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Cultivation of C3 and C4 crops in semi-arid regions will be severely constrained as global

temperatures rise. Consequently, alternative crops need to be sought out that adapt well

to heat and drought and are productive despite limited access to water. Traits, such

as crassulacean acid metabolism (CAM), enable economically important species such

as those in the Agave genus adapt to drought and high temperatures. The succulence

and high efficiency of agaves, which enables them to produce biomass with little water,

underscores their feasibility as an alternative crop for semi-arid regions, such as the

Sonoran Desert in the southwestern U.S. In this paper, we offer a review of the suitability

for cultivation of agaves via dryland farming, particularly by rock mulching techniques

used by pre-Columbian, Sonoran Desert farmers. This analysis dovetails with information

also provided on the biological traits of Agave and its historical and present utilization.

Pre-Columbian, Hohokam dryland farmers used rock mulching in the form of rock piles to

cultivate agaves. Rock piles acted as a type of mulch to harvest rainfall and to retain soil

moisture, which allowed the Hohokam to intensively cultivate agaves during multi-year

droughts. Remains of Hohokam rock mulching for agave production can be found at

archaeological sites in central Arizona, which provides evidence of the utility of dryland

farming and ancient agricultural innovation to reconcile water scarcity in the region.

Moreover, the use of rock piles likely bolstered Agave productivity in marginal lands.

Although little is known of historic rock mulching to cultivate agaves and its biological

implications on plant productivity we suggest its application as a dryland farming model

could be a sustainable strategy in the U.S. Southwest.
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INTRODUCTION

Increasingly limited access to water and elevating temperatures
will continue to hamper productivity of conventional C3

and C4 crops in arid and semi-arid regions throughout
the world in the coming decades (Porter and Semenov,
2005; De Micco and Aronne, 2012; Zandalinas et al., 2018).
Contemporary agricultural challenges, limited water availability,
and rising temperatures have constrained agriculture in
dry regions throughout history (Ingram, 2010). Within the
last 1,300 years, global warming has been associated with
overexploitation of natural resources, increased urbanization,
and accelerated agricultural development (Woodhouse et al.,
2010). Models of changes in global temperature suggest that
induced anthropogenic global warming became more frequent
during the Medieval Warm Period, which occurred between 700
and 1300 CE (Galloway, 1986; Hughes and Diaz, 1994; Bradley
et al., 2003; Stinchcomb et al., 2011). The Medieval Warm Period
increased temperatures and reduced water levels of lakes and
rivers throughout Europe, Asia, and North and South America
(Van West and Dean, 2000; Chu et al., 2002; Sridhar et al., 2006;
Helama et al., 2009; Woodhouse et al., 2010). In addition to the
Medieval Warm Period, some have hypothesized that global
temperatures rose and rainfall patterns progressively changed in
arid regions during the pre-industrial period 800–1850A.D. due
to land-use changes for agriculture (e.g., conversion of forests
and grasslands into cropland) (Galloway, 1986; Reick et al., 2010;
Pongratz and Caldeira, 2012).

After the Industrial Revolution, the use of fossil fuels and
concomitant increases in CO2 emissions accelerated climate
change (Callendar, 1938; Revelle and Suess, 1957; Neftel
et al., 1985; Lemonnier and Ainsworth, 2018), increasing
global temperatures and the occurrence of droughts during the
twentieth century (Hansen et al., 1981; Solomon et al., 2010;
Smith et al., 2019). At the end of the last century and beginning
of the twenty-first century, globalized industrial development
and creation of large urban centers resulted in cropland
expansion in arid and semi-arid regions to meet increased
food-production demands (Krausmann et al., 2013; Laurance
et al., 2014). Conversely, relatively warmer temperatures in the
early part of the twenty-first century, high evapotranspiration
rates, erratic rainfall, and increasingly severe droughts have
deleterious consequences to farmland by reducing crop yields,
resulting in an increase of marginal lands (i.e., farmland and
wildlands with limited access to irrigation water and depleted
soil nutrients) (Schlaepfer et al., 2017). These increasingly
warm and dry conditions in regions with limited resources
suggest future edaphic, biological, and climatic constraints for
cultivation of C3 and C4 crops. Such conditions increase the
need for seeking, selecting, and cultivating drought-tolerant
crops, such as those found in the succulent Agave genus, which
cope with drought through nocturnal CO2 fixation and CAM
photosynthesis (Borland et al., 2009, 2015; Stewart, 2015).

Current challenges in dry regions to cultivate and produce
food in hot and water-limited conditions bear similarity to those
that native people faced long ago during severe droughts in
what is now the U.S. Southwest (Ingram, 2010). Irrigation water

has always been a naturally limited resource in arid regions
(Troyo-Diéguez et al., 1990). For dry regions, there is a need
for sustainable agricultural strategies to optimize crop yields
and irrigation water (Troyo-Diéguez et al., 1990). To cope with
scarce availability of water, innovative, indigenous dry-farming
strategies were developed anciently to produce food during
droughts (Lightfoot, 1996). These dryland farmers irrigated
with rainfall runoff by optimizing rainwater catchment and
rewetting the landscape using manmade stone features, such as
rock terraces and rock mulch (Wilken, 1972; Lightfoot, 1994,
1996). The indelible signature left by the historic use of rock
terraces and rock mulching can be seen in ancient and modern
societies in dry regions throughout the world. For example, in the
Negev Desert of the Middle East, the nomadic Nabateans, who
settled in the region around 600-300 BCE, built and used rock
terraces, check dams, and rock mulching to irrigate and catch
rainfall water (Stager, 1976; Evenari et al., 1982; Lightfoot, 1994;
Ashkenazi et al., 2012). At the apex of Nabatean civilization, such
terraces became the main dry-farming technology to cultivate
olives (Olea europaea), pomegranates (Punica granathum), and
apples (Malus domestica) (Ynnilä, 2007). Similar examples can
also be found in ancient civilizations throughout the deserts
of Africa, Europe, and Asia (Wilken, 1972; Lightfoot, 1994;
Biazin et al., 2012). In the ancient Americas, rock-farming
techniques were used in a variety of cultures and time periods
(Marcus, 2006; Kennett, 2012). In the Andean region, from
the times of the Huarpa civilization to that of the Incan (200
BCE to 1400 CE), rock-wall terraces were heavily relied on to
cultivate potatoes (Solanum tuberosum), quinoa (Chenopodium
quinoa), and corn (Zea mays) (Denevan, 2003; Chapagain and
Raizada, 2017). Mayans in southern Mesoamerica were very
effective in cultivating corn using rock terraces (Turner, 1976;
Fischbeck, 2001; Webb et al., 2004). In central and northern
Mesoamerica, Aztecs cultivated marginal lands with corn and
agaves in a system called milpas (Evans, 1990; Zizumbo-
Villarreal et al., 2012; Trombold, 2017). Ancient Pacific Islanders
used rock mulching to harvest rainwater and to cultivate
perennial crops, such as taro (Colocasia esculenta), in land
with limited access to water (Stevenson et al., 1999; Wozniak,
1999; Ladefoged et al., 2013). Pre-Columbian Hohokam people,
which inhabited the deserts of the American Southwest, also
cultivated drought-tolerant agaves in marginal lands using rock-
mulching (Fish et al., 1985; Fish and Fish, 1990, 1992; Gasser and
Kwiatkowski, 1991).

