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Introduction:Observational studies have reported that patients with Alzheimer’s
disease (AD) have a greater burden of comorbidities typically associated with
stress-related psychiatric disorders. However, the contribution of hereditary
factors to this comorbidity remains unclear. We evaluated phenotypic
associations using observational data from the UK Biobank.

Method: Our study focused on investigating the shared risk variants and genetic
etiology underlying AD and three stress-related psychiatric disorders: post-
traumatic stress disorder, anxiety disorder, and major depressive disorder. By
leveraging summary statistics from genome-wide association studies, we
investigated global genetic correlations using linkage disequilibrium score
regression, genetic covariance analysis, and high-definition likelihood.
Genome-wide cross-trait analysis with association analysis based on subsets
and cross-phenotype association were performed to discover genome-wide
significant risk variants shared between AD and the three stress-related
psychiatric disorders.

Results: A significant positive genetic correlation was observed between AD and
major depressive disorder using linkage disequilibrium score regression (rg =
0.231; P = 0.018), genetic covariance analysis (rg = 0.138; P < 0.001), and high-
definition likelihood (rg = 0.188; P < 0.001). Association analysis based on subsets
and cross-phenotype association revealed thirteen risk variants in six genes
shared between AD and post-traumatic stress disorder; seven risk variants in
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four genes shared between AD and anxiety disorder; and 23 risk variants in four
genes shared between AD and major depressive disorder. Functional annotation
and gene-set enrichment analysis indicated that 12 genes for comorbidity shared
between patients with AD and all three stress-related psychiatric disorders were
enriched in the spleen, pancreas, and whole blood.

Conclusion: These results advance our knowledge of the shared genetic origins of
comorbidities and pave the way for advancements in the diagnosis, management,
and prevention of stress-related AD.

KEYWORDS

Alzheimer’s disease, stress-related psychiatric disorders, genetic correlation,
genome-wide cross-trait analysis, shared genetic etiology

1 Introduction

The classic features of Alzheimer’s disease (AD) include the
accumulation of β-amyloid plaques and formation of
neurofibrillary tangles containing hyperphosphorylated tau
(Weller and Budson, 2018). Epidemiological evidence has
revealed that stress-related psychiatric disorders may accelerate
the onset of AD and worsen its course (Song et al., 2020; Rajkumar,
2023). Chronic stress increases the phosphorylation of tau and Aβ
precursor proteins, which is linked to synaptic dysfunction and
neuronal death in AD. It also activates the hypothalamic-pituitary-
adrenal axis, which stimulates the production and secretion of
stress hormones (Vyas et al., 2016; Sheng et al., 2021). Stress-
related psychiatric conditions, known as post-traumatic stress
disorder (PTSD), are characterized by the emergence of
intrusive symptoms, avoidance of trauma-related cues, adverse
changes in mood and cognition, and noticeable changes in arousal
and reactivity after exposure to traumatic events (Merians et al.,
2023). A recent epidemiological study reported that individuals
with PTSD had a statistically significant propensity to develop AD
(HR = 1.36; 95% CI = 1.12–1.67) (Song et al., 2020). Individuals
with stress-related disorders have increased susceptibility to
neurodegenerative diseases later in life, regardless of
confounding factors such as environmental and familial
influences. Along with PTSD, anxiety disorder (ANX) and
major depressive disorder (MDD) are commonly referred to as
“stress-related psychiatric disorders” (Smoller, 2016). An increase
in anxiety has been correlated with elevated levels of β-amyloid, a
protein linked to AD (Kwak et al., 2017), and the prevalence of
ANX is between 9.4% (preclinical phase) and 39% (from mild to
severe decline) in AD (Zhao et al., 2016; Bauer et al., 2018).
Concomitant MDD is observed in 22%–59% of patients with
AD (Starkstein et al., 2005), whereas the estimated lifetime
prevalence of the general population is 11%–15% (Bromet et al.,
2011). Clinical correlations between AD and MDD have been
documented and are bolstered by their mutual impact on
hippocampal shrinkage and participation of oxidative stress-
related molecular pathways in the advancement of both
conditions (Rodrigues et al., 2014). We first evaluated
phenotypic associations using individual-level data from
255,896 participants from the UK Biobank (UKB). A reasonable
hypothesis derived from neuropathological observational
investigations is that AD is located on a continuum of stress-
related psychiatric disorders, given the pathological and clinical

overlap between AD and these illnesses (Guo et al., 2022). The
recent exponential increase in the identification of risk variants
affecting AD development has confirmed the role of genetic
susceptibility (Nalls et al., 2019; van Rheenen et al., 2021;
Wainberg et al., 2023). Comorbidities and genetic correlations
between AD and stress-related mental health conditions suggest
that both conditions share susceptibility variations, which
frequently serve as genetic distorting factors in the relationships
between traits. Next, we conducted a genome-wide cross-trait
analysis to characterize the shared genetic architecture.

