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Epigenetic clocks have been developed to track both chronological age and
biological age, which is defined by physiological biomarkers and the risk of
adverse health outcomes. Epigenetic age acceleration (EAA) has been found
to predict various diseases, aging-related factors, and mortality. However,
epigenetic clocks have predominantly been developed with individuals of
European or Hispanic ancestry, and their association with health outcomes
and environmental factors has not been sufficiently assessed in East Asian
populations. Here, we investigated nine epigenetic clocks: five trained on
chronological age (first-generation) and four on biological age (second-
generation), using DNA methylation data from blood samples of South
Koreans. EAAs of second-generation epigenetic clocks reflected the risk of
chronic diseases (type 2 diabetes and hypertension), levels of health-related
blood markers (alanine aminotransferase, aspartate aminotransferase, high
density lipoprotein, triglyceride, and high sensitivity C-reactive protein), and
lung functions (percentage of predicted FEV1 and percentage of predicted
FVC), while EAAs of first generation clocks did not. Using follow-up data, we
also found that EAAs of second-generation clocks were associated with the time
to onset risks of chronic diseases. Health behavior factors (drinking, smoking,
exercise, body mass index, and waist-hip ratio), socioeconomic status (income
level and educational attainment), and psychosocial status were associated with
EAAs of second-generation clocks, while only smoking status was associated
with EAAs of first-generation clocks. We conducted validation analyses in an
independent South Korean cohort and replicated the association of EAAs with
health outcomes and environmental factors. Age acceleration of epigenetic
clocks is influenced by various environmental factors and can serve as an
effective predictor of health in South Korea.

KEYWORDS

epigenetic clock, lifestyle, methylation, healthcare, aging

Introduction

Over the past decade, there has been a substantial increase in the development and
application of epigenetic predictors in healthcare research (Yousefi et al., 2022). DNA
methylation changes dynamically in response to a variety of exogenous and endogenous
factors, and can be used to estimate age through predictors called “epigenetic clocks”
(Horvath and Raj, 2018). Epigenetic age acceleration (EAA), typically derived by regressing
the epigenetic age of clocks on chronological age, assesses whether individuals are aging
faster or slower than their chronological age. EAA provides valuable insights into health
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outcomes, including morbidity and mortality (Horvath and Raj,
2018; Jain et al., 2022), and has been linked to health behaviors such
as body mass index (BMI), alcohol consumption, smoking, and
physical activity (Quach et al., 2017; Ryan et al., 2020).

First-generation epigenetic clocks, exemplified by Horvath’s
clock and Hannum’s clock (Horvath, 2013; Hannum et al., 2013),
were trained on chronological age and used to estimate
chronological age (Horvath, 2013; Hannum et al., 2013; Bernabeu
et al., 2023; Zhang et al., 2019). Second-generation epigenetic clocks
have been developed to track biological age based on diverse age-
related metrics, encompassing clinical biomarkers (PhenoAge)
(Levine et al., 2018), pace of aging (DunedinPACE) (Belsky et al.,
2022), and all-cause mortality (GrimAge and Zhang Y’s clock) (Lu
et al., 2019; Zhang et al., 2017). Because they focus on different parts
of aging, “second-generation” clocks outperform “first-generation”
clocks in predicting both life span and health span (Zhang et al.,
2019; Levine et al., 2018; Bell et al., 2019; Faul et al., 2023). Recently,
principal component (PC)-based clocks have been created to
mitigate noise and unreliability from individual CpG sites using
PCs (Higgins-Chen et al., 2022).

With the increasing number of epigenetic clocks, various studies
have compared these clocks with each other and have identified
associations with health indicators and mortality. For example, Faul
et al. (2023) and Crimmins et al. (2021) utilized epigenetic clocks in
US adults and identified that second-generation clocks are linked to
health behaviors, morbidity, and mortality. McCrory et al. (2021)
and Maddock et al. (2020) demonstrated an association of
PhenoAge and GrimAge with health span in British population,
while Lu et al. (2019) found a predictive utility of GrimAge for
morbidity and mortality in a cohort comprising individuals of
European, American, and Hispanic ancestry.

Most epigenetic clocks have been primarily developed using data
from European, African, or Hispanic individuals (Horvath, 2013;
Hannum et al., 2013; Bernabeu et al., 2023; Zhang et al., 2019; Levine
et al., 2018; Belsky et al., 2022; Lu et al., 2019; Zhang et al., 2017).
Studies investigating their effects on health outcomes or the
influence of environmental factors have also predominantly
focused on these ancestry groups (Faul et al., 2023; Crimmins
et al., 2021; McCrory et al., 2021; Maddock et al., 2020).
However, notable differences exist in epigenetic clocks among
various ethnic groups (Crimmins et al., 2021; Horvath et al.,
2016), and very few studies have investigated their application in
the East Asian population.