Among historic dry-farming examples in the U.S., Hohokam
agricultural dryland systems in central and southern Arizona
are key to understanding applications of dry farming for other
arid regions affected by drought. The Hohokam mastered desert
farming (Fish and Fish, 1992). Their dry-farming techniques
were adapted and designed to produce food in extended droughts
and in the harsh Sonoran Desert climate. They implemented
rock-mulching to catch rainfall water and successfully cultivate
agaves to feed thousands of desert dwellers during water scarcity
periods (Fish and Fish, 1990). Rock mulching turned into the
primary strategy to shore up food production during droughts.
Agave was the main crop that allowed for unabated cultural,
social, and economic development in the region (Fish, 2000). As
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in the prehistoric past, modern central and southern Arizona is a
region constrained by the harsh Sonoran Desert climate. Here the
applications of indigenous dry-farming agriculture, principally
Hohokam rock mulching, opens the possibility for cultivating
agaves in current and future droughts. It is our intent to
portray Agave as a drought-tolerant crop, which can be cultivated
through the application of rock mulching to harvest rainwater
as a feasible and sustainable dry-land agriculture system for arid
regions. The purpose of this paper is to summarize literature
available on (1) studies on the ecophysiology of agaves under
drought conditions, (2) dry farming using rock mulching to
cultivate agaves, (3) ancient and modern-day uses of agaves,
and (4) the potential of rock mulching and Agave cultivation in
future droughts.

BIOLOGICAL TRAITS OF AGAVES KEY
FOR ITS CULTIVATION IN FUTURE
DROUGHTS

Nearly 75% of the continental biological diversity of the Agave
genus can be found in Mexico and 13% in U.S. deserts (Gentry,
1982; Garcia-Moya et al., 2011). The Agave genus evolved
biological and morphological traits that enable species to adapt
to erratic, hot, and drought-changing conditions of arid regions
(Silva-Montellano and Eguiarte, 2003). Morphological traits of
agaves, such as their shallow root systems, distinct rosette
shape, and curved leaves to maximize rainfall interception,
evolved to efficiently use small amounts of atmospheric and
soil moisture in water-limited environments (Martorell and
Ezcurra, 2007). Such limited water and heat conditions negatively
affect the physiological performance of domesticated C3 and C4

crops (Nobel and Jordan, 1983). Crassulacean acid metabolism
(CAM) photosynthesis is the main biological trait that drives
productivity of these plants in hot and water-scarce conditions
(Lüttge, 2004; Borland et al., 2011). Photosynthesis of agaves
relies on nocturnal stomatal opening and CO2 gas exchange
as a strategy to avoid high evapotranspiration rates and leaf
water loss during daylight hours (Lüttge, 2004). Nocturnal
CO2 fixation is the primary trait agaves use to survive dry
climates and to adapt to warm temperatures (Borland et al.,
2009). In addition, above and belowground morphological
traits (North and Nobel, 1991), such as leaf succulence,
rain-hair roots, and fibrous root architecture enable agaves
to adjust physiological processes to available soil-moisture
levels and heat in the different seasons of dry regions
(De Micco and Aronne, 2012).

Agaves are monocarpic plants with a long life cycle to
maturation (Nobel, 1977). Differences in plant maturation can
be observed within and between species, regions, cultivation
practices, and degree of domestication (e.g., domesticated agaves,
hybrids of agaves, or wild agaves) (Zizumbo-Villarreal et al.,
2013). Generally, cultivated agaves require a few years or up
to a decade to mature to flower, and typically more than a
decade to mature to flower in the wild (Cervantes et al., 2007;
Núñez et al., 2008).

Aboveground morphological traits of agaves (e.g., shape, size
of leaves, and succulence) enable these plants to survive and adapt
to deserts by providing protection and storing water in the leaf
parenchyma (Orians and Solbrig, 1977; Cervantes et al., 2007;
Núñez et al., 2008). Additionally, the rosette arrangement of the
curved Agave leaves funnel rainwater to the plant and soil during
the summer monsoon season, re-wetting their rhizomes and the
soil in the root zone (Gentry, 1982). Furthermore, Martorell
and Ezcurra (2007) hypothesized that the rosette trait can also
trap atmospheric moisture in the form of dew and fog between
leaves. The thick succulent leaves of agaves function as plant
water storage for periods of scarce rain and soil moisture. Even
after a period of several months, when soil moisture has reached
the permanent wilting point, agaves will remain physiologically
functional (Nobel, 2003).

The Agave root system is composed of shallow roots (mean
root length: 8 to 20 cm) and rhizomes (Arizaga and Ezcurra,
2002; Nobel, 2003; Bautista-Cruz et al., 2007). Offset growth from
rhizomes and aerial bulbils act as the main asexual propagation
strategy of agaves. Such offsets can extend several meters from
the plant in search of soil moisture (Gibson, 1996; Nobel, 2003).
Shallow roots allow rapid soil moisture absorption from the soil
surface, particularly from small amounts of moisture deposited
after light rain events (North and Nobel, 1991). Fibrous Agave
root systems maximize soil water absorption, particularly in well-
drained sandy soils with limited capacity to retain moisture
(Cervantes et al., 2007). In addition, in very dry soils, dehydration
of suberized peridermal cells of mature Agave roots prevents
water loss and desiccation of the root vascular system (North and
Nobel, 1991). Additionally, these lignified roots anchor Agave
plants to the soil. When rainfall occurs, water pulses from rain
rehydrate Agave roots, which promotes emergence of new root
hairs, thereby increasing hydraulic conductance of Agave root
systems (Palta and Nobel, 1989). Rainwater stimulates growth of
ephemeral root hairs, which are vital for rapid water uptake and
replenishing of water in Agave leaves (North and Nobel, 1991;
Huang and Nobel, 1992).

