974

Modified Simple Ratio (MSR) Hy_MSR =

R900
R685

−1

(
R900
R685

)
0.5

+1
L8_MSR =

B5
B4

−1

(
B5
B4

)
0.5

+1
S2_MSR =

B7
B4

−1

(
B7
B4

)
0.5

+1
Chen, 1996

Triangulated Triangular Vegetation Index

(TVI)

Hy_TVI =

0.5[120 (R750 − R550) −

200 (R670 − R550)]

L8_TVI = 0.5[120 (B5 − B3) −

200 (B4 − B3)]

S2_TVI = 0.5[120 (B7 − B3) −

200 (B4 − B3)]

Broge and

Leblanc, 2001

Soil

Adjusted

Improved SAVI with

self-adjustment factor L

(MSAVI)

Hy_MSAVI = 1
2 [2R800 + 1−

√

(2R800 + 1)2 − 8(R800 − R670)]

L8_MSAVI = 1
2 [2B5 + 1−

√

(2B5 + 1)2 − 8(B5 − B4)]

S2_MSAVI = 1
2 [2B7 + 1−

√

(2B7 + 1)2 − 8(B7 − B4)]

Qi et al., 1994

Optimized Soil-Adjusted

Vegetation Index (OSAVI)

Hy_OSAVI = (1+0.16)(R800−R670 )
(R800+R670+0.16) L8_OSAVI = (1+0.16)(B5−B4 )

(B5+B4+0.16) S2_OSAVI = (1+0.16)(B7−B4 )
(B7+B4+0.16) Rondeaux et al.,

1996

Simple

Pigment

Red/Green, Blue/Green,

and Blue/Red Pigment

indices (RGI, BGI, BRI)

Hy_RGI = R690/R550 L8_RGI = B4/B3 S2_RGI = B4/B3 Zarco-Tejada

et al., 2005Hy_BGI1 = R400/R550 L8_BGI1 = B1/B3 S2_BGI1 = B1/B3

Hy_BGI2 = R450/R550 L8_BGI2 = B2/B3 ST_BGI2 = B2/B3

Hy_BRI1 = R400/R690 L8_BRI1 = B1/B4 S2_BRI1 = B1/B4

Hy_BRI2 = R450/R690 L8_BRI2 = B2/B4 ST_BRI2 = B2/B4

Simple Ratio Pigment Index

(SRPI)

Hy_SRPI = R430/R680 L8_SRPI = B1/B4 S2_SRPI = B1/B4 Peñuelas et al.,

1995

Red-Edge Red-Edge Linear

Extrapolation

Inflection point:

Rre = (R670 + R780)/2

Hy_REP = 700+ 40
(

Rre−R700
R740−R700

)

– Inflection point:

Rre = (B4 + B7)/2

S2_REP = 700+ 40
(

Rre−B5
B6−B5

)

Cho and

Skidimore, 2006

See Table 2 for band convolutions for synthesized Landsat-8 OLI and Sentinel-2 MSI.
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FIGURE 2 | Mean canopy reflectance of finger millet under five nitrogen fertilizer rates when sampled at (A) 38, (B) 46, (C) 52, and (D) 76 days after planting.

growing season. Datasets of canopy height, dry biomass, and
N concentration include 80 values each, while there was one
missing value for canopy cover data. Also, LAI measurements
were not recorded at final sampling (76 DAP), and four values
were identified as outliers; hence a total of 56 values were used
for LAI analyses.

Waveband Selection Approach
Among parameters, the best prediction accuracy was
observed for canopy height (R2

v = 0.86), followed by canopy
cover (R2

v = 0.81), with the waveband selection approach
(Figures 3A,C). In contrast, R2

v for dry biomass and plant N
concentration were 0.71 and 0.77, respectively (Figures 3D,E),
and the lowest R2

v (0.55) among measured canopy parameters
of finger millet was noted for LAI (Figure 3B).

It should be noted that the results for dry biomass and LAI
were based on only eight spectral bands, with the most optimal
bands positioned within the electromagnetic wavelength range
of 1,000–1,100 nm. In contrast, plant N concentration, canopy
cover and canopy height used a relatively higher number of

spectral wavebands (52–59), with ∼ 25, 29, and 44% of selected
spectral bands, respectively, within the near-infrared region
(NIR; 700–1000 nm).