To assess the performance of epigenetic clocks in the East Asian
population, we examined the association of various epigenetic clocks
with health outcomes and environmental factors in 1,925 South
Korean samples. We employed five “first-generation” epigenetic
clocks [PCHorvath (Horvath et al., 2018), PCHannum (Hannum
et al., 2013), ZhangQ (Zhang et al., 2019), Bernabeu (Bernabeu et al.,
2023), and iCAS-DNAmAge (Zheng et al., 2024)], along with four
“second-generation” epigenetic clocks [PCPhenoAge (Levine et al.,
2018), PCGrimAge (Lu et al., 2019), DunedinPACE (Belsky et al.,
2022), and ZhangY (Zhang et al., 2017)]. We explored the
association of EAAs from each clock with health outcomes,
health behaviors, and the time to onset of chronic diseases, and
confirmed these findings in an independent South Korean cohort.
Our findings highlight the utility of epigenetic clocks in predicting
adverse health outcomes in East Asians.

Results

Basic characteristics of participants

For the analysis, we used data from Korea Association Resource
(KARE) of the Korean Genome and Epidemiology Study (KoGES)
(Kim et al., 2017). The basic characteristics of the 1,925 KARE
participants are shown in Table 1. The chronological age ranged
from 47 to 78 years, with 1,006 (52.3%) males and 919 (47.7%)
females. Except for the psychosocial wellbeing index (PWI) and
hypertension, significant mean differences in characteristics were
observed between males and females (t-test p-value < 0.05). Females
generally exhibited better health across various indicators such as
T2D prevalence and blood marker levels compared to males.
Females also demonstrated healthier behavior, including a lower
waist-hip ratio (WHR), less drinking and smoking, and regular
exercise, but their BMI tended to be higher than males.

We calculated epigenetic ages from eight epigenetic clocks,
comprising five first-generation clocks [Bernabeu (Bernabeu et al.,
2023), iCAS-DNAmAge (Zheng et al., 2024), ZhangQ (Zhang et al.,
2019), PCHannum (Hannum et al., 2013), and PCHorvath (Horvath
et al., 2018)] and four second-generation clocks [PCGrimAge (Lu
et al., 2019), PCPhenoAge (Levine et al., 2018), DunedinPACE (Belsky
et al., 2022), and ZhangY (Zhang et al., 2017)]. The accuracy of age
prediction was assessed through Pearson correlation analysis between
the epigenetic clocks and chronological age (Supplementary Table S1).
All epigenetic clocks showed correlations with chronological age, with
the Bernabeu clock displaying the highest predictive accuracy (r =
0.96). Although iCAS-DNAmAge was developed in East Asians, it
showed a relatively low correlation (r = 0.79). Additionally, the
epigenetic ages of each clock were strongly correlated with each
other (Supplementary Figure S1). Bernabeu and ZhangQ exhibited
the strongest correlation between them (r = 0.98), despite the
substantial differences in the CpG sites used.

EAAs of each clock were generated by regressing epigenetic age
on chronological age. Except EAA of iCAS-DNAmAge, all EAAs
exhibited correlations among themselves (Figure 1), and showing
relatively strong correlations (0.39–0.82) observed within the same
generation and comparatively weaker correlations (−0.1–0.77)
observed between different generations. The strongest correlation
was observed between PCHorvathEAA and PCHannumEAA (r =
0.82), while iCAS-DNAmAgeEAA showed the no correlation with
PCGrimAgeEAA (r = 0) and a negative correlation with ZhangY.
Males exhibited a significantly accelerated aging rate compared to
females across all epigenetic clocks, except iCAS-DNAmAge (t-test
p-value < 0.05, Supplementary Table S2).

Epigenetic age acceleration and
health outcomes

To explore which EAAs of epigenetic clocks reflect health outcomes,
we conducted regression analyses adjusting for covariates: age, sex, and
10PCs, whichwere included to account for noise in individual CpG sites.
We estimated the effects of EAAs on various health outcomes, including
T2D, hypertension, alanine aminotransferase (ALT), aspartate
aminotransferase (AST), high density lipoprotein (HDL), triglyceride
(TG), and high sensitivity C-reactive protein (hs-CRP), percentage of
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predicted FEV1 (FEV1% PRED), and percentage of predicted FVC
(FVC% PRED). The significance of the association results was
determined using a p-value threshold adjusted for multiple testing
via Bonferroni correction [p-value < 0.05/(nine health outcomes ×
number of clocks) = 1.11E-03 for first-generation clocks and 1.39E-
03 for second-generation clocks].