Given that hundreds of genetic variations influence many traits,
the polygenic nature of complex traits leads to genetic variations that
are shared across multiple phenotypes (Visscher et al., 2017).
Genome-wide cross-trait analysis can better identify genetic
variations in multiple traits or characteristics than single-trait
research. This was performed using summary statistics from a
large-scale genome-wide association study (GWAS) to infer a
common genetic etiology (Zeggini and Ioannidis, 2009). We used
association analysis based on subsets (ASSET) to identify shared
genetic risk loci and conducted cross-phenotype association tests
(CPASSOC) for the meta-analysis of associations across traits.
ASSET, which is known for its ability to identify association
signals across subsets of traits and accounts for potential sample
overlap, complements CPASSOC by capturing single-nucleotide
polymorphisms (SNPs) with opposite effects (Bhattacharjee et al.,
2012). We used SNP-level functional annotation from Functional
Mapping and Annotation (FUMA), to identify significant shared
genomic risk loci based on ASSET and CPASSOC results. We used
SNP enrichment to identify significant functional categories of
different tissues involved in the comorbidity of AD and all three
stress-related psychiatric disorders. In addition, we conducted the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and
cell-type-specific enrichment analyses with Web-based Cell-type-
Specific Enrichment Analysis of Genes (WebCSEA) (Dai et al., 2022)
to map genes with shared risk variants in their comorbidities.

Investigating the genetic etiology and shared risk variants of
complex comorbidities is methodologically viable because of the
availability of publicly available GWAS summary data and proven
efficient methods. In this study, we investigated shared risk variants
and biological pathways between AD and three stress-related
psychiatric disorders (PTSD, ANX, and MDD). Genome-wide
genetic correlation analyses and genome-wide cross-trait analysis
will provide insight into the pathogenesis and therapeutics of AD
with comorbidities.

Frontiers in Aging frontiersin.org02

Dang et al. 10.3389/fragi.2025.1488528

https://www.frontiersin.org/journals/aging
https://www.frontiersin.org
https://doi.org/10.3389/fragi.2025.1488528


2 Materials and methods

2.1 Observational analysis

The UKB study recruited 501,457 participants aged
37–73 years in the United Kingdom between 2006 and 2010
(Sudlow et al., 2015). Participants aged 60–70 years with
available genotype information and White or British ethnic
background were selected. The label “AD” was assigned to
those in the UKB assessment center with one of the following
ICD10 codes, relating to AD (G30.0, G30.1, G30.8, or G30.9).
MDD, ANX, and PTSD were defined based on self-reported
codes 1286, 1287, and 1469 (in the data field 20,002),
respectively, with 199,125 participants remaining. Logistic
regression models were used to determine whether AD was
associated with MDD, ANX, and PTSD.

2.2 GWAS summary statistics and
quality control

In this study, GWAS summary statistics for AD comprising
71,880 cases and 383,378 controls were obtained from https://www.
ebi.ac.uk/gwas/studies/GCST007320 (Jansen et al., 2019). For PTSD,
we downloaded the GWAS summary statistics of Nievergelt et al.
(2019) from the Psychiatric Genomics Consortium (PGC), which
included 23,212 cases and 151,447 controls. We obtained GWAS
summary statistics for anxiety (ANX) from the PGC as reported by
Otowa et al., which included 7,016 cases and 14,745 controls (Otowa
et al., 2016). Summary statistics for patients with MDD, comprising
65,075 cases and 232,552 controls, were obtained from https://www.
ebi.ac.uk/gwas/publications/34278373 (Glanville et al., 2021).
During the quality control stage, we filtered out variants with
minor allele frequency (MAF) less than 0.01, missing rate >5%,

FIGURE 1
Flowchart of various statistical analyses for the present work. GWAS, Genome-wide association study; AD, Alzheimer’s disease; PTSD, Post-
traumatic stress disorder; ANX, Anxiety disorders; MDD, Major depressive disorder; LDSC, Linkage disequilibrium score regression; GNOVA, Genetic
covariance analyzer; HDL, High-definition likelihood; ASSET, Association analysis based on subsets; CPASSOC, Cross-phenotype association test; FUMA,
Functional mapping and annotation of genetic association studies; KEGG, Kyoto Encyclopedia of Genes and Genomes; WebCSEA,Web-based Cell-
type-Specific Enrichment Analysis of Genes.
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imputation r2 < 0.9, or those that deviated significantly from
Hardy–Weinberg equilibrium (P < 1 × 10−6). Ambiguous SNPs
(AT, TA, CG, and GC) were excluded from the analysis.

2.3 Investigation of shared genetics between
stress-related psychiatric disorders and AD

To investigate shared genetics, we performed a genome-wide
genetic correlation analysis, genome-wide cross-trait analysis, and
functional annotation. The flowchart of the analysis is shown
in Figure 1.