Wild and cultivated agaves flourish in arid environments and
poor soils in marginal lands (Gentry, 1972; Cervantes et al.,
2007; Núñez et al., 2008). Edaphic requirements include sandy
soils with good drainage, 60% gravel content, and deep water
tables (Cervantes et al., 2007). Particularly sandy loam soils with
low salinity contents are optimum for healthy establishment
of agaves. Agaves can be found growing in rocky soils in
which temperatures can reach 70◦C (Gentry, 1972; Nobel, 1994).
Agaves typically perform well in soils with low nutrient content.
Nitrogen levels in soils range between 31 and 35 parts per million
(ppm) and low P between 2.6 and 3.0 ppm for optimal growth
of agaves (Cervantes et al., 2007). Ideal growing conditions for
agaves can be found in low-elevation mesic areas on hillslopes.
In the Sonoran Desert of northwestern Mexico and southern
Arizona, optimum elevation ranges for Agave growth have been
observed between 800 and 1200m above sea level (Gentry, 1972;
Nobel and Hartsock, 1986; Núñez et al., 2008; Parker et al., 2014;
Hodgson et al., 2019). However, agaves can also be found in the
coastal areas of the Sonoran Desert in Mexico (Gentry, 1972;
Cervantes et al., 2007; Núñez et al., 2008). Ideal precipitation
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levels for agaves vary from tropical to dry regions (Gentry,
1982; Nobel, 2003). In arid regions, such as Sonora, Mexico and
Arizona, USA, agaves can survive rainless seasons for several
years (Nobel, 2003). Some regions with wild populations ofAgave
receive as little as 7mm of rain and other regions receive as much
as 762mm or more of annual precipitation (Gentry, 1972, 1982;
Nobel, 1976).

CULTIVATION OF AGAVES USING
ROCK-MULCHING BY THE HOHOKAM

Who Were the Hohokam?
The Hohokam were pre-Columbian dryland farmers that
established a flourishing civilization in what is now central and
southern Arizona between 450 and 1500C.E (Fish and Fish,
2008). Hohokam agriculture was constrained by the hot, dry
climate, and the wide expanse of marginal lands in the Sonoran
Desert (Fish and Fish, 1990). Drought and water availability for
agriculture acted as definitive factors that influenced innovation
in the agricultural and cultural development of the Hohokam
(Rice, 1998; Hunt et al., 2005). These two factors shaped
Hohokam irrigation and dryland agriculture in the desert,
leading to the use of extensive irrigation-canal networks and
rock mulching to cultivate agaves during periods of drought
with erratic rainfall (Woodbury, 1961; Fish and Fish, 2012).
Such approaches can be compared with dryland-farming systems
observed in other advanced, prehistoric indigenous societies of
Mesoamerica and South America (Doolittle, 1995; Fish and Fish,
2008). The irrigation canals of the Hohokam were similar to
highly engineered Andean and Aztec irrigation-canal systems in
that they were a pivotal factor in their cultural development and
were designed to efficiently irrigate large areas of farmland, which
led to substantial food production (Armillas, 1948; Bennett, 1948;
Mitchell, 1973).

Irrigated crops formed the basis of Hohokam civilization and
its economy. Efficiently distributed irrigation water from rivers
and canals allowed large settlements to develop along the main
rivers in the Phoenix Basin (Doyel, 2007). However, recurrent
droughts at the beginning of the second millennia CE triggered
periods of unstable food production, which changed agricultural
strategies and the crops they cultivated (Fish and Fish, 1990). The
Hohokam shifted to using more dryland farming and reliance
upon rainfall for crop irrigation, resulting in less canal irrigation
in the region.

During this period of recurring droughts, agaves were adopted
as a crop to compensate for yield deficits during water shortages
and as a supplement to irrigated annual crops (Fish and Fish,
1992, 2008; Anderies et al., 2008). The Hohokam primarily used
rock piles to cultivate agaves, which enhanced their productivity
during drought periods in the Sonoran Desert (Figure 1; Fish
et al., 1985; Fish and Fish, 2012).

Dryland Farming Using Rock-Mulching to
Cultivate Agaves
In the American Southwest, as in pre-Hispanic northern Mexico,
the Hohokam implemented dryland agriculture strategies to

FIGURE 1 | Hohokam rock pile remains at Tumamoc Hill reserve in Tucson,

Arizona.

cultivate Agave to ensure food security during droughts in the
Tucson Basin (Fish et al., 1985; Anderies et al., 2008). A model of
pre-Hispanic Agave cultivation by Anderies et al. (2008) suggests
that Agave dryland farming was likely a strategy implemented
by pre-Columbian groups to cope with climates with drought
that reduced corn yields in the Sonoran Desert. The Hohokam
adopted upland dryland farming on hillslopes using rock piles,
terraces, and check dams to cope with low precipitation in the
region (Fish and Fish, 1992). These structures allowed for the
efficient use of rainwater to irrigate downhill floodplain crops
and riparian vegetation (Fish and Fish, 1990). Rock piles and
terraces were used to harvest rainfall runoff and to cultivate
agaves (Fish and Fish, 1992).

Historical remains of Hohokam rock piles and evidence of
Agave cultivation and processing in roasting pits can be found
at archaeological sites outside the Tucson, Arizona area in
the Tortolita Mountains; the Salt Gila Basin; the community
of Marana; Tonto National Forest; San Pedro Valley; and
Tumamoc Hill Reserve (Figure 2; Masse, 1979; Crown, 1987;
Ciolek-Torrello et al., 1997; Adams and Adams, 1998). One of
the most representative Hohokam rock-pile fields, which was
found in Marana and characterized by Fish and Fish (1992),
consisted of at least 42,000 rock piles nested with 120,000 m2

of terraces and check dams within an area of 500 ha. They
calculated that the rock pile fields could have annually produced
102,000 Agave plants with an average yield of 40.8Mg ha−1.
However, comparing average planting density (i.e., 1,000–3,000
plants ha−1) of agaves (Cervantes et al., 2007; Núñez et al.,
2008) in modern plantations in the Sonoran Desert in Mexico,
with the rock-pile fields found in Marana, Arizona suggests
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FIGURE 2 | Archaeological site at Tumamoc Hill reserve in Tucson, Arizona.

that Agave productivity in Arizona was possibly higher than
previously calculated by Fish et al. (1985) (i.e., 102,000 Agave
plants in 500 hectares). For example, between 1000-3000 Agave
angustifolia plants ha−1 can be annually cultivated in Sonora,
Mexico in grasslands with no irrigation (Cervantes et al., 2007).
Similarly, McDaniel (1985) suggested a planting density of 2,000–
2,500 of Agave americana plants ha−1 cultivated in grassland
in southern Arizona. If the calculations of Cervantes et al.
(2007) andMcDaniel (1985) regardingAgave cultivation area and
planting density are applied to the largest Hohokam rock-pile
field in Marana, Arizona, the minimum planting density would
be 1,000 plants ha−1 for 500 ha of rock-pile fields. As such,
the Hohokam potentially had the capacity to cultivate nearly
500,000 agaves, which is at least five times more plants than
previously estimated by Fish et al. (1985). However, commercial
modern Agave cultivation differs from the cultivation strategies
of the Hohokam. This example is only used to highlight
the productive potential of the land to cultivate agaves in
the region.