None of the EAAs from the first-generation epigenetic clocks
were significantly associated with any diseases or health indicators
(p-value > 1.11E-03, Supplementary Table S3). Only some EAAs
showed a weak positive association with the risk of T2D and
hypertension, as well as with an increase in AST levels, satisfying
the uncorrected p-value threshold [Odds ratio (OR) > 1 or Beta >0,
p-value < 0.05]. On the other hand, EAAs of the second-generation
clocks showed significant associations (p-value < 1.39E-03),
suggesting that higher EAAs have a detrimental effect on health

(Figure 2). The faster aging in all second-generation epigenetic
clocks was associated with an increased risk of T2D. In addition,
higher DunedinPACE was associated with a higher risk of
hypertension (OR > 1), as well as elevated levels of AST, ALT,
TG, and hs-CRP (Beta > 0). Conversely, it was associated with
decreased levels of HDL, FEV1% PRED, and FVC% PRED (Beta <
0). PCGrimAgeEAA and ZhangY showed a positive association with
levels of TG, and a negative association with FEV1% PRED. Higher
PCPhenoAgeEAA indicated a significant association with an
increased risk of hypertension and elevated AST levels.

Since EAAs of epigenetic clocks were associated with the risk of
T2D and hypertension, we further investigated their association with
time to onset. Using follow-up data, we conducted analyses with
123 cases of T2D and 721 controls, as well as 277 cases of hypertension
and 494 controls. In Kaplan-Meier curves, each EAA was categorized

TABLE 1 Basic characteristics of 1,925 KARE participants.

Males Females

Total N 1,006 (52.3%) 919 (47.7%)

Chronological age (years)* 59.6 (8.5) 60.5 (9)

Body mass index* 24.1 (2.9) 24.6 (3.2)

Waist-hip ratio* 0.93 (0.06) 0.92 (0.09)

Income level* 4.5 (2.2) 3.5 (2.2)

Educational attainment* 3.2 (1.6) 2.1 (1.4)

PWI 17.2 (8.5) 18 (8.9)

Drinking status*

Never 235 (23.4%) 705 (76.8%)

Ever 80 (8%) 16 (1.7%)

Current 691 (68.7%) 197 (21.5%)

Smoking status*

Never 255 (25.3%) 887 (96.6%)

Ever 400 (39.8%) 13 (1.4%)

Current 351 (34.9%) 18 (2%)

Pack-years of smoking* 29 (19.9) 10.6 (10.6)

Regular exercise* 440 (43.7%) 591 (64.3%)

Type 2 diabetes* 332 (33%) 248 (27%)

Hypertension 436 (43.3%) 411 (44.7%)

AST* (IU/L) 28.5 (16.1) 24.1 (10)

ALT* (IU/L) 28.2 (18.3) 21.4 (12.6)

HDL* (mg/dL) 42 (11.2) 44.4 (10.8)

Triglyceride* (mg/dL) 143.2 (77.4) 132.5 (70.6)

hs-CRP* (mg/L) 1.9 (5.2) 1.4 (2.7)

FVC % PRED* 101.3 (13.1) 107.9 (14.9)

FEV1% PRED* 106.4 (15.8) 118.2 (18)

All data are presented as mean ± standard deviation or numbers (%). Missing samples for each value are excluded. * p-value of t-test betweenmale and female is less than 0.05. PWI, psychosocial

wellbeing index; AST, alanine aminotransferase; ALT, aspartate aminotransferase; HDL, high density lipoprotein; hs-CRP, high sensitivity C-reactive protein; FVC % PRED, percentage of

predicted FVC; FEV1% PRED, percentage of predicted FEV1.
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FIGURE 1
Correlation matrix of epigenetic age accelerations. Positive correlations are denoted by red shades, with lighter shades signifying weaker
correlation values.