Vegetation Indices (VIs)
VIs computed using Hyperspectral (Hy) data, synthesized
Landsat-8 (L8), and Sentinel-2 (S2) data showed variable linear
relationships with canopy height (Table 4). Within each of Hy,
L8, and S2 indices, the simple pigment blue/green index (BGI1)
performed best at predicting canopy height through SLR models,
with an R2

v of 0.78 for L8_ BGI1, and R2
v of 0.65 and 0.66

obtained for Hy_ BGI1 and L8_ BGI1, respectively. In contrast,
blue red index (BRI1) was the least accurate at estimating canopy
height of finger millet, irrespective of tested spectral resolutions.

The MLR model resulted in greater prediction accuracy of
canopy height than SLR models in each of three categories of VIs
(Hy, L8, and S2;Table 5). TheMLRmodel, comprised of two VIs,
resulted in comparable R2

v of 0.83-0.84 for Hy and L8 indices,
while R2

v of 0.86 was obtained with an additional VI used in the
model for S2 data (Table 5).
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FIGURE 3 | Frequency of optimal wavebands selected across 350-2500 nm spectral wavelength for (A) canopy height, (B) leaf area index (LAI), (C) canopy cover, (D)

dry biomass and (E) N concentration of finger millet, using the partial least square regression (PLSR) based procedure for waveband selection.
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Red/Green index (RGI), another simple pigment
index, outperformed the other indices for canopy cover
estimations within each category (Table 6). Hy, L8 and
S2 data resulted in a comparable range of R2

v (0.72–
0.76) values for the linear relationships between RGI and
canopy cover. Besides RGI, all VIs calculated with Hy and
L8 data performed reasonably well at predicting canopy

TABLE 4 | Validation statistics (RMSEv and R2
v ) of simple linear regression

models of Hyperspectral (Hy) indices, and synthesized Landsat-8 (L8) and

Sentinel-2 (S2) indices for canopy height of finger millet.

Height Hyperspectral

(Hy) indices

Landsat-8 (L8)

indices

Sentinel-2 (S2)

indices

RMSEv R2
v RMSEv R2

v RMSEv R2
v

NDVI 8.52 0.34 8.58 0.34 8.34 0.32

SR 7.03 0.58 5.88 0.68 6.15 0.64

MSR 7.46 0.51 6.65 0.60 6.77 0.55

TVI 10.13 0.06 9.84 0.16 9.07 0.21

MSAVI 9.26 0.21 9.00 0.28 8.44 0.33

OSAVI 9.03 0.25 8.94 0.29 8.50 0.30

RGI 9.20 0.22 9.10 0.28 8.65 0.26

BGI1 6.90 0.65 5.83 0.78 5.93 0.66

BGI2 7.21 0.56 6.37 0.71 6.50 0.58

BRI1 NS NS NS NS 9.86 0.04

BRI2 NS NS NS NS 8.90 0.22

SRPI 10.38 0.02 NS NS 9.86 0.04

REP 7.34 0.51 NA NA 6.89 0.61

NDVI, Normalized Difference Vegetation Index; SR, Simple Ratio; MSR, Modified Simple

Ratio; TVI, Triangular Vegetation Index; MSAVI, Modified Soil Adjusted Vegetation Index;

OSAVI, Optimized Soil Adjusted Vegetation Index; RGI, Red/Green Index; BG, Blue/Green

Index; BR, Blue/Red Index; SRPI, Simple Ratio Pigment Index; REP, Red-Edge Linear

Extrapolation; NS, non-significant; NA, not available. Bold values represent vegetation

index with highest R2
v .

cover with R2
v ≥ 0.50 for SLR models, except L8_BGI1

(Table 6). For S2 data, five out of 13 indices resulted in R2
v

< 0.50, with S2_BGI1 performing as the least accurate (R2
v

= 0.30).
Unlike canopy height, the resulting MLR models for canopy

cover were consistently based on the same two VIs (SR and RGI;
Table 5). AlthoughMLR performed better (R2

v = 0.75-0.78) than

TABLE 6 | Validation statistics (RMSEv and R2
v ) of simple linear regression

models of Hyperspectral (Hy) indices, and synthesized Landsat-8 (L8) and

Sentinel-2 (S2) indices obtained for canopy cover of finger millet.