2.3.1 Genome-wide genetic correlation analysis
using LDSC, GNOVA, and HDL

Using the LDSC algorithm, which measures the average sharing
of genetic influences across the entire genome between two
phenotypes that are uninfluenced by environmental factors and
confounders, we conducted a pairwise genetic correlation analysis
(Bulik-Sullivan et al., 2015). Considering that linkage disequilibrium
score regression (LDSC) only partially uses LD, we used genetic
covariance analyzer (GNOVA) (Lu et al., 2017) and high-definition
likelihood (HDL) (Ning et al., 2020) to gain a better understanding
of the genetic correlation between AD and stress-related psychiatric
disorders. For LDSC, we relied on the precomputed LD scores of the
1000 Genomes Project. After calculating the SNPs in the HapMap
3 SNP set, we reconstructed GWAS summary statistics and
eliminated SNPs that did not match the reference panel (MAF ≤
0.01 or INFO score ≤ 0.9) (Auton et al., 2015). LDSC analysis
provides a means of quantifying the degree of genetic variation
within populations without requiring individual variant genotyping.
This method is most used to estimate the heritability and genetic
correlations of complex traits. However, it is important to note that
LD scores may not precisely capture genetic diversity in populations
with diverse ancestries, potentially resulting in biased heritability
and genetic risk score estimates. For GNOVA, we used the genetic
correlation estimates with sample overlap correction (“corr_
corrected” column from the GNOVA output) and the P-value for
genetic covariance with sample overlap correction (“pvalue_
corrected” column from the GNOVA output) in GNOVA
(Wainberg et al., 2023). Compared with LDSC, GNOVA can
quantitatively assess the contribution of different genetic variants
to the phenotype and offers stronger statistical inference using
genetic covariance. It can improve the estimated accuracy for
genetic correlations, particularly in the case of moderate
correlations, whereas LDSC makes only limited use of LD
information. Furthermore, GNOVA and LDSC are robust
methods for estimating genetic relationships as they are not
affected by the sample overlap (Lu et al., 2017; Bulik-Sullivan
et al., 2015). GNOVA incorporates information on sample
overlap into its covariance estimation procedure, effectively
controlling for this potential source of bias. For HDL, we
estimated the genetic correlation using GWAS summary
statistics, which decreased the variance of a genetic correlation
estimate by approximately 60%, equivalent to a 2.5-fold increase
in sample size (Ning et al., 2020). HDL can provide more precise
model-fitting results by considering more data information, aiding
in a better analysis of model uncertainty. It attempts to incorporate

as much LD information as possible from the data, thereby
addressing the limitations of the LDSC, which estimates genetic
correlations based on partial LD information. However, the results
may vary when different reference panels are used. Genetic
correlations and causality between MDD and AD have been
demonstrated in previous studies (Harerimana et al., 2022). In
summary, we conducted genetic correlation analysis to assess
pairwise global genetic correlations using LDSC, GNOVA, and
HDL. These methods enhanced the statistical inference on
comorbidities among AD and the three stress-related psychiatric
disorders, thereby improving the precision of the genetic correlation
estimation. In the GNOVA, the genetic covariance analysis included
the Bonferroni correction to adjust the results. The LDSC utilizes the
LD Score regression intercept to quantify the confounding bias.

2.3.2 Genome-wide cross-trait analysis using
ASSET and CPASSOC

Genetic correlation indicates that two qualities share genetic
components, either because genetic variants influence one trait
independently, or because genetic variants influence one trait
through their influence on another (Shi et al., 2017). We used a
subset-based meta-analysis method in ASSET to identify pleiotropic
SNPs using all possible subsets of GWAS inputs (Li and Zhu, 2017).
A P-value (multiple testing corrected) for the overall evidence of the
association of a variant across phenotypes was returned by ASSET,
with the best subset of phenotypes contributing to the overall
association. ASSET searches all possible subsets of input GWAS
traits for the greatest association signal, both positive and negative.
Furthermore, as a sensitivity study, CPASSOC combines the
association proof of GWAS summary statistics of several traits,
where the variation is associated with at least one trait and controlled
for population structure or cryptic relatedness. The CPASSOC
results showed that pairwise SHet that was calculated to combine
summary statistics across traits and was an extension of SHom,
showed improved power with heterogeneous genetic effects (Zhu
et al., 2015). We used the SHet version for heterogeneous effects
across traits. After the genome-wide cross-trait analysis, SNPs that
reached genome-wide significance (PASSET < 5 × 10−8 and
PCPASSOC < 5 × 10−8) in paired traits were considered statistically
significant shared risk variants. We focused only on the signals when
the connection was influenced by many diseases.

2.3.3 Genomic risk loci and functional annotation
Functional annotation of shared risk variants from ASSET and

CPASSOC for AD and all three stress-related psychiatric disorders
was performed using the FUMA web portal (Watanabe et al., 2017;
Watanabe et al., 2019). Independent significant SNPs were identified
as those that reached genome-wide significance (i.e., P ≤ 5.0 × 10−8)
and were independent within a 1 Mb window (i.e., r2 < 0.6). Lead
SNPs were identified as several of the independent significant SNPs
that had r2 < 0.1 within a 1 Mb window. Genomic risk loci were
identified using lead SNPs that were closer than a 250 kb distance.
Subsequently, lead SNPs were mapped to the closest genes using
ANNOVAR, and loci within 250 kb were combined into a single risk
locus. For each locus, the top-lead SNP with the lowest P-value
served as a representative. A novel shared risk gene was declared if it
had never been reported in previous studies related to AD or any of
the three stress-related psychiatric disorders.
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SNP2GENE uses ANNOVAR to annotate SNPs based on the
functional implications of gene function. Combined Annotation
Dependent Depletion (CADD), potential regulatory functions
(RegulomeDB), and chromatin states use FUMA. The risk of the
SNPs, as indicated by 63 functional annotations, was reflected in the
CADD score. We considered the most harmful variations as those
with a CADD score of ≥12.37. The regulatory functionality of the
SNPs, as shown by the RegulomeDB score, was derived from the
overlap of the major difunctional data annotations available in the
Genotype-Tissue Expression (GTEx) v8 dataset. The noncoding
genome was annotated using ChromHMM, which predicts
15 categories based on 5 chromatin marks for 127 epigenomes,
and FUMA shows the chromatin status access of genomic regions.