Hohokam Agaves
Agave plant remains in Hohokam rock-pile fields underscore
the importance of rock mulch for modern cultivation of
agaves in the region (Fish et al., 1985; Fish and Fish, 1990;
Fish, 2000). Though agaves were no longer cultivated prior
to the arrival of Europeans to the region, agaves still can be
found growing in some rock-pile fields and archaeological sites
in Arizona (Hodgson and Salywon, 2013; Hodgson et al., 2019).
Minnis and Plog (1976) observed a relationship between the
occurrence of wild Agave parryi plants with proximity and
distribution of agaves growing at archaeological sites in the
Apache-Sitgreaves National Forest, suggesting putative historic

FIGURE 3 | Agave growing in ancient rock pile at archaeological site in Casas

Grandes, Chihuahua, Mexico (picture courtesy of M. Searcy, 2019).

cultivation of this Agave species in central Arizona. Similarly,
Parker et al. (2010) observed genetic differences between putative
cultigens of A. parryi and wild A. parryi plants at archaeological
sites in central Arizona in the Mogollon Rim. Recently, a
taxon, which was named Agave sanpedroensis, was discovered
growing only in a rock-pile field west of Tucson, which is
likely a relic of Hohokam cultivation (Hodgson et al., 2019).
Living plants and dried tissue of Agave at rock piles and
roasting pits have been found in Hohokam rock-pile fields at
archaeological sites in southern and central Arizona (Fish et al.,
1985; Adams and Adams, 1998; Fish, 2000; Parker et al., 2007;
Fish and Fish, 2012).

Little is known about cultivation of agaves using rock piles
outside of Arizona. Minnis et al. (2006) found little evidence
of rock piles around the prehistoric archaeological site of
Casas Grandes in Chihuahua, Mexico. However, ethnobotanists
and archaeologists that visited archaeological sites near Casas
Grandes in 2018 and 2019 found agaves growing in ancient
rock piles and terraces, perhaps indicating ancient cultivation
similar to that found in Arizona (W. Hodgson and M.
Searcy, personal communication). In 2018, putative hybrids of
Agave palmeri and A. parryi were found growing in a rock
terrace in the Casas Grandes region in northern Mexico (W.
Hodgson, personal communication). Likewise, in 2019, Agave
hybrids, which were similar in appearance to those discovered
in 2018 were growing in rock piles (M. Searcy, personal
communication) (Figure 3). These recent findings suggest that
cultivation of agaves using rock structures was likely more
widespread than originally assumed. Such discoveries offer new
avenues of research in the use of rock piles for prehistoric
Agave cultivation.
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AGAVE TRADITIONAL USES
THROUGHOUT HISTORY, FOOD, DRINKS
AND OTHER SUB-PRODUCTS

Uses in Ancient Times for Food and
Fermented Drinks
Indigenous people in Mexico and the U.S. Southwest have used
agaves as a source of carbohydrates and fiber for the past 10,000
years (Delgado-Lemus et al., 2014). Diversity in the Agave genus
is largely concentrated in Mexico and the U.S. Southwest, and
was cultivated mostly using dryland farming techniques, such as
rock mulching using rainwater runoff (Lightfoot, 1994, 1996),
widely throughout tropical and arid regions of Central and South
America (Good-Avila et al., 2006). Beginning in pre-Columbian
times, Agave was used for various purposes in what is now the
U.S. Southwest, including beverages, ceremonial items, fiber-
based products (e.g., clothing, footwear, containers, cordage, nets,
etc.), food, medicine, and paint (Castetter et al., 1938). Over the
span of several centuries, particularly during droughts, agaves
were an important energy source that enriched the diets of
indigenous people (Fish et al., 1985; Evans, 1990; Fish and Fish,
1990; Anderies et al., 2008).

The Hohokamwere one of the few pre-Columbian indigenous
groups in the U.S. Southwest that extensively used rock piles
to cultivate agaves as a staple crop that ensured a reliable
source of food, even during droughts (Fish et al., 1985; Dobyns,
1988; Fish and Fish, 1992). The Hohokam relied on the ability
of these plants to concentrate sugars in stems and stalks
through their long phenological cycle. Sugars in Agave are
inulin-type polymers of fructose that concentrate in leaves,
stems, and inflorescence stalks (Mancilla-Margalli and López,
2006; Urias-Silvas et al., 2008). However, removal of Agave
stalks at the end of their life cycle induces sugar accumulation
predominantly in the stem (Hodgson, 2001; Cervantes et al.,
2007; Michel-Cuello et al., 2008). Inflorescence stalk emergence
indicates plants have matured, and are ready to be harvested
(Arizaga and Ezcurra, 2002).

Pre-Columbian indigenous people used roasting pits, also
called earth ovens, to cook their food, but particularly to roast
agaves (Walton, 1977; Fish et al., 1985; Cervantes et al., 2007;
Perry and Flannery, 2007; Zizumbo-Villarreal et al., 2009).
Roasting pits can reach temperatures between 150 and 200◦C
(Cervantes et al., 2007). Roasting Agave heads (or caudices)
at this temperature enables thermal hydrolysis to break down
carbohydrate polymers into sugar monomers, such as fructose
and glucose, which are relatively easy to digest and ferment
by yeast (Cervantes et al., 2007), making it possible to use
agaves as a food source. Methods of cooking Agave heads
using earth ovens share similarities (e.g., shape, diameter of
1.20–2.40m, depth of 0.80–2.10m) between indigenous groups
across various regions, both in ancient and modern times
(Cervantes et al., 2007; Towell and Lecón, 2010).

The practice of roasting agaves can be traced to its origins
in pre-Columbian archaeological sites in central Arizona and
northern Mexico (Fish et al., 1985). In Arizona, Agave roasting
pits also can be found in rock pile-fields (Fish and Fish, 1992).

These roasting pits attest to the ancient use of roasted agaves and
their cultivation in rock piles in the region. In addition, several
documents from the Spanish colonial period recorded historic
uses of roasted agaves by natives. Early colonial Jesuits from
Spain, in what is now northwestern Mexico, recorded that agaves
were used for medicinal purposes and were roasted for food by
the Opata people in the Sonoran Desert (Gutiérrez-Coronado
et al., 2007; Flores and Araiza, 2012). Similarly, in what is now
central Mexico in the mid-sixteenth century, colonial Spaniards
documented medicinal uses of roasted Agave by the Aztec people
in the ethnobotanical compendium Codex Florentino (Williams,
1990; Díaz et al., 1993). Uses of roasted and fermented agaves
for food were also recorded in the Codex Azcatitlan and Codex
Boturini (Morán, 2008).