Hyperspectral

(Hy) indices

Landsat-8 (L8)

indices

Sentinel-2 (S2)

indices

RMSEv R2
v RMSEv R2

v RMSEv R2
v

NDVI 12.22 0.67 11.10 0.66 8.83 0.69

SR 11.60 0.71 11.58 0.63 9.98 0.61

MSR 11.07 0.73 11.07 0.66 9.44 0.64

TVI 13.74 0.62 11.68 0.61 14.19 0.44

MSAVI 12.13 0.71 11.20 0.64 13.04 0.49

OSAVI 11.96 0.70 10.97 0.67 11.58 0.56

RGI 11.06 0.74 9.92 0.76 8.81 0.72

BGI1 15.18 0.50 15.42 0.36 13.60 0.30

BGI2 13.71 0.59 13.48 0.50 12.47 0.39

BRI1 15.79 0.54 11.17 0.70 11.97 0.59

BRI2 13.63 0.62 10.19 0.74 9.46 0.69

SRPI 11.91 0.71 11.17 0.70 11.97 0.59

REP 14.22 0.56 NA NA 13.29 0.34

NDVI, Normalized Difference Vegetation Index; SR, Simple Ratio; MSR, Modified Simple

Ratio; TVI, Triangular Vegetation Index; MSAVI, Modified Soil Adjusted Vegetation Index;

OSAVI, Optimized Soil Adjusted Vegetation Index; RGI, Red/Green Index; BG, Blue/Green

Index; BR, Blue/Red Index; SRPI, Simple Ratio Pigment Index; REP, Red-Edge Linear

Extrapolation; NS, non-significant; NA, not available. Bold values represent vegetation

index with highest R2
v .

TABLE 5 | Validation statistics (RMSEv and R2
v ) of multilinear regression models of Hyperspectral (Hy) indices, and synthesized Landsat-8 (L8) and Sentinel-2 (S2) indices

obtained for canopy height, canopy cover, dry biomass and nitrogen (N) concentration of finger millet.

Parameter Indices Regression equation RMSEv R2
v

Canopy height Hyperspectral (Hy) Y = 3.64 Hy_SR – 66.21 Hy_SRPI + 34.16 3.20 0.84

Landsat-8 (L8) Y = 3.75 L8_SR – 86.22 L8_BRI2 – 55.04 3.36 0.83

Sentinel-2 (S2) Y = −56.55 S2_MSAVI – 176.47 S2_BGI1 – 56.55 S2_REP – 2317 3.79 0.86

Canopy cover Hyperspectral (Hy) Y = 1.69 Hy_SR – 72.42 Hy_RGI + 93.29 10.26 0.78

Landsat-8 (L8) Y = 2.19 L8_SR – 82.74 L8_RGI + 96.92 9.49 0.78

Sentinel-2 (S2) Y = 1.95 S2_SR – 79.62 S2_RGI + 93.74 9.81 0.75

Dry biomass Hyperspectral (Hy) Y = 16.7 Hy_SR – 365.47 Hy_BRI1 + 122.37 59.89 0.50

Landsat-8 (L8) Y = 20.21 L8_SR – 334.8 L8_BRI1 – 153.53 34.43 0.55

Sentinel-2 (S2) Y = 20.27 S2_SR – 323.0 S2_BRI1 + 150.27 63.59 0.52

N concentration Hyperspectral (Hy) Y = 9.26 Hy_BGI2 – 0.016 Hy_REP + 10.28 0.46 0.88

Landsat-8 (L8) Y = 1.81 L8_OSAVI + 16.66 L8_BGI1 – 6.54 0.35 0.85

Sentinel-2 (S2) Y = 1.18 S2_MSAVI + 16.35 S2_BGI1 – 5.83 0.33 0.81

SR, Simple Ratio; MSR, Modified Simple Ratio; MSAVI, Modified Soil Adjusted Vegetation Index; OSAVI, Optimized Soil Adjusted Vegetation Index; RGI, Red/Green Index; BG, Blue/Green