FIGURE 2
Forest plots for epigenetic age accelerations (EAAs) of second-generation clocks and health outcomes in KARE. Odds ratios (ORs) with 95%
confidence intervals (CIs) or beta values with standard errors (SEs) were displayed alongwith their corresponding p-values. All regressionmodels adjusted
for age, sex, and 10 principal components, with all EAAs scaled to amean of 0 and a standard deviation of 1. Significant results were highlightedwith a blue
background based on Bonferroni-corrected p-values [0.05/(4 × 9) = 1.39E-03].
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into two groups: age deceleration and age acceleration. DunedinPACE
and ZhangY were classified into age acceleration and deceleration
groups based on their top 50% and bottom 50% (Supplementary
Figure S2). The EAAs from the first-generation epigenetic clocks did
not exhibit any association with the onset of T2D and hypertension
(p-value > 0.05). Among the second-generation clocks, DunedinPACE
showed a significant association with the onset of T2D (p-value < 0.05/
(Two diseases × number of clocks) = 5E-03 for first-generation clocks
and 6.25E-03 for second-generation clocks), while PCGrimAgeEAA,
DunedinPACE, and ZhangY satisfied uncorrected p-value (p-value <
0.05) in their association with the onset of hypertension. For Cox
regression analysis, EAAs from first-generation clocks did not show an
association with the onset of T2D (p-value > 6.25E-3, Table 2). iCAS-
DNAmAge is significantly associated with the development of
hypertension, but its acceleration was associated with a reduced risk
of hypertension onset (Hazard ratio < 1). In contrast, higher values of
DunedinPACE, PCGrimAgeEAA, and ZhangY were significantly
associated with a higher risk of T2D onset (Hazard ratio > 1,
p-value < 6.25E-03). Increased values of DunedinPACE and ZhangY
were associated with an increased risk of hypertension onset as well.

Epigenetic age acceleration and
environmental factors

To investigate the impact of environmental factors on the aging
of epigenetic clocks, we conducted regression analyses adjusting for
covariates: age, sex, and 10PCs. We estimated the effects of nine

factors on EAAs: BMI, WHR, income level, educational attainment,
PWI, drinking status, smoking status, pack-years, and regular
exercise. Significant factors were identified using a p-value
threshold adjusted for Bonferroni correction [p-value < 0.05/
(nine environmental factors × number of clocks) = 1.11E-03 for
first-generation clocks and 1.39E-03 for second-generation clocks].

Most environmental factors did not impact the acceleration of
first-generation clocks (Supplementary Table S4). Only smoking
had a significant effect on the acceleration of PCHorvath and
PCHannum (p-value < 1.11E-03). In contrast, EAAs of second-
generation clocks were influenced by various environmental factors
(Figure 3). Increases in WHR and smoking were associated with
accelerated aging across all second-generation clocks (Beta > 0,
p-value < 1.39E-03). Higher socioeconomic status (income level and
educational attainment) slowed down the aging of PCGrimAge and
ZhangY, whereas drinking and an increase in pack-years sped up
their aging. PCGrimAge was also decelerated by regular exercise and
good psychosocial status (PWI), while DunedinPACE increased
with higher BMI and an increase in pack-years, as well as poor
psychosocial status. As depicted in Figure 3; Supplementary Table
S3, when environmental factors significantly influenced the aging of
epigenetic clocks, they affected them in the same direction.

Validation in independent Korean samples

We conducted validation studies on the association of EAAs in
an independent Korean cohort, Health Examinees (HEXA) of the

TABLE 2 Cox regression analysis of epigenetic age acceleration for onset of type 2 diabetes and hypertension.

Disease HR (95% CI) p-value

First-generation BernabeuEAA T2D 0.81 (0.66, 0.98) 3.23E-02

Hypertension 0.89 (0.78, 1.01) 6.52E-02

iCAS-DNAmAgeEAA T2D 0.77 (0.59, 1.01) 6.03E-02

Hypertension 0.78 (0.66, 0.92) 3.32E-03

PCHannumEAA T2D 0.75 (0.56, 1.02) 6.87E-02

Hypertension 0.90 (0.74, 1.1) 3.09E-01

PCHorvathEAA T2D 0.96 (0.73, 1.27) 7.84E-01

Hypertension 0.84 (0.7, 1.01) 6.60E-02

ZhangQEAA T2D 0.87 (0.71, 1.07) 1.84E-01

Hypertension 0.97 (0.84, 1.11) 6.65E-01

Second-generation DunedinPACE T2D 1.99 (1.60, 2.48) 7.00E-10

Hypertension 1.28 (1.12, 1.47) 3.66E-04

PCGrimAgeEAA T2D 1.50 (1.14, 1.98) 3.65E-03

Hypertension 1.06 (0.87, 1.3) 5.36E-01

PCPhenoAgeEAA T2D 1.05 (0.81, 1.37) 7.10E-01

Hypertension 1.02 (0.86, 1.22) 8.11E-01

ZhangY T2D 2.34 (1.60, 3.41) 1.06E-05

Hypertension 1.55 (1.20, 2) 7.18E-04

All Cox models are adjusted for age, sex, and 10 principal components. All EAAs are scaled to mean = 0 and SD = 1. HR, Hazard ratios; CI, confidence interval.
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KoGES (Kim et al., 2017; Health Examinees Study Group, 2015).
The basic characteristics of the 822 HEXA participants were
presented in Supplementary Table S5. We derived epigenetic ages
using the same eight epigenetic clocks and subsequently calculated
EAAs based on them. Descriptive statistics are presented in
Supplementary Table S6; Supplementary Figure S3. Females
exhibited a significantly decelerated aging rate compared to males
across epigenetic clocks (t-test p-value < 0.05), except Bernabeu
(p-value = 5.01E-02, Supplementary Table S6).