We used data from the GTEx v8 dataset provided by
GENE2FUNC to create a heat map that visualized tissue-specific
gene expression levels (e.g., brain, liver, and arteries) (Alemany et al.,
2023). The predetermined differentially expressed gene sets in
particular tissue types were obtained by comparing the
normalized expression levels of each gene from one tissue with
those of all other issues in the GTEx v8 dataset. We then used
hypergeometric tests in GENE2FUNC to assess whether the mapped
genes were overrepresented in the differentially expressed gene sets.

2.3.4 KEGG pathway and cell-type-specific
enrichment analysis

KEGG is an open and widely used database that integrates data
on genomes, biological pathways, illnesses, and medications
(Kanehisa and Goto, 2000). KEGG pathway analysis was
performed to identify the pathways enriched with a list of
significant proteins. The False Discovery Rate adjusted P-value
on the pathway was computed to allow for multiple testing,
where a value of <0.05 is regarded as significant.

WebCSEA is an online tool that provides a comprehensive
exploration of the tissue-cell specificity of genes among the major
human tissue-cell type maps (Dai et al., 2022). We used this tool to
determine the cell-specific expression that may be involved in the
pathogenesis of AD and all three stress-related psychiatric disorders
for each mapped gene separately.

3 Results

3.1 Participant characteristics

Among the 501,457 participants in the UK Biobank,
4,130 individuals self-reported AD. In the current study,
participants who self-reported AD were older and more likely to

be female (81.62% of patients with AD compared to 47.42% of
males). In the logistic regression models, people who reported AD
were more likely to have depression (OR = 1.646, 95% CI =
1.433–1.880, P < 0.001) and ANX (OR = 1.332, 95% CI =
1.012–1.717, P = 0.033) (Table 1).

3.2 Estimation of genetic correlations using
LDSC, GNOVA, and HDL

The pairwise global genetic correlations between AD and stress-
related psychiatric disorders are summarized in Table 2. Using LDSC,
genetic correlations between AD and MDD, PTSD, and ANX were
0.231 (P = 0.018), 0.149 (P = 0.319), and 0.108 (P = 0.638), respectively.
Using GNOVA, which allows the estimation of genetic correlations
across continuous annotations, the genetic correlations between AD
and MDD, PTSD, and ANX were 0.138 (P < 0.001), 0.074 (P = 0.154),
and 0.104 (P = 0.188), respectively. Using the HDL method, which
showed a significant positive genetic correlation, the genetic correlations
between AD andMDD, PTSD, and ANX were 0.185 (P < 0.001), 0.128
(P = 0.072), and 0.457 (P = 0.411), respectively. The results of the three
methods were largely consistent. AD and MDD showed significant
positive genetic correlations, whereas no significant correlations were
observed between AD and the other stress-related psychiatric disorders
(PTSD and ANX).

3.3 Genome-wide cross-trait analysis of AD
and three single-trait stress-related
psychiatric disorders

We identified 13 shared risk variants that reached genome-wide
significance (PASSET < 5 × 10−8 and PCPASSOC < 5 × 10−8) for AD and
PTSD located within six genes (APOC4-APOC2, APOE, TOMM40,
CLPTM1, PVRL2, and CTB-179K24.3) (Supplementary Table S1). The
most significant SNPwas rs1081105 (PASSET = 1.16 × 10

−231, PCPASSOC =
1.16 × 10−232), which is located within apolipoprotein E (APOE). It is a
significant genetic risk factor for AD and increases the risk in
homozygotes by up to 15 times in a dose-dependent manner
(Strittmatter et al., 1993). The second most significant one was
rs112019714 (PASSET = 1.72 × 10−224, PCPASSOC = 2.02 × 10−225) that
is found inside translocase of outer mitochondrial membrane 40
(TOMM40) and can activate the NOD-, LRR- and pyrin domain-
containing protein 3 (NLRP3) inflammasome, microglia, and pro-
inflammatory cytokines, which, in turn, can induce neurotoxicity in
hippocampus neurons (Chen et al., 2023). Seven shared risk variants for
AD and ANX, located within four genes (BIN1, AP001257.1, PVRL2,
and CASS4), were identified (Supplementary Table S2). The most
significant SNP was rs148303016 (PASSET = 6.26 × 10−15, PCPASSOC =
3.96 × 10−18) located within poliovirus receptor-related 2 (PVRL2),
followed by rs7575209 (PASSET = 3.69 × 10−17, PCPASSOC = 1.66 × 10−14)
located within bridging integrator-1 (BIN1), which is a major AD
susceptibility gene (Lambert et al., 2022). Notably, PVRL expression,
along with the AD GWAS-identified loci TOMM40 and APOE, has
been linked to the human lifespan. PVRL expression has been observed
in various tissues, including the brain (Lu et al., 2014).We also identified
23 shared risk variants associated with AD and MDD (Supplementary
Table S3) located in four genes (BIN1, TMEM106B, PICALM, and

TABLE 1 Regression model for the association between AD and single-trait
stress-related psychiatric disorders.