Index; BR, Blue/Red Index; SRPI, Simple Ratio Pigment Index; REP, Red-Edge Linear Extrapolation.
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SLR models at predicting canopy cover for each of three datasets,
observed statistics (R2

v and RMSEv) were not largely different.
The SLR model of simple ratio pigment index (SRPI)

performed consistently (R2
v = 0.53–0.59) at estimating LAI,

with L8_SRPI performing best (R2
v = 0.59) among Hy, L8

and S2 indices (Table 7). Apart from SRPI, the predictive
accuracy of BRI2 was also relatively better (R2

v = 0.52–0.57)
than the remaining indices. Besides, SR, MSR, and RGI indices
developed comparable linear relationships with LAI and their R2

v

ranged between 0.43 and 0.51, regardless of spectral resolutions.
However, in contrast to canopy height and canopy cover, MLR
models did not result in any significant combination of VIs that
could outperform the SLR model for LAI prediction accuracies
with either of three datasets.

Among the VIs, none of them resulted in a consistently
best linear relationship with dry biomass for each of Hy,
L8, and S2 datasets (Table 8). Among Hy indices, the best
linear relationship of dry biomass was observed with red-
edge linear extrapolation (REP) index (R2

v = 0.48), while
BGI1performed with an R2

v of 0.46 and 0.49 among L8
and S2 indices, respectively (Table 8). Other than BGI1, SR
showed a consistent prediction accuracy, with R2

v ranging
between 0.40 and 0.46, compared to remaining VIs in all three
categories. In contrast, linear relationships of dry biomass with
BRI1, BRI2 and SRPI were least significant (R2

cv = 0.02–0.20)
among VIs.

The MLR model improved the prediction accuracy of dry
biomass for all three datasets (Table 5). Among MLR models
developed for dry biomass, best performance (R2

v = 0.55) was

TABLE 7 | Validation statistics (RMSEv and R2
v ) of simple linear regression

models of Hyperspectral (Hy) indices, and synthesized Landsat-8 (L8) and

Sentinel-2 (S2) indices obtained for leaf area index (LAI) of finger millet.

LAI Hyperspectral

(Hy) indices

Landsat-8 (L8)

indices

Sentinel-2 (S2)

indices

RMSEv R2
v RMSEv R2

v RMSEv R2
v

NDVI 0.631 0.42 0.751 0.41 0.727 0.38

SR 0.667 0.48 0.711 0.45 0.663 0.51

MSR 0.657 0.49 0.711 0.45 0.676 0.47

TVI 0.702 0.41 0.803 0.35 0.674 0.50

MSAVI 0.698 0.41 0.769 0.39 0.682 0.48

OSAVI 0.673 0.46 0.757 0.41 0.700 0.44

RGI 0.644 0.49 0.697 0.47 0.695 0.43

BGI1 0.844 0.11 0.927 0.09 0.871 0.12

BGI2 0.791 0.27 0.828 0.25 0.831 0.20

BRI1 0.644 0.50 0.616 0.59 0.631 0.54

BRI2 0.632 0.52 0.629 0.57 0.631 0.53

SRPI 0.621 0.53 0.616 0.59 0.631 0.54

REP 0.848 0.13 NA NA 0.827 0.24

NDVI, Normalized Difference Vegetation Index; SR, Simple Ratio; MSR, Modified Simple

Ratio; TVI, Triangular Vegetation Index; MSAVI, Modified Soil Adjusted Vegetation Index;

OSAVI, Optimized Soil Adjusted Vegetation Index; RGI, Red/Green Index; BG, Blue/Green

Index; BR, Blue/Red Index; SRPI, Simple Ratio Pigment Index; REP, Red-Edge Linear

Extrapolation; NS, non-significant; NA, not available. Bold values represent vegetation

index with highest R2
v .

observed with L8 indices, accompanied by S2 (R2
v = 0.52) and

L8 (R2
v = 0.50) indices.

Among VIs, the best predictive accuracy for N concentration
was obtained with BGI1within each of Hy, L8, and S2 indices
(Table 9). The greatest R2

v of 0.83 was observed for Hy_BGI1,
followed by S2_BGI1 (R2

v = 0.80). Whereas, L8_BGI1 had a
relatively lower R2

v of 0.70 for N concentration, which was
otherwise higher than the remaining L8 indices. As observed for
canopy height and dry biomass, the least effective SLRmodels for
estimating N concentration were observed with BRI1, BRI2, and
SRPI indices.