Consistent with the previous findings (Supplementary Table S3),
EAAs from the first-generation epigenetic clocks did not exhibit
significant associations with any health outcomes in HEXA
(p-value > 0.05/(five EAAs × seven health outcomes) = 1.43E-03,
Supplementary Table S7). Similarly, associations between EAAs of
the second-generation clocks and health outcomes demonstrated
consistent effect directions in HEXA (p-value < 0.05/(four EAAs ×
seven health outcomes) = 1.79E-03, Figure 2; Table 3). Accelerated aging
in all second-generation clocks was consistently associated with an
increased risk of T2D. PCGrimAgeEAA and ZhangY were significantly
associated with TG levels, while DunedinPACE showed significant
associations with hypertension, AST, ALT, HDL, TG, and hs-CRP.
Among the previously significant findings, only the association between
PCPhenoAge and AST did not reach the corrected p-value threshold in
HEXA (p-value = 4.37E-03). Despite conducting analyses on time to
disease onset using follow-up data, no statistically significant results were
identified (Supplementary Figure S4; Supplementary Table S8).

While EAAs from the first-generation clock showed a
significant association solely with smoking status previously
(Supplementary Table S4), no significant associations with any
environmental factors were observed in HEXA [p-value > 0.05/
(five EAAs × eight environmental factors) = 1.25E-03,
Supplementary Table S9]. In contrast, the associations between
EAAs of the second-generation clocks and environmental factors
were validated in HEXA (Table 3). Smoking consistently sped up
the aging of all second-generation clocks, whereas higher
socioeconomic status slowed it down. DunedinPACE increased
with higher BMI and WHR but decreased with regular exercise.
Higher WHR and drinking accelerated the aging of PCGrimAge
and ZhangY, while regular exercise decelerated the aging of
PCGrimAge and PCPhenoAge. PWI was the only factor that
did not show a validated significant association with EAAs of
second-generation clocks.

Effects of epigenetic age acceleration on
health outcomes independent of
lifestyle factors

We identified that the EAA of second-generation clocks affects
health outcomes and is influenced by environmental factors. Since
environmental factors affect both health outcomes and epigenetic
age, we performed regression analyses with additional adjustments

FIGURE 3
Forest plots for epigenetic age accelerations (EAAs) of second-generation clocks and environmental factors in KARE. Beta values with standard
errors (SEs) were displayed along with their corresponding p-values. All regression models adjusted for age, sex, and 10 principal components, with all
EAAs scaled to a mean of 0 and a standard deviation of 1. Significant results were highlighted with a blue background based on Bonferroni-corrected
p-values [0.05/(4 × 9) = 1.39E-03].
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for lifestyle factors, such as body mass index, waist-hip ratio,
smoking status, drinking status, and regular exercise, to
evaluate the independent effects of EAAs on health outcomes
(Table 4). Even after accounting for these factors, the
detrimental effect of higher EAA on health outcomes remained
significant in KARE (p-value < 0.05). While the statistical
significance and effect sizes of EAAs on health outcomes were

diminished in most cases, the impact of PCGrimAge on the risk of
T2D became slightly stronger (OR 1.14 to 1.16, p-value 6.91E-15 to
1.33E-15). In HEXA, the influence of EAAs on health outcomes
was maintained (p-value < 0.05), except for DunedinPACE on
hypertension and AST (p-value > 0.05). Similar to KARE, the
statistical significance and effect sizes of EAAs were reduced across
all cases.

TABLE 3 Association results of second-generation epigenetic age acceleration in HEXA.