Trait β SE P-value OR 95%CI

Depression 0.498 0.069 <0.001 1.646 1.433–1.880

ANX 0.286 0.135 0.033 1.332 1.012–1.717

PTSD −0.111 0.584 0.849 0.895 2.206–2.364

AD: Alzheimer’s disease, PTSD: Post-traumatic stress disorder, ANX: anxiety disorder.
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SLC24A4). The most significant SNP was rs1548884 (PASSET = 6.98 ×
10−16, PCPASSOC = 7.94 × 10−16) located in TMEM106B, a lysosomal
transmembrane protein that has been closely associated with brain
health (Zhang et al., 2023). Based on the results of three genome-wide
cross-trait analysis with ASSET and CPASSOC, 12 shared genes
(APOC4-APOC2, APOE, TOMM40, CLPTM1, PVRL2, CTB-
179K24.3, BIN1, AP001257.1, CASS4, TMEM106B, PICALM, and
SLC24A4) for comorbidity were identified for AD and all three
stress-related psychiatric disorders, of which AP001257.1 is a novel
gene that has never been reported in previous AD-related or the three
stress-related psychiatric disorders.

Twelve lead SNPswere locatedwithin 10 genes (BIN1,TMEM106B,
AP001257.1, PICALM, SLC24A4, PVRL2, APOE, CLPTM1, CTB-
179K24.3, and CASS4) for AD, and all three stress-related
psychiatric disorders were identified using FUMA. In addition, six
risk loci (2q14.3, 7p21.3, 11q14.2, 14q32.12, 19q13.32, and 20q13.31)
were identified (Supplementary Table S4). The nearest gene to the most
significant lead SNP rs1081105 (PASSET = 6.98 × 10−16, PCPASSOC =
7.94 × 10−16) on the 19q13.32 risk locus was APOE. The gene-rich
chromosome 19q13.32 has been linked to several adult human
phenotypes, including lipid characteristics, AD, and longevity
(Chiba-Falek et al., 2017). We also identified the three nearest genes
(PVRL2, APOE, CLPTM1) that are all located in the 19q13.32 region.
Two lead SNPs rs148303016 (PASSET = 6.26 × 10−15, PCPASSOC = 3.96 ×
10−18) and rs426555 (PASSET = 1.88 × 10−23, PCPASSOC = 7.01 × 10−24)
were all located within PVRL2. BIN1 had two lead SNPs (rs7575209 and
rs10200967) at locus 2q14.3, which is currently known as the most
important genetic sensitivity locus in late-onset AD after APOE (Tan
et al., 2014). The loci 7p21.3, 11q14.2, and 14q32.12 were mapped to
transmembrane protein 106B (TMEM106B) (Satoh et al., 2014),
phosphatidylinositol binding clathrin assembly protein (PICALM)
(Ando et al., 2022), and sodium/potassium/calcium exchanger 4
(SLC24A4) (Yu et al., 2015) genes associated with AD, respectively.
Patients with Parkinson’s disease have reduced PICALM mRNA
expression in their blood, whereas patients with AD have higher
levels. This study suggests that PICALM mRNA level in human
blood could be a helpful diagnostic tool for distinguishing
neurodegenerative illnesses from major depression (Kumon
et al., 2021).

3.4 Functional annotation and gene set
enrichment analysis results

Functional annotation analysis of all the shared risk variants
selected based on the genome-wide cross-trait analysis of AD and

the three stress-related psychiatric disorders showed that the SNPs
were mostly intronic and intergenic. Functional annotation revealed
the over-presentation of SNPs in introns (57.1%), intergenic regions
(11.9%), and non-intronic RNA (4.76%) (Figure 2A). A total of
97.62% of the variants within credible sets were in open chromatin
regions (minimum chromatin state ≤ 7), 2.38% were likely to affect
the binding of transcription factors (RegulomeDB scores from 1b to
2c), and 6.52%may be deleterious (CADD score > 12.37). According
to the RegulomeDB score categories 1a–1f, variations are likely to
have an impact on binding and are connected to the target gene’s
expression. RegulomeDB ratings for AD ranged from 1a to 1f for
2.38% of SNPs (Figure 2B). Interestingly, the highest-scoring SNP
(rs1081105) in the AD study had a RegulomeDB score of 5. A total of
97.62% of the candidate SNPs across AD and the three stress-related
psychiatric diseases were in open chromatin state regions according
to the minimal chromatin state distribution (Figure 2C). The tissue-
specific gene expression levels of the genes that were co-housed
using eQTL mapping of the common SNPs and found in our
genome-wide cross-trait analysis are displayed in Figure 3.
Notably, a genome-wide cross-trait analysis revealed that six
genes (APOE, BIN, CLASRP, CLPTM1, PICALM, and RTFDC1)
were highly expressed across all tissue types. As shown in Figure 4,
genes that were mapped using eQTL using significant SNPs
identified by genome-wide cross-trait analysis were enriched in
the spleen, pancreas, and whole blood.