MLR models, comprising two VIs, improved prediction
accuracies of N concentration compared to SLR models within
each category (Table 5), though little difference was observed
for performance given by Hy indices. The best MLR model
performance (R2

v = 0.90) was noticed for S2 data, followed by
Hy and S2 data (R2

v = 0.83–0.88).

DISCUSSION

Though not generally grown in large-scale commercial settings,
finger millet is still an essential cereal crop in many drought-
prone areas around the world. Therefore, the ability to estimate
different parameters of crop canopies of finger millet through
remote sensing could be important for improving in-season
management. Remote sensing applications have not been
widely applied to finger millet, and this study showed that
relationships between hyperspectral reflectance and different
canopy parameters using the PLSR based procedure for

TABLE 8 | Validation statistics (RMSEv and R2
v ) of simple linear regression

models of Hyperspectral (Hy) indices, and synthesized Landsat-8 (L8) and

Sentinel-2 (S2) indices obtained for dry biomass of finger millet.

Biomass Hyperspectral

(Hy) indices

Landsat-8 (L8)

indices

Sentinel-2 (S2)

indices

RMSEv R2
v RMSEv R2

v RMSEv R2
v

NDVI 71.89 0.29 63.24 0.31 77.14 0.30

SR 65.35 0.40 57.64 0.46 69.78 0.44

MSR 66.42 0.38 58.80 0.43 71.33 0.41

TVI 76.75 0.21 61.95 0.33 78.97 0.25

MSAVI 71.50 0.31 60.47 0.37 75.89 0.32

OSAVI 72.18 0.29 61.63 0.34 76.66 0.31

RGI 75.50 0.22 66.64 0.22 80.37 0.23

BGI1 65.82 0.42 59.40 0.46 70.30 0.49

BGI2 66.20 0.40 61.95 0.38 73.55 0.42

BRI1 NS NS 72.04 0.06 88.02 0.04

BRI2 NS NS 69.90 0.12 82.51 0.19

SRPI 83.48 0.04 72.04 0.06 88.02 0.04

REP 63.53 0.48 NA NA 73.17 0.32

NDVI, Normalized Difference Vegetation Index; SR, Simple Ratio; MSR, Modified Simple

Ratio; TVI, Triangular Vegetation Index; MSAVI, Modified Soil Adjusted Vegetation Index;

OSAVI, Optimized Soil Adjusted Vegetation Index; RGI, Red/Green Index; BG, Blue/Green

Index; BR, Blue/Red Index; SRPI, Simple Ratio Pigment Index; REP, Red-Edge Linear

Extrapolation; NS, non-significant; NA, not available. Bold values represent vegetation

index with highest R2
v .
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TABLE 9 | Validation statistics (RMSEv and R2
v ) of simple linear regression

models of Hyperspectral (Hy) indices, and synthesized Landsat-8 (L8) and

Sentinel-2 (S2) indices obtained for N concentration of finger millet.

N Hyperspectral

(Hy) indices

Landsat-8 (L8)

indices

Sentinel-2 (S2)

indices

RMSEv R2
v RMSEv R2

v RMSEv R2
v

NDVI 0.625 0.39 0.574 0.36 0.632 0.36

SR 0.550 0.54 0.463 0.57 0.560 0.50

MSR 0.567 0.50 0.492 0.52 0.586 0.47

TVI 0.713 0.19 0.660 0.24 0.675 0.23

MSAVI 0.681 0.27 0.612 0.33 0.653 0.31

OSAVI 0.660 0.31 0.605 0.32 0.650 0.32

RGI 0.621 0.39 0.597 0.31 0.665 0.32

BGI1 0.368 0.83 0.397 0.70 0.362 0.80

BGI2 0.394 0.76 0.420 0.66 0.408 0.74

BRI1 NS NS 0.705 0.03 0.794 0.05

BRI2 0.761 0.08 0.685 0.09 0.758 0.20

SRPI 0.729 0.15 0.705 0.03 0.794 0.05

REP 0.735 0.19 NA NA 0.615 0.31

NDVI, Normalized Difference Vegetation Index; SR, Simple Ratio; MSR, Modified Simple

Ratio; TVI, Triangular Vegetation Index; MSAVI, Modified Soil Adjusted Vegetation Index;