Trait OR (95% CI)/BETA (SE) p-value Trait OR (95% CI)/BETA (SE) p-value

DunedinPACE T2D 1.14 (1.1, 1.17) 1.70E-16 HDL −2.37 (0.48) 1.08E-06

Hypertension 1.25 (1.09, 1.44) 1.35E-03 Triglyceride 33.59 (4.63) 9.36E-13

AST 2.37 (0.71) 9.12E-04 hs-CRP 0.15 (0.05) 1.27E-03

ALT 3.61 (0.94) 1.21E-04

PCGrimAgeEAA T2D 1.15 (1.1, 1.19) 2.90E-11 HDL −0.57 (0.64) 3.74E-01

Hypertension 1.1 (0.99, 1.22) 8.56E-02 Triglyceride 32.04 (6.18) 2.70E-07

AST 2.44 (0.94) 9.39E-03 hs-CRP 0.07 (0.06) 2.32E-01

ALT 0.91 (1.24) 4.64E-01

PCPhenoAgeEAA T2D 1.09 (1.05, 1.13) 2.91E-06 HDL −1.04 (0.57) 6.94E-02

Hypertension 1.15 (1.03, 1.29) 1.76E-02 Triglyceride 15.75 (5.57) 4.82E-03

AST 2.4 (0.84) 4.37E-03 hs-CRP 0.1 (0.05) 6.87E-02

ALT 3.44 (1.1) 1.90E-03

ZhangY T2D 1.21 (1.15, 1.28) 3.49E-12 HDL 1.75 (1.66) 2.93E-01

Hypertension 1.08 (1, 1.17) 4.54E-02 Triglyceride 41.83 (8.26) 5.02E-07

AST 2.67 (1.26) 3.35E-02 hs-CRP 0.14 (0.08) 6.91E-02

ALT 1.75 (1.66) 2.93E-01

DunedinPACE BMI 0.03 (0.01) 2.50E-04 PWI 0.008 (0.004) 7.34E-02

WHR 3.3 (0.53) 8.94E-10 Drink 0.04 (0.05) 4.20E-01

Income −0.08 (0.02) 7.23E-05 Smoke 0.56 (0.06) 2.09E-19

Education −0.08 (0.02) 4.89E-05 Exercise −0.33 (0.09) 1.93E-04

PCGrimAgeEAA BMI −0.02 (0.01) 6.63E-03 PWI 0.002 (0.003) 5.90E-01

WHR 1.33 (0.41) 1.32E-03 Drink 0.14 (0.04) 6.21E-04

Income −0.07 (0.01) 3.67E-07 Smoke 0.68 (0.04) 6.25E-51

Education −0.08 (0.01) 2.84E-08 Exercise −0.22 (0.07) 1.01E-03

PCPhenoAgeEAA BMI 0.01 (0.01) 1.33E-01 PWI −0.002 (0.004) 4.96E-01

WHR 1.23 (0.46) 8.06E-03 Drink 0.02 (0.05) 7.36E-01

Income −0.07 (0.02) 3.85E-05 Smoke 0.18 (0.05) 6.63E-04

Education −0.06 (0.02) 3.89E-04 Exercise −0.25 (0.08) 1.06E-03

ZhangY BMI −0.01 (0.01) 2.54E-01 PWI 0.002 (0.002) 3.20E-01

WHR 1.22 (0.31) 7.82E-05 Drink 0.1 (0.03) 8.29E-04

Income −0.06 (0.01) 4.60E-07 Smoke 0.42 (0.03) 1.30E-34

Education −0.04 (0.01) 9.56E-05 Exercise −0.14 (0.05) 5.86E-03

All regression models are adjusted for age, sex, and 10 principal components. All EAAs are scaled to mean = 0 and SD = 1. OR, Odds ratios; CI, confidence interval; SE, standard error; WHR,

waist-hip ratio; Income, income level; Education, educational attainment; Exercise, regular exercise.
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Effects of epigenetic clocks developed in
East Asian ancestry

To identify the effects of clocks developed in same ancestry, we
calculated three epigenetic clocks, PCHorvath, PCHannum, and
PCPhenoAge, trained on a Japanese sample using the Transfer
Elastic Net method (Tomo and Nakaki, 2024). In both KARE

and HEXA, these three clocks showed correlations with the
original clocks (Supplementary Figure S5) and demonstrated
stronger correlations with chronological age compared to the
original clocks (Supplementary Tables S1, S6, S10). Regarding
associations with health outcomes, we observed slightly more
significant p-values, such as the effects of PCPhenoAgeEAA on
T2D, hypertension, AST, ALT, and FVC% PRED in the KARE

TABLE 4 Association results of epigenetic age acceleration adjusted for lifestyle factors.