Modern Use of Agave as a Food Source
As indicated above, out of all the organs of agaves, the stem head
produces the most edible biomass (Nobel, 2003). Inflorescences,
leaves, and stalks can also be used for food and to feed cattle (Bos
primigenius taurus), sheep (Ovis aries), and goats (Capra aegagrus
hircus) (Gentry, 1972; Pinos-Rodríguez et al., 2006, 2008, 2009;
Hartung, 2016; Mellado, 2016). Gentry (1972) indicated that
inflorescences of some Agave species are edible. Moreover,
Fuentes-Rodriguez (1997) and Gentry (1972) suggest that the
raw leaves remaining after clipping leaves from Agave stems,
commonly called jimado in Spanish, can be used to feed cattle.
Pinos-Rodríguez et al. (2006) found that leaves, flowering stalk,
and bagasse ofAgave salmiana can be used as food and to increase
body weight of sheep. In popularMexican cuisine throughout the
country, Agave leaves are also used to cover goat or lamb stew
while being cooked in underground roasting pits.

Alcoholic Spirits and Drinks From Agaves
Aguamiel, pulque, and mezcal constitute the main beverages
produced from agaves (Stewart, 2015). In order to produce
aguamiel, an emerging inflorescence is cut out of the stem
head. Agave sap, which is rich in sugars, accumulates in the
remaining basin. The sap juice is subsequently siphoned out
of the basin and prepared as non-alcoholic drink known as
aguamiel. Fermentation of aguamiel creates pulque (Rivas, 1991),
a commonly consumed, mildly alcoholic beverage in rural areas
of central and southern Mexico (Enríquez-Salazar et al., 2017).

It has been estimated that pulque made of Agave mapisaga,
A. americana, Agave atrovirens, or Agave salmiana, was
consumed in approximately 2000 B.C. (Escalante et al., 2016).
Although distilled Agave spirits like Tequila or mezcals are very
popular in modern times, artisanal crafting and consumption of
pulque remains alive in some regions of central Mexico.

Although drinks, such as aguamiel and pulque, are still
consumed in modern times, these beverages have been somewhat
replaced by distilled alcoholic drinks made from distillation of
fermented sap of agaves (Garay and Aurea, 2008). Distillation
technologies, such as the use of copper alembic stills to distill
alcohol, were adapted to produce Agave spirits in Mexico by
the Spaniards in the 1500s (Gutiérrez-Coronado et al., 2007;
Towell and Lecón, 2010). In combination with a wide array of
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distillationmethods, the diversity ofAgave species in the different
regions and the various cooking and fermentation methods of
Agave heads employed by tribes across Mexico enabled a rich
diversification of Agave spirits throughout Mexico from various
species (Walton, 1977).

Tequila is the most popular Agave spirit crafted in Mexico,
and differs from commercial mezcal in that it is made exclusively
fromAgave tequilana var. Azul, which is also known as blue agave
(Colunga-GarcíaMarín and Zizumbo-Villarreal, 2006; Vargas-
Ponce et al., 2007). In contrast, mezcals are made from a wide
diversity of agaves across Mexico. In addition, similar to some
French wines, tequila has an appellation of origin (denominación
de origen), which requires that blue Agave plants only be grown
in certain states of Mexico that are believed to enhance the
quality of tequila (Bowen, 2015). Tequila is mainly produced at an
industrial scale following quality-control regulations compliant
with national and international standards established by the
Tequila Regulatory Council (Macías, 2001).

Despite climate change and political and economic changes
throughoutMexican history, the tequila industry has experienced
continual growth. For example, Walton (1977) reported 1.67
million liters of tequila were produced in 1960. Based on
statistical data of total production of tequila from the Tequila
Regulatory Council (2019), peak tequila production occurred in
2018 which coincided the highest production level ever reached
over the past 23 years. In 1995, 104.3 million liters of tequila
were produced, but increased to 309.1 million liters in 2018.
Similarly, the Tequila Regulatory Council (2019) recorded that
global consumption of tequila increased from 279 thousand tons
in 1995 to 1,139 thousand tons in 2018. The Secretariat of
Agriculture Livestock, Rural Development, Fisheries and Food
(SAGARPA) in Mexico reported in 2017 that tequila, relative
to mezcal, is the major product from Agave in an expansive
growth phase in Mexico. Outside of Mexico, tequila is consumed
mainly in the United States, Germany, Spain, France, and the
United Kingdom. In addition, SAGARPA (2017) reported that
the tequila industry generated approximately $27 million dollars
from export revenue, which is predicted to increase to $28
million dollars by 2024 and $29 million by 2030. The mezcal
industry has also experienced sustained growth from about
2.5 million liters in 1950 to about 20 million liters in 2010
(Martínez Salvador et al., 2012).

Sweeteners and Syrups
Fructose sugars extracted from blue agave have also been
used as alternative sweeteners (Heyer and Crawford, 2009;
Stewart, 2015). Despite disadvantages of a relatively long life
cycle and the monocarpic habit of agaves compared with other
annual and perennial crops used in the sugar industry, Agave
sugars are used as high-quality sweeteners. This emerging
product can potentially work as a companion to the tequila
industry. As with Agave spirits, the sweetener industry uses
Agave juices as feedstock (Heyer and Crawford, 2009; Narváez-
Zapata and Sánchez-Teyer, 2010). Sugars from Agave juice,
particularly fructose, are extracted through acid or enzymatic
hydrolysis (Garcia-Aguirre et al., 2009; Ávila-Fernández et al.,
2011; Soto et al., 2011). The fructose sugars are used as

additives in commercial Agave syrups, which are considered
healthier sweeteners compared with sugar cane and high-
fructose corn syrup (Hooshmand et al., 2014). The proportion
of fructose in Agave syrup is significantly higher compared with
the proportions in cane sugar and high-fructose corn syrup.
Proportions of fructose to glucose are 50/50 in cane sugar
(Glasziou, 1961); 55/45 in high fructose corn syrup (O’Brien-
Nabors, 2001); and as high as 95/5 in Agave syrup (Garcia-
Aguirre et al., 2009).

Modern Uses of Agave Fibers
Historically, Agave sisalana, Agave fourcroydes and Agave
lechuguilla fibers have been used in the Mexican textile industry.
Traditional uses of Agave fiber include ropes, twine, bags,
mecapales, fabrics, brushes, and brooms (Colunga-GarcíaMarín
and May-Pat, 1993; Kicińska-Jakubowska et al., 2012). Sisal
is a hard fiber processed from the leaves of A. sisalana.
Henequen fiber from A. fourcroydes and Tampico fiber (also
called Mexican fiber) from A. lechuguilla have similar tensile
and flexural properties as sisal fiber (Belmares et al., 1981;
Kicińska-Jakubowska et al., 2012). More recently, Agave fibers
have been used to reinforce industrial products, adding flexibility
and strength to polymer-based composites (Joseph et al., 1999;
Silva et al., 2010; Orue et al., 2016). Fiber-reinforced polymers
have application in the aerospace, marine, automotive, military,
and construction industries (Yilmaz and Arifuzzaman Khan,
2019). Compounds derived from Agave fibers, can also be used in
synthetic drug manufacturing (Cushman et al., 2015). Steroidal
saponins, tigogenin, and hecogenin are natural compounds
extracted from A. sisalana leaves, which are used in the synthesis
of steroidal hormones such as corticosteroids (Cripps and
Blunden, 1978; Santos and Branco, 2014). Corticosteroids drugs
like dexamethasone can be synthesized from tigogenin and
hecogenin (Kongkathip et al., 1997; Santos and Branco, 2014)
and may have application in treating respiratory-inflammatory
conditions associated with COVID-19 produced by 2 SARS-
CoV-2 (Al Saleh et al., 2020; McIntosh, 2020; Zhang et al.,
2020).