OSAVI, Optimized Soil Adjusted Vegetation Index; RGI, Red/Green Index; BG, Blue/Green

Index; BR, Blue/Red Index; SRPI, Simple Ratio Pigment Index; REP, Red-Edge Linear

Extrapolation; NS, non-significant; NA, not available. Bold values represent vegetation

index with highest R2
v .

selecting wavebands have value. Further, given the cost of
spectroradiometers, the complexity of the approach used in
waveband selection, and the production of finger millet bymostly
small farmers in developing countries, indicates simpler methods
based on VIs derived from Hy, L8 and S2 datasets may also have
great value.

Canopy height is an important parameter characterizing plant
growth, and it is often required as input for determining energy
balance components using remote sensing data (Hunsaker et al.,
2003). The predictive accuracy of canopy height by VIs remained
lower through SLR approach in this study. Similarly, Payero et al.
(2004) reported lower prediction accuracy for plant height of a
grass (Festuca arundinacea) using the linear function of 11 similar
VIs. Whereas, the predictive performance was significantly
improved using MLR models based on VIs calculated from Hy,
L8, and S2 data, even when compared to the waveband selection
procedure (Figure 4), which suggests a strong potential for height
estimations of finger millet with this approach. The unavailable
REP index for L8 data could explain a slightly lower prediction
accuracy of the L8-multilinear model compared to other MLR
models developed for canopy height. Nonetheless, it appeared
that MLR models allowed the use of effective information of
different VIs, and hence improved the prediction accuracy of
canopy height in finger millet.

The predictive performance of canopy cover estimations by
MLR was comparable (R2

v = 0.75–0.78) to the best SLR model
obtained for the Hy, L8 and S2 datasets, though PLSR based
waveband selection resulted in a slightly greater prediction
accuracy (Figure 4). These findings suggest that estimations of

FIGURE 4 | Comparison of predictive performance (R2
v ) given by waveband

selection procedure, and Hyperspectral (Hy) indices and synthesized

Landsat-8 (L8) and Sentinel-2 (S2) indices with simple linear regression (SLR)

and multilinear regression (MLR) models, for estimation of different canopy

parameters of finger millet. Within each group, SLR models with the best

statistics were selected for comparison.

green canopy cover could be directly achieved with sufficient
accuracy in finger millet using RGI. Likewise, the green cover
was reported as highly correlated with RGI in another grasslands
study (Cundill et al., 2015). Canopy cover estimation involves
sensing healthy green grass, dry grass (litter), and bare soil. If
the proportion of litter and bare soil is greater, the reflectance
in red region increases more than in the green region and vice
versa (Asner, 1998). Therefore, the combination of green cover,
litter and bare soil can be better assessed by VIS such as RGI
since it accounts for both red and green regions. It is important
to emphasize that prediction accuracy for detecting green cover
remained similar across VIs, regardless of bandwidths associated
with different instruments. This is in agreement with previous
studies (Broge and Leblanc, 2001; Zhao et al., 2007b), which
suggested that narrow-band and broad-band indices could result
in similar performance for some parameters, like canopy cover,
depending on the optimum waveband positions.

The prediction accuracy of LAI obtained in this study was
lower than the other canopy parameters, which could be due
to fewer data points (56 vs. 80) available for calibration and
validation of LAI models. It is generally argued that narrow-
band indices result in better estimation of important canopy
parameters such as LAI (Sahoo et al., 2015; Din et al., 2017).
However, broad-band indices computed from both L8 and S2
outperformed the narrower bands ofHy indices in this study. The
better performance of S2 and L8 indices could be explained by the
reduction in surrounding environmental noise with aggregated
bands, which otherwise exist within the original narrow-band
hyperspectral data (Kawamura et al., 2005; Flynn et al., 2020).
Further, the predictive performance of SRPI in estimating LAI
exceeded the most commonly used VIs, involving NDVI (Tan
et al., 2020), REP (Dong et al., 2019), SR (Nguy-Robertson et al.,
2012), or modified soil-adjusted vegetation index (MSAVI; Din
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et al., 2017). These findings supported that LAI-VI relationships
are not universal but crop-specific (Kang et al., 2016; Dong et al.,
2020).