Trait OR (95% CI)/BETA (SE) p-value OR (95% CI)/BETA (SE)* p-value*

KARE

DunedinPACE T2D 1.13 (1.1, 1.16) 1.41E-24 1.1 (1.08, 1.13) 6.99E-16

Hypertension 1.08 (1.05, 1.11) 7.82E-10 1.06 (1.03, 1.09) 4.71E-06

AST 1.17 (0.37) 1.34E-03 1.03 (0.38) 7.54E-03

ALT 2.15 (0.42) 3.67E-07 1.42 (0.43) 1.05E-03

HDL −1.72 (0.29) 3.50E-09 −0.92 (0.29) 1.57E-03

Triglyceride 19.13 (2.67) 1.19E-12 12.91 (2.76) 3.06E-06

hs-CRP 0.61 (0.11) 2.88E-08 0.59 (0.12) 3.88E-07

FVC % PRED −1.91 (0.4) 1.70E-06 −1.71 (0.42) 4.83E-05

FEV1% PRED −2.06 (0.48) 1.88E-05 −1.76 (0.51) 5.56E-04

PCGrimAgeEAA T2D 1.14 (1.1, 1.17) 6.91E-15 1.16 (1.12, 1.20) 1.33E-15

Triglyceride 17.23 (3.72) 3.78E-06 12.4 (4.18) 3.03E-03

FEV1% PRED −2.14 (0.67) 1.38E-03 −1.68 (0.77) 2.93E-02

PCPhenoAgeEAA T2D 1.09 (1.06, 1.13) 2.97E-09 1.07 (1.04, 1.11) 7.64E-07

Hypertension 1.06 (1.03, 1.09) 4.18E-04 1.04 (1.01, 1.08) 5.02E-03

AST 1.52 (0.46) 9.13E-04 1.42 (0.46) 2.12E-03

ZhangY T2D 1.15 (1.11, 1.21) 1.03E-10 1.14 (1.09, 1.19) 2.05E-08

Triglyceride 19.65 (5.01) 9.05E-05 11.27 (5.27) 3.25E-02

FEV1% PRED −3.73 (0.89) 2.91E-05 −3.15 (0.97) 1.16E-03

HEXA

DunedinPACE T2D 1.14 (1.1, 1.17) 1.70E-16 1.1 (1.07, 1.14) 2.87E-08

Hypertension 1.25 (1.09, 1.44) 1.35E-03 1.04 (1, 1.08) 6.96E-02

AST 2.37 (0.71) 9.12E-04 1.43 (0.83) 8.36E-02

ALT 3.61 (0.94) 1.21E-04 2.21 (1.01) 2.92E-02

HDL −2.37 (0.48) 1.08E-06 −1.67 (0.52) 1.41E-03

Triglyceride 33.59 (4.63) 9.36E-13 24.36 (5.26) 4.30E-06

hs-CRP 0.15 (0.05) 1.27E-03 0.15 (0.05) 6.44E-03

PCGrimAgeEAA T2D 1.15 (1.1, 1.19) 2.90E-11 1.13 (1.08, 1.19) 1.57E-06

Triglyceride 32.04 (6.18) 2.70E-07 31.89 (7.7) 3.86E-05

PCPhenoAgeEAA T2D 1.09 (1.05, 1.13) 2.91E-06 1.06 (1.02, 1.1) 2.48E-03

ZhangY T2D 1.21 (1.15, 1.28) 3.49E-12 1.18 (1.11, 1.26) 4.06E-07

Triglyceride 41.83 (8.26) 5.02E-07 35.99 (9.55) 1.77E-04

All regression models are adjusted for age, sex, and 10 principal components. All EAAs are scaled to m ean = 0 and SD = 1. *The regression model was further adjusted for body mass index,

waist-hip rati o, smoking status, drinking status, and regular exercise. OR, Odds ratios; CI, confidence interval; SE, standard error.
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cohort (Figure 2; Supplementary Table S11). Conversely, p-values
for associations between PCPhenoAgeEAA and most health
outcomes were less significant in HEXA (Table 3; Supplementary
Table S11). In terms of environmental factors (Supplementary Table
S12), a significant association between PCHannumEAA and BMI
was observed in both KARE and HEXA, which was not evident with
the original clocks. Furthermore, while the association between
WHR and PCPhenoAgeEAA became more significant, other
associations, such as with smoking status in KARE and with
income, education, and regular exercise in HEXA, showed
reduced significance. No significant results were observed in the
survival analysis, consistent with the findings for the original clock
(Supplementary Figure S6; Supplementary Table S13).

Discussion

Recently, the utilization of epigenetic predictors in healthcare
research has experienced remarkable growth. We explored the
impact of EAAs on disease risk and health indicators, as well as
the influence of various environmental factors on the aging of
epigenetic clocks. In the current study, we found that faster aging
of second-generation epigenetic clocks was significantly associated
with adverse health outcomes, including increased risk of chronic
diseases, variations in blood markers levels, and reduced lung
functions. Moreover, acceleration of these clocks was associated
with the onset of chronic diseases in follow-up data. Unhealthy
lifestyles, such as smoking, drinking, high BMI and WHR, and poor
psychosocial status, were identified as factors that accelerated the
aging of second-generation clocks. Conversely, favorable
socioeconomic status and regular exercise were associated with
slowed aging. Furthermore, we identified the effects of epigenetic
age acceleration on health outcomes, independent of lifestyle factors.