3.5 KEGG pathway and cell type
specificity results

We employed Enrichr to enhance the common risk genes in a
KEGG functional analysis to understand the influence of risk genes
on biological pathways. Two biochemical pathways were
substantially enriched in AD, namely cholesterol metabolism and
Fc gamma R-mediated phagocytosis. Notably, the strongest
enrichment signal for AD and the three stress-related psychiatric
disorders was for cholesterol metabolism, which included one
enriched gene (APOE). The second enriched signal was for Fc
gamma R-mediated phagocytosis, which included one enriched
gene (B1N1). Finding the Fc gamma receptor-mediated
phagocytosis pathway links the pathogenesis of AD to the
peripheral innate immune system (Park et al., 2020).
Furthermore, we found an enrichment of the mapped genes
selected by genome-wide cross-trait analysis in the endocrine,
lymphatic, reproductive, and sensory systems (Figure 5). The
immune and nervous system-related macrophages and microglial

TABLE 2 Pairwise genetic correlation between AD and single-trait stress-related psychiatric disorders.

Trait 1 Trait 2 LDSC GNOVA HDL

rg SE P-value rg SE P-value rg SE P-value

AD PTSD 0.149 0.149 0.319 0.074 0.003 0.154 0.128 0.071 0.072

ANX 0.108 0.229 0.638 0.104 0.007 0.188 0.457 0.556 0.411

MDD 0.231 0.097 0.018 0.138 0.003 <0.001 0.185 0.047 <0.001

AD: Alzheimer’s disease, PTSD: Post-traumatic stress disorder, ANX: anxiety disorder, MDD: major depressive disorder, LDSC: linkage disequilibrium score regression, GNOVA: genetic

covariance analyzer, HDL: High-Definition Likelihood.
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cell types were the most enriched. These cells are essential for
maintaining immunological homeostasis in a constant state and
healing the tissue damage sustained during brain development or
disease-related pathologies (Amann et al., 2023).

4 Discussion

In this study, we conducted a comprehensive observational and
genetic analysis.

FIGURE 2
Distribution of the annotation for all SNPs jointly associated with the results of genome-wide cross-trait analysis among ADwith three stress-related
psychiatric disorders. (A) Distribution of functional categories of SNPs in the shared genomic risk loci. (B) Distribution of RegulomeDB score for SNPs in
shared genomic loci. (C) The minimum chromatin state across 127 tissue and cell types for SNPs in shared genomic loci, with lower states indicating
higher accessibility and states 1–7 referring to open chromatin states.

FIGURE 3
Shared genes expression heatmaps constructed with GTEx v8 (54 tissues). Genes and tissues are ordered by clusters for the GTEx heatmap. The
abscissa represents the GTEx v8 tissues and the ordinate represents the genes selected by ASSET and CPASSOC.
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In the observational analysis, we used data from the UK Biobank
to explore the associations between AD and stress-related
psychiatric disorders in the population. Our observational
analysis revealed links between AD and depression and between
AD and ANX. We then conducted genetic analysis to systematically
investigate the phenotypic associations, genetic correlations,
pleiotropic loci, and gene expression between AD and three
stress-related psychiatric disorders. In this genome-wide cross-
trait analysis, we confirmed the risk-increasing relationship
between AD and MDD, providing insights into the underlying
biological mechanisms. Although LDSC analysis revealed no
significant genetic correlation between AD and PTSD or ANX,
this may be attributed to noise in the PTSD and ANX GWAS
datasets or the inherently low genetic correlation with AD. To
further explore their comorbid relationships, we assessed pairwise
genetic correlations between traits to uncover the common
etiologies underlying AD and stress-related psychiatric disorders.
A genome-wide cross-trait analysis was used to identify pleiotropic
genomic SNPs and genes shared between the two comorbidities,
providing new perspectives on the potential biological mechanisms
underlying these diseases. The findings of this study indicate that

complementary approaches such as ASSET and CPASSOC are
powerful methods for identifying shared risk variants in well-
established comorbidities. It is crucial to elucidate the pleiotropic
effects of key variations that support a high degree of comorbidity.
Our findings are reliable because the ASSET-identified SNPs were
also significant in CPASSOC analysis, as demonstrated by our
results. ASSET leverages significant associations within specific
subsets to aid the discovery of genetic variations across different
populations. ASSET provides a better interpretation of comorbidity
outcomes in case-control studies and enhances the capability to
detect specific variants. However, the computational burden when
handling summary data is substantial. CPASSOC can reveal
underlying shared genetic bases, aiding in the discovery of
genetic correlations between phenotypes. While compared to
ASSET, it enhances the statistical power, it focuses more on the
analysis of pleiotropy. Additionally, we functionally characterized
shared risk genes using an integrative functional annotation
platform that offers a wealth of information on variant and indel
functional annotations. Our study revealed shared genetic variants
or loci that likely contribute to the co-occurrence of AD with stress-
related psychiatric disorders in European ancestry populations and

FIGURE 4
GTEx tissue enrichment analysis. Red bar represents significant tissue enrichment after Benjamin-Hochberg correction. The abscissa represents the
GTEx v8 tissues and the ordinate represents the genes selected by ASSET and CPASSOC.
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FIGURE 5
(A)WebCSEA top enriched organ systems. (B)WebCSEA top enriched celltypes. The red dashed line indicates the Bonferroni-corrected significance
(P = 3.69 × 10−5) by 1,355 TCs. The grey solid line indicates the nominal significance (P = 0.001). The X-axis represents the components in different
stratification strategies. Y-axis indicates the (−log 10 (combined P-value)) for each tissue-cell type from cell-type specificity enrichment analysis result.
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aimed to obtain a deeper understanding of the molecular biological
mechanisms that are essential to the onset and course of AD.