Another interesting finding observed from PLSR waveband
selection was that both LAI and dry biomass of finger millet were
strongly related to the spectral bands within the electromagnetic
range of 1,000–1,100 nm. Since all VIs were derived from
spectral bands ranging between 400 and 900 nm, it explains
the lower prediction performance observed with both SLR and
MLR models of all VIs, especially in the case of dry biomass
estimations, compared to the standard PLSR based waveband
selection approach. The optimal wavebands determined for
finger millet biomass were 686, 694, and 774–814 nm were
reported in earlier research in India by Dayananda et al. (2019),
using a hyperspectral sensor with the spectral range of 450–
998 nm. However, our findings suggest it is essential to focus on
the spectral range of 1,000–1,100 nm to improve the prediction
accuracy of biomass in future precision agriculture research
related to finger millet.

In agreement with results of this study, Tong et al. (2019)
also observed an improvement in the predictive performance of
aboveground biomass using MLR methods on VIs. Therefore,
such VI-multilinear algorithms should also be encouraged for
improved estimation of pasture biomass with hyperspectral or
multispectral instruments in other crops.

The PLSR waveband selection revealed that several
hyperspectral regions between 400 and 2,200 nm were
important for predicting nitrogen content in finger millet.
Similar findings were reported in other studies estimating
nitrogen from hyperspectral data (Caporaso et al., 2018; Flynn
et al., 2020). While it was also noted that equal or better
predictive accuracy for N concentration in finger millet could
be achieved using the SLR approach involving VIs, potentially
avoiding the complexity related to PLSR waveband selection
procedure. Based on R2

v and RMSEv values obtained for simple
linear relationships between VIs and N concentration, simple
pigment indices (BGI1) derived from blue and green spectral
bands, irrespective of band widths, resulted in more accurate
estimations of plant N concentration than other traditional
VIs, such as NDVI and SR (Zhu et al., 2008; Zhao et al., 2018).
Simple pigment indices were also good predictors of biochemical
components in another cereal crop known as tef (Eragrostis tef ;
Flynn et al., 2020).

Although blue bands are less commonly adopted for detecting
nutritional quality, the combination of blue and green bands
through BGI have been found more useful than BRI in retrieving
chlorophyll contents in barley (Hordeum vulgare) and vineyard
(Vitis vinifera) (Zarco-Tejada et al., 2005; Aasen et al., 2015).
Similarly, Hansen and Schjoerring (2003) found only visible
wavelengths, particularly the combination of blue and green
bands, as strongly correlated to N concentrations. Moreover,
BGI was earlier reported best at predicting N concentration in
wheat (Prey and Schmidhalter, 2019). Results also suggested
that the application of MLR models could further enhance
the N prediction accuracy for Hy, L8 and S2 datasets by
14%, and hence the approach has a major significance for
precision agriculture.

CONCLUSION AND IMPLICATIONS

Hyperspectral reflectance data could be effectively utilized to
estimate canopy parameters for rapid and improved in-season
management decisions of finger millet. In the case of SLRmodels,
the best prediction accuracies were observed with simple pigment
indices for all of the tested crop parameters in this study.
BGI1 performed best for canopy height, dry biomass, and N
concentration, while RGI and SRPI were found strongly related
to canopy cover and LAI of finger millet, respectively. Also,
results showed that the application of MLR approach on VIs
could provide a predictive performance better than the methods,
involving SLR models and PLSR waveband selection procedure,
for the estimation of canopy height and N concentration in
finger millet. Whereas, dry biomass of finger millet was estimated
with greater accuracy using waveband selection procedure than
approaches involving VIs, owing to optimal spectral bands
positioned within the electromagnetic range of 1,000–1,100 nm.

This study demonstrated that VIs derived from hyperspectral
data could be translated to multispectral bands of Landsat-8
and Sentinel-2 satellite data with similar (or greater) prediction
accuracy for canopy parameters of finger millet. Hence, there
is a great potential of utilizing such readily accessible sources
of satellite data for developing methods of precision agriculture
related to finger millet, especially in the developing countries
where the crop is mostly cultivated. Future research needs to
be focused on evaluating the effectiveness of VIs developed
from Landsat-8 and Sentinel-2 data at predicting nutritive
value of forage, and grain yields, of finger millet across
environmental gradients.
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