Potential Uses of Agaves for Bioenergy
Agaves have also been proposed as a biofuel crop due to their
relatively low lignin content (Somerville et al., 2010; Davis et al.,
2011). The high lignin content of C3 and C4 biofuel crops reduces
the efficiency of converting sugars into bioethanol (Somerville
et al., 2010). Lignin percentages in agaves range between 3 and
15% (Iñiguez-Covarrubias et al., 2001; Li et al., 2012; Delfín-
Ruíz et al., 2019), and can be more efficiently processed to
produce sugars than C4 crops used in the biofuel industry
(Somerville et al., 2010).

Many crops used in the biofuel industry require high amounts
of irrigation water, generating controversy related to their
environmental footprint (Somerville, 2007; Moore et al., 2014).
Agaves require much less water than C4 crops, such as corn, to
produce biomass, and the superior quality of ethanol derived
from Agave compared with corn makes agaves an attractive
alternative (Yan et al., 2011). In addition to the low lignin content
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of Agave, CAM metabolism enables their growth in marginal
lands and resilience to drought (Davis et al., 2011).

One challenge in the widespread use of agaves in the biofuel
industry is the lack of agronomic knowledge for its cultivation,
as well as the underlying ecology and climatic conditions of
regions where this crop may be suitable (McDaniel, 1985). Lewis
et al. (2015) suggested the U.S. Southwest, particularly Arizona,
as one region for Agave cultivation for the biofuel industry, due
to its suitable climate. Another constraint on Agave production
involves the large amount of annual plant biomass needed to
supply enough raw material to make it profitably sustainable as
a bioenergy crop (Balan, 2014).

According to Escamilla-Treviño (2012), commercial
cultivation of agaves for biofuel in the U.S. has been constrained
mainly by the risk of low-temperature crop damage. For example,
cultivation of species with a frost tolerance between −2 and
−4◦C, such as A. tequilana, A. fourcroydes, A. angustifolia,
A. salmiana, and A. sisalana (Nobel, 2003), could be limited
even in Arizona, where nocturnal low temperatures below 0◦C
occur throughout the winter season. Agaves could be genetically
engineered to improve traits, which would allow for better
adaptation from temperate to xeric environments, which would
enable agaves to be widely cultivated in marginal environments
in the U.S. (Yang et al., 2016). Another approach could be
to use Agave species that have relatively wide cold tolerance,
such as A. americana and Agave utahensis, which have been
reported to adapt well to cold and hot temperatures in the
region and can tolerate temperatures between −8 and −11◦C
(Nobel and Jordan, 1983; Escamilla-Treviño, 2012; Davis et al.,
2017). Moreover, species putatively cultivated by the Hohokam
in pre-Colombian times, including A. palmeri, A. murpheyi, A.
parryi, and A. sanpedroensis, could potentially be used as crops
in the future because they are endemic and well-adapted to
hot summers, cold winters, and the dry climate of the Sonoran
Desert (Adams and Adams, 1998; Parker et al., 2010; Hodgson
and Salywon, 2013; Fish and Fish, 2014; Hodgson et al., 2019).

ROCK PILES TO CULTIVATE AGAVES IN
MARGINAL LANDS

Rock Piles as Dryland Farming System for
Agaves in Marginal Lands
Agave rock-pile fields are a cultural and agricultural legacy of
the ancient Hohokam tribe in the Sonoran Desert (Hodgson
et al., 2019). Rock piles are specialized features associated with
the ancient practice of Agave cultivation in marginal lands
(Dobyns, 1988; Fish and Fish, 1990, 1992, 2012, 2014; Sandor
and Homburg, 2017). Because CAM metabolism enables agaves
to grow well in water-limited environments and in nutrient-poor
soils (Gentry, 1982; Nobel and Valenzuela, 1987; Nobel, 1991,
2003; Garcia-Moya et al., 2011), Agave was and is a well-suited
crop for marginal lands. Prehistoric groups from central and
southern Arizona lived in marginal lands with limited access to
irrigation water (Fish and Fish, 1992). Rainfall was the primary
source of water to irrigate agaves in rock piles. Rainwater in rock-
pile fields was harvested in two ways: through the interception of

rainfall hitting rocks and from rain-water runoff (Crown, 1987;
Fish and Fish, 1992; Lightfoot, 1994, 1996).

Rock piles were built on downhill slopes such that the inclined
angle mitigated downward runoff and enabled rock piles to
reduce erosion and increase fertility ofAgave fields (Fish and Fish,
1992; Sandor and Homburg, 2011). In such rock piles, rainwater
generally flows along soil slopes, and upon intercepting rock
piles, it slows down, leading to increased soil moisture beneath
the rock piles (Fish and Fish, 1990, 1992; Homburg and Sandor,
2011). The reduced flow of rainwater leads to less gully formation.
Likewise, sediments and minerals were mixed in the rainfall
runoff and deposited underneath rocks. According to Homburg
and Sandor (2011), the accumulation ofminerals under rock piles
improved the texture of the soil-surface horizons and increased
soil moisture retention capacity. The minerals, sediments, and
organic matter deposited below rock piles were a source of C,
N, and P, which provided a source of soil fertility for agaves
cultivated by ancient indigenous groups, such as the Hohokam.

Agave Species Likely Cultivated by the
Hohokam in Rock Piles
Evidence of cultivation of different Agave species in rock piles
includes plant tissue, such as spines and fibers at nearby roasting
pits and artifacts found in rock-pile fields, which were likely
used to process and harvest agaves, such as tabular knives
and scrapers (Cantley, 1991; Fish and Fish, 1992; Ciolek-
Torrello et al., 1997). Among Agave species native to Arizona,
A. murpheyi and A. sanpedroensis have been recognized as
species that were cultivated in rock piles by the Hohokam
(Adams and Adams, 1998; Parker et al., 2007; Hodgson et al.,
2019). Moreover, researchers have identified Agave yavapaiensis,
Agave verdensis, and Agave delamateri as pre-Columbian Agave
cultigens (Parker et al., 2007; Hodgson and Salywon, 2013).
Similarly, A. parryi has been associated with archaeological sites
and dryland farming in Arizona (Minnis and Plog, 1976; Parker
et al., 2010, 2014). Evidence of other cultivated plants used by
the Hohokam include pollen grains of corn and cotton, which
were found in rock piles (Crown, 1987; Fish, 1988; Bohrer,
1991). Other native species, such as Opuntia spp., Carnegia
gigantea, Chenopodium spp., Amaranthus spp., Trianthema
portulacastrum, Spharalcea ambigua, Boerhaavia spp., and cholla
(Cylindropuntia fulgida) have been found to populate rock-pile
fields in archaeological sites (Fish et al., 1986; Crown, 1987;
Bohrer, 1991; Hodgson et al., 2019).