Genetic correlation provides valuable insights into the polygenic
genetic architecture of complex phenotypes by quantifying overall
genetic similarity (Anttila et al., 2018). Recent studies have
demonstrated the superior accuracy of other methods, such as
the GNOVA and HDL in simulations (Zhang et al., 2021b).
Given the increase in publicly accessible GWAS summary data
and the availability of efficient analytical tools, multi-trait joint
analyses have become methodologically viable. According to the
simulated experiments, no strategy based on summary data was
effective in estimating genetic associations when the reference panel
was mismatched (Zhang et al., 2021b). As the number of common
SNPs between the reference panel and the GWAS decreased, the
performance of the HDL declined. Therefore, a suitable reference
panel is essential when using summary statistics-based approaches.
Previous research has not identified genetic associations between
AD and stress-related psychiatric diseases; however, using LDSC,
GNOVA, and HDL, we found a strong positive correlation between
the genomic architecture of AD and MDD. The genetic correlations
calculated using GNOVA and HDL were consistent with those
obtained using LDSC and explained the stability of our results.
One possible explanation for this finding is the risk variants shared
between AD andMDD. By implementing a genome-wide cross-trait
analysis, we discovered shared genes that have not been previously
reported in other comorbidity genetic studies on AD.

In the large-scale genome-wide cross-trait analysis, we found
that 12 genes were mapped from 43 shared risk variants in three
cross-trait groups (AD and PTSD, AD and ANX, and AD and
MDD) using FUMA. Paired immunoglobin like type 2 receptor
alpha (PILRA) has long been recognized as a risk gene for AD;
alongside other functional genes that participate in
neuroinflammation are putative or proven calmodulin-binding
proteins for other neurodegenerative diseases (O’Day and Huber,
2022). Human data are beginning to emerge suggesting that those
who experience prolonged stress during their early years have a
higher risk of developing AD later in life. Mitochondrial dysfunction
is observed around senile plaques, notable lesions constituting
aggregated Aβ and tau protein; TOMM40 is implicated in the
inflow of proteins and Aβ into mitochondria (Wang et al., 2022).
Recent research has demonstrated the critical roles of non-coding
RNAs in pathophysiological processes, including tau
phosphorylation, oxidative stress, Aβ aggregation, cell
proliferation and death, neuroinflammation, and autophagy, thus
contributing to AD (Zhang et al., 2021c). Whether the long non-
coding RNA AP001257.1 is involved in the pathophysiology of AD
requires further study. APOE4 is associated with an earlier onset and
a higher risk of AD. APOE2 appears to increase the prevalence and
severity of PTSD, although it is protective against AD (Johnson et al.,
2015). However, biochemical mechanisms underlying this
association remain unknown. In this study, we identified
common genes between PTSD and AD. The APOE ε4 allele has
been found to be associated with the overactivation of microglia,
which may exacerbate neuroinflammation and promote AD
progression. In contrast, APOE ε2 is thought to have stronger
anti-inflammatory properties, which might help alleviate amyloid
accumulation and reduce neuroinflammation. In the context of
psychiatric disorders (such as depression, schizophrenia), APOE

may also influence disease development and progression by
regulating immune responses and inflammation. Although the
exact mechanisms in psychiatric diseases are still not fully
understood, some studies suggest that the APOE ε4 allele is
associated with increased neuroinflammation and macrophage
activation, which could lead to immune system imbalance,
potentially serving as a risk factor for certain psychiatric disorders.

Although a consensus has emerged from observational studies
on AD and stress-related psychiatric disorders, the shared genetic
etiology as a pathogenic mechanism remains unclear (Protsenko
et al., 2023). APOE on 19q13.32, APOC4-APOC2 on 19q13.32, and
TOMM40 on 19q13.32 were previously shown to be associated with
AD and cognitive impairment (Cruz-Sanabria et al., 2021).
Furthermore, we prioritized candidate genes from FUMA
through genome-wide cross-trait analysis and inferred the
biological pathways identified through functional annotation
analyses. KEGG pathway analysis showed that the candidate
genes were often part of biological pathways involving Fc gamma
receptor-mediated phagocytosis in AD. Currently, there is no
evidence linking stress-related psychiatric disorders to the
common genetic architecture of AD, highlighting the complexity
and heterogeneity of neurodegeneration and neuroinflammation as
distinct processes with multiple paths (Stolp Andersen et al., 2022).
KEGG provides extensive gene function and pathway information,
covering multiple biological processes and signaling pathways.
However, it does not consider variations across different
conditions or tissues, which may limit its ability to explain
changes in gene functions and pathways in different biological
contexts. Functional and genetic annotation results suggest that
the genes mapped from the genome-wide cross-trait analysis-
identified SNPs have different functions in AD.

A lower RegulomeDB score indicated a higher probability of a
regulatory role. Furthermore, a range of tissues, including the
pancreas, spleen, and whole blood, were shown to have high
enrichment levels of shared genes in a genome-wide cross-trait
analysis. The spleen is a key organ of the immune system, playing a
critical role in immune responses throughout the body via the blood.
In neurological research, the spleen is believed to potentially
influence the central nervous system immune environment.
Immune factors released by the spleen may contribute to
neuroinflammation, particularly in the pathology of AD and
multiple sclerosis. The pancreas is not only involved in glucose
metabolism but also communicates with the nervous system
through the secretion of hormones like insulin and glucagon.
These hormones regulate brain metabolic states and neuronal
functions, particularly in mood regulation, cognition, and
sleep. These tissues play important roles in regulating hormone
and enzyme functions. The immune and nervous system microglia
and astrocytes, which are notably enriched cell types, play pivotal
roles in AD pathogenesis. Therefore, targeting microglia and
astrocytes may offer a novel therapeutic approach for AD
treatment. Inflammation, which is recognized as a significant
trigger of AD onset, can precede amyloid deposition and
contribute substantially to AD pathology (Heneka et al., 2013).
Notably, Aβ deposits, chronic microglial activation, and microglial
inflammatory mediators are pivotal in fueling the inflammatory
cascade in AD progression (Zhang G. et al., 2021). Moreover,
psychopathologies, particularly MDD, have been associated with
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the sustained priming and sensitization of cerebral microglia. Recent
evidence suggests that the altered morphology and function of
microglia induced by intense inflammatory activation or
senescence may contribute to major depression and the
associated impairments in neuroplasticity and neurogenesis
(Rahimian et al., 2021).

Under normal circumstances, cholesterol metabolism is crucial for
many cellular processes, such as hormone synthesis, serving as an energy
source, and functioning as a component of the plasma membrane.
Anxiety and depression are among themany pathogenic illnesses caused
by dysregulated cholesterol metabolism, which also causes other
neuropsychiatric disorders. Patients with neuropsychiatric illnesses
also experience problems in cholesterol metabolism. Consequently,
there is a strong correlation between metabolic abnormalities and
neuropsychiatric illnesses. The dysregulation of cholesterol
metabolism has also been observed in individuals with
neuropsychiatric disorders. The pathogenesis of these disorders may
involve immunological disruption, neuroinflammation, oxidative stress,
and dysregulation of the neurotransmitter system. Individuals with
neuropsychiatric disorders are expected to have a higher likelihood of
developing metabolic disorders, such as metabolic syndrome. This
disease is characterized by abnormalities in neuronal homeostasis,
including toxicity and death of neurons, as well as changes in the
functions and structures of neurons, including axonogenesis,
synaptogenesis, neurogenesis, and action potentials, all of which are
affected by cholesterol. Therefore, restoring aberrant or impaired
cholesterol metabolism may aid in repairing the neuronal damage
associated with neuropsychiatric disorders. A study by Feringa and
Kant explored the connection between impaired cholesterol metabolism
and neuropsychiatric illnesses and explains how aberrant cholesterol
metabolism in neuropsychiatric disorders causes neuronal dysfunction
(Feringa and van der Kant, 2021). Dysregulated cholesterol metabolism,
which is implicated in neuropsychiatric disorders, presents opportunities
for novel therapeutic interventions, potentially benefiting both stress-
related illnesses and AD. Given the interconnectedness between
metabolic abnormalities and neuropsychiatric conditions, addressing
aberrant cholesterol metabolism could help alleviate the neuronal
dysfunction associated with neuropsychiatric disorders. This
underscores the importance of understanding the links between
impaired cholesterol metabolism and neuropsychiatric disorders and
offers insights for targeting new pathways in drug therapy for these
conditions (Caruso et al., 2019). Cholesterol metabolism significantly
affects macrophage and microglia activation. Both excessive and
deficient cholesterol levels can alter immune cell function, leading to
inflammation. In the brain, this dysregulation is particularly important
for such as AD, where microglial activation and cholesterol metabolism
are closely intertwined. Modulating cholesterol metabolism may offer
therapeutic potential for diseases where inflammation plays a
critical role.

This study had a few limitations. First, the generalizability of our
findings was confined to populations of European ancestry because of
the lack of available GWASs in non-European populations. Further
investigations are needed to explore the shared genetic etiology between
AD and stress-related psychiatric disorders in populations of other
ancestries. Second, the genetic connections of rare variants could not be
assessed because SNPs with MAF < 0.01 were automatically filtered in
genetic correlation and genome-wide cross-trait analysis. Although we
used a large sample population whenever possible, due to limitations in

the disease data, we were unable to consider the impact of rare variants
and population stratification on the results. This is an inherent limitation
of GWAS studies. Additionally, cross-trait analysis is not feasible for
GWAS summary statistics with small sample sizes or low SNP
heritability. In the current study, for instance, the sample size for
ANX was modest. Finally, we did not investigate the functional
implications of the common risk loci that underlie our results, which
are necessary to validate the molecular pathways in subsequent studies.

5 Conclusion

In conclusion, we provide new insights into the common genetic
etiology between AD and three stress-related psychiatric diseases by
using the largest genome-wide genetic dataset available to date and
sophisticated statistical genetic techniques. Strong genetic
correlations between AD and MDD were identified using genetic
correlation estimates. A genome-wide cross-trait analysis revealed
shared risk variants and genes associated with AD and stress-related
psychiatric disorders. We identified 12 shared risk genes, including a
novel long non-coding RNA gene that has not been previously
reported in AD or any of the three stress-related psychiatric
disorders. Our findings provide a new understanding of the
pathogenic mechanism underlying the regulatory roles of AD
and require further investigation at the molecular level.
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