POTENTIAL BENEFITS OF USING ROCK
PILES TO CULTIVATE AGAVES

Rock Pile Fields for Agaves and Their
Environments
While rock piles can be found at archaeological sites throughout
the southwestern U.S. and northwestern Mexico, most are
located in south-central Arizona (Fish et al., 1985; Fish and
Fish, 1990, 1992), providing an ideal setting for modern Agave
cultivation that could incorporate aspects of prehistoric rock-pile
fields. Rainfall and temperatures at rock-pile fields in Marana,
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Tucson, and San Pedro Valley, Arizona, whose elevations range
between 600 and 900m above sea level, suggest that Hohokam
agaves were cultivated in an optimum environment that balanced
temperature, rainfall, and soil moisture (Fish and Fish, 1990,
1992; Cantley, 1991; Hodgson et al., 2019). This unique balance
likely maximized productivity of agaves, even in the dry and
harsh conditions of the region.

Different studies using the environmental productivity index
developed by Nobel for agaves (Nobel and Hartsock, 1986;
Nobel and Quero, 1986; Nobel and Valenzuela, 1987; Garcia-
Moya et al., 2011) found, in general, that mesic environments,
such as archaeological sites with Hohokam rock piles, can lead
to improved Agave productivity. The index indicates that CO2

uptake and productivity of agaves is greater at elevations between
600 and 1200m above sea level. In addition, Woodhouse et al.
(1980) found that agaves are less productive when cultivated on
steep slopes. Hohokam rock-pile fields occur more frequently
on softly inclined slopes, which have higher rainfall moisture
interception, and less negative soil water potentials than found
on relatively steeper slopes (Cantley, 1991; Fish and Fish,
1992). Such conditions possibly promoted better interception
of photosynthetic radiation and rainfall, which would have
led to enhanced CAM photosynthesis and biomass of agaves.
Understanding Hohokam rock pile field environments can help
to identify potential locations to cultivate agaves, even during
severe drought events. However, more information needs to be
sought out to determine the agricultural limitations and future
applications of rock piles in modern times.

Soil-Water Dynamics Under Rock Piles
Hohokam rock piles functioned as a type of mulching that
reduced soil evapotranspiration and used rainwater to increase
soil moisture content underneath rocks (Doelle, 1978; Fish
et al., 1985; Fish and Fish, 1990, 1992; Lightfoot, 1996). The
positive effects of available moisture in agaves have been
observed in different experiments. In an experiment with A.
deserti, Jordan and Nobel (1979) observed that rainfall and
soil moisture act as the most important factors influencing
plant mortality in their first year of establishment. They also
found that rainfall stimulated increased succulence, increased
leaf growth, and helped modulate nocturnal CO2 gas exchange
and water-use efficiency of first-year plants. Davis et al. (2017)
found that irrigation increased efficiency of nocturnal CO2

uptake of A. americana. Similarly, Nobel et al. (1989) observed
that irrigation doubled CO2 uptake of Agave lechuguilla and
enhanced aerial and root biomass. Lightfoot (1996) and Sandor
and Homburg (2011) hypothesized that the moisture harvested
underneath rock piles from rainwater improved cultivation of
crops, including Agave, in rock piles (Fish and Fish, 2014). In
an experiment using agaves in rock piles conducted in different
locations in central and southern Arizona, Fish and Fish (2014)
found that seasonal rains replenished soil moisture below rock
piles, which improved survival rates of A. murpheyi and A.
americana. Nobel et al. (1992b) reported that after watering rocks
with 10–30mL of water, soil volumetric water content increased
below rocks for a period ranging between 13 and 19 days, leading
to increased nocturnal CO2 uptake of A. deserti.

While moisture underneath rock piles likely enhanced Agave
biomass productivity, Eickmeier and Adams (1978) indicated
that available water and air temperature are the two most
influential factors that affectAgave carbon assimilation. Although
day-night temperature is an important factor in Agave nocturnal
CO2 uptake, as observed with A. angustifolia and A. americana
(Holtum and Winter, 2014), soil moisture governs biomass
productivity of agaves (Huang and Nobel, 1992). Nobel and
Quero (1986) indicated that available soil moisture in summer
and fall in the Sonoran and Chihuahuan Deserts acts as
the driving factor that stimulates biomass of Agave plants by
promoting emergence of new leaves, development of large aerial
shoots, and enhancement of root hydraulic conductance. In
addition, Nobel (1976) observed that leaf size and soil water
content correlated with higher nocturnal CO2 uptake of A.
deserti. However, the benefits of increasing soil moisture by using
rock piles needs to be further explored through additional lab and
field experiments.

Soil Temperature Underneath Rock Piles
Cool temperatures below rock piles can reduce heat stress
and desiccation of roots of Agave plants (Huang and Nobel,
1992). Since daily soil temperatures in the Sonoran Desert
can reach 75◦C (Nobel, 2003), rock piles can reduce soil-
moisture evaporation rates (Sandor and Homburg, 2011), and
also work as a barrier to reduce interception of solar radiation,
which leads to cooler diurnal soil temperatures relative to that
found in exposed soil (Wilken, 1972). Studies made on the
thermal properties of rock piles in A. deserti and A. americana
illustrate the advantages of rock piles as insulation to diurnal
hot temperatures. Palta and Nobel (1989) observed that low
soil temperatures underneath rocks positively affected A. deserti
root respiration and reduced root dryness. Nobel et al. (1992b)
measured A. deserti roots underneath boulders or rock fragments
and compared roots of agaves growing in exposed soils and found
that low temperatures and less-negative soil water potentials
underneath rocks increased root number, thickness, and length.

Kaseke et al. (2012) found that convective heat transference
of rock mulch can keep soils cooler during the day and
increase nocturnal soil temperatures. However, since little is
known regarding patterns of diurnal and nocturnal temperatures
underneath and within Hohokam rock piles, characterization of
such properties is necessary in similarly arranged rock piles. In
addition, experimentation is needed to characterize nocturnal
convective heat transference underneath rock piles, and the level
of nocturnal CO2 uptake of agaves in rock piles.

Insulative properties of rocks and their effect on temperatures
below rock piles likely have a positive effect on symbiosis
of microbes with agaves (Cui and Nobel, 1992). A study
on the effects of soil temperatures on vesicular-arbuscular
mycorrhizae infection found that soil temperatures around 25◦C
increased yields of Sorghum bicolor and Triticum aestivum
due to high colonization of roots by mycorrhizae (Fabig
et al., 1989). Little is known, however, about the effect of
Hohokam rock-pile temperatures on the soil microbiome and
their associated benefits. Nevertheless, the Agave rhizosphere
is diverse in prokaryotic and fungal microorganisms, and is
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correlated with the hosting capability of agaves and their
adaptions to arid climates (Coleman-Derr et al., 2016). Symbiosis
of Agave roots with soil microbes enhances root hydraulic
conductance and nutrient uptake, particularly solubilizing P. Cui
and Nobel (1992) observed that colonization of A. deserti with
mycorrhizae improved hydraulic conductance, uptake of P in
roots, and P allocation in leaves. In addition, colonization of
mycorrhizae positively correlated with enhanced CO2 uptake
of A. deserti. Plant symbiosis with arbuscular mycorrhizae,
ecto-mycorrhizae, ericoid mycorrhizae, and various bacteria
contributes to increased uptake of N and P in the form of
phosphates (Mensah et al., 2015). In a study where endophytic
bacteria were isolated from the base of A. tequilana plants,
Martínez-Rodríguez et al. (2014) identified the presence of 300
strains of bacteria with different capacities and benefits, such as
N fixation, P solubilization, auxin production, and antagonism
against Fusarium oxysporum.

Soil-Based Nutrients Underneath Rock
Piles
Agaves in the wild are well-adapted to arid regions and generally
perform adequately in rocky, nutrient-poor soils (Gentry, 1972,
1982). However, soil-based nutrients underneath rock piles
(Homburg and Sandor, 2011; Sandor and Homburg, 2017)
can bolster Agave primary productivity (Nobel et al., 1992a).
Soil research by Homburg and Sandor (2011) suggests that
the use of Hohokam rock piles enriched C, N, and available
P to agaves due to organic-matter accumulation. Soil nutrient
accumulation underneath Hohokam rock piles possibly occurred
due to runoff, microbial decomposition of organic matter, or
soil bioturbation. The available nutrients below rock piles likely
enhanced the physiological response of agaves to drought and
extreme temperatures, and improved growth and productivity.
However, it is necessary to assess the dynamics between soil-
based nutrients underneath rock piles with Agave nutrient
assimilation to more fully understand the benefits afforded
by rock piles to Agave productivity. In addition, agricultural
parameters, such as soil pH levels, soil electric conductivity,
and nutrient cycling in the soil beneath rock piles, need
future research.

Nutrients in the soil under rock piles, as observed byHomburg
and Sandor (2011), contributed to the productivity of cultivated
agaves. Available nutrients in the soil assist in the productivity
of agaves (Nobel et al., 1992a). Nobel et al. (1988) observed
that fertilization with N, P, K, and B enhanced growth and
nocturnal CO2 uptake of A. lechuguilla. Similarly, irrigation, in
combination with fertilization with N, P, and K, increased foliar
leaf area, leaf number, and concentration of sugars, particularly
fructose and glucose in A. tequilana and Agave potatorum
(Martínez et al., 2012; Zúñiga-Estrada et al., 2018). Valenzuela
and Gonzalez (1995) found that fertilization of A. lechuguilla
and A. tequilana with P and N increased leaf area. Similarly, for
A. deserti, Nobel et al. (1989) observed that fertilization promoted
leaf growth and high rates of CO2 uptake, which led to high
biomass accumulation.

Opportunity for Researching Agaves in
Rock Piles
Relict rock piles at archaeological sites represent a valuable
agricultural example of how the Hohokam made marginal
lands productive by cultivating agaves during severe droughts.
While a number of archaeologists reported that rock piles
were the main dryland-farming strategy used by the Hohokam
to cultivate agaves (Masse, 1979; Fish et al., 1985; Crown,
1987; Dobyns, 1988; Fish and Fish, 1990, 1992; Cantley,
1991; Lightfoot, 1996; Sandor and Homburg, 2011), little is
known about the agronomic potential and applications of
rock piles in modern Agave cultivation. To bring to light
possible uses of rock piles, it is necessary to sort through
what has been published regarding the environmental details
of rock-pile fields in order to experimentally replicate these
ancient agroecosystems.

Experiments that assess cultivation, pest management, and
the physiological responses of agaves using rock piles are
needed, particularly to observe plant productivity, CO2 uptake,
temperature requirements, and soil-plant water relations in rock
piles. In addition, characterizing the hydrothermal properties
of rock piles requires examining how they can preserve soil
moisture and modulate soil temperatures. The microbiome
and fauna of rock piles are additional factors that could
potentially enhance nutrition, improve water status, and
contribute to general plant health. Microbiomes in rock
piles can positively impact plant health of agaves in future
droughts, particularly in preventing pests and disease. Future
research is needed on the environmental, social, and economic
impacts of using rock piles to cultivate agave, particularly
in the continually changing and fragile agroecosystems of
dry regions.

CONCLUSIONS

Further experimentation and development of innovative
agricultural strategies is crucial to the use of agaves as a
crop under scenarios of severe drought and global warming.
Throughout history, agaves have been used as commodities
for food (Anderies et al., 2008; Delgado-Lemus et al., 2014),
beverages (Walton, 1977; Stewart, 2015; Escalante et al., 2016),
and fiber (Colunga-GarcíaMarín and May-Pat, 1993). In
modern times, agaves continue to be used for such purposes,
but are now also used as substrates for sweeteners (Heyer
and Crawford, 2009; Stewart, 2015), biofuels (Somerville
et al., 2010; Davis et al., 2011), synthetic drugs (Santos
and Branco, 2014; Cushman et al., 2015) and industrial
materials (Silva et al., 2010; Orue et al., 2016). We suggest
dryland farming of Agave as a means to minimize the use of
irrigation water and sustainably maintain crop productivity in
arid regions.

Current challenges to successful cultivation of agaves,
such as low rainfall and excessive heat in arid regions and
marginal lands, are similar to those that prehistoric, indigenous
farmers faced during droughts in the Sonoran Desert. The
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pre-Columbian Hohokam were skilled in the use of rock
piles to cultivate agaves during droughts (Dobyns, 1988; Fish
and Fish, 1992). These rock piles acted as a mulch that
harvested rainwater moisture, preserved soil moisture, reduced
soil evapotranspiration, and insulated soil in their immediate
environs. Despite the lack of empirical data, moisture harvested
during the monsoon season beneath and around rock piles
likely decreased drought stress, stimulating biomass productivity
of agaves.

The use of rock piles for Agave cultivation promises ecological
benefits, such as minimizing soil erosion and maximizing crop
productivity in marginal lands with minimal input of chemical
fertilization and pesticides

Rock pile cultivation of agaves is promising, but it requires
field-based research to characterize their productive potential.
More research is also needed to understand how the Hohokam
rock-pile system could be used to cultivate crops other than
agaves. However, with even from the little that is known,
rock piles provide a sustainable crop-production-technology
alternative for efficient use of water in dry areas and to
revive cultivation of agaves in limited-resource environments in
the region.
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