We utilized five first-generation and four second-generation
epigenetic clocks. Although these clocks were developed outside of
East Asian populations, they exhibited a strong correlation with
chronological age and associations with health and lifestyle factors,
and, as is well known, they accelerated more in men than in women
(Horvath et al., 2016). In contrast, iCAS-DNAmAge, the only
epigenetic clock developed using data from East Asian
populations, displayed a relatively weak correlation with
chronological age and EAA of other clocks (Supplementary Table
S1; Figure 1), while accelerating more in women than in men
(Supplementary Table S2). Additionally, iCAS-DNAmAge is
significantly associated with the time to onset risk of
hypertension; however, its acceleration appears to reduce this risk
(HR < 1). The three epigenetic clocks trained on an East Asian
population showed stronger associations with certain health
outcomes compared to the original clocks (Supplementary Tables
S11, S12). Our findings suggest that epigenetic clocks developed for
different ancestries can be valuable for individuals of East Asian
ancestry. Additionally, clocks specifically trained for East Asian
populations could enhance predictive performance, and second-
generation epigenetic clocks are expected to be more efficient in
predicting health outcomes than first-generation clocks.

Epigenetic clocks have only recently been developed, leaving
much to be understood from a mechanistic perspective. Biological
age is a multifaceted phenomenon, influenced by accumulated

cellular damage, environmental exposures, genomic instability,
and epigenetic alterations (López-Otín et al., 2023; Zhang et al.,
2023). Epigenetic clocks derived from DNA methylation integrate
multiple independent mechanisms of age-related change, thus each
epigenetic clock reflects different mechanisms (Levine et al., 2022).
Moreover, second-generation clocks are trained using a range of
health indicators rather than solely age. For instance, PhenoAge
captures organismal age and the functional state of many organ
systems and tissues (Levine et al., 2018), while DunedinPACE
measures the pace of aging (Belsky et al., 2022). PCGrimAge and
ZhangY exhibit all-cause mortality, although ZhangY uses CpGs
that are not related to aging (Lu et al., 2019; Zhang et al., 2017).
These factors can influence our results that each clock exhibits
varying performance as a health predictor and is affected differently
by diverse environmental factors.

As observed in previous studies (Zhang et al., 2019; Levine et al.,
2018; Bell et al., 2019; Faul et al., 2023), second-generation epigenetic
clocks exhibited higher accuracy in predicting health outcomes
compared to first-generation clocks. Furthermore, accelerated
aging of second-generation clocks was associated with increased
morbidity rates and shifts in biomarker levels indicating
deteriorating health conditions, which in turn correlate with
higher mortality rates. For example, T2D and hypertension are
common comorbidities and age-related chronic metabolic diseases
linked with elevated mortality rates (Petrie et al., 2018; Aune et al.,
2021; Rockl et al., 2017). AST and ALT are well-known biomarkers
used to indicate liver injury, while TG and hs-CRP are well-
established risk factors for cardiovascular disease. Elevated levels
of these biomarkers have been shown to increase mortality risk
(Chen et al., 2022; Liu et al., 2013; Li et al., 2017). HDL, commonly
known as “good cholesterol,” is linked to higher mortality risk at
both low and high levels (Zhong et al., 2020). FEV1 and FVC are
main results of pulmonary function tests, and it is known that low
predicted percentages of these values are associated with higher
mortality rates (Magnussen et al., 2017). Therefore, our findings
suggest that second-generation clocks could serve as predictors of
mortality in East Asian populations.

The environmental factors examined in our study have been
reported to influence the aging of epigenetic age. Consistent with our
findings, high BMI and WHR accelerate this process (Lin et al.,
2021), as does smoking and drinking (Ryan et al., 2020), while
regular exercise decelerates it (Quach et al., 2017). Poor
socioeconomic and psychosocial status also speeds up epigenetic
aging (Schmitz et al., 2022; Palma-Gudiel et al., 2020). In addition,
adopting a healthier lifestyle, such as regular exercise (Fitzgerald
et al., 2021), smoke cessation (Wu et al., 2019), and losing weight
(Yaskolka et al., 2021), is known to reverse epigenetic aging.
Likewise, changing other environmental factors associated with
EAA to healthier options could not only decelerate epigenetic
aging but also potentially make one biologically younger.

Overall, this study underscores the utility of epigenetic clocks in
the East Asian population. We evaluated different epigenetic clocks
and confirmed that the epigenetic age from second-generation
clocks provide valuable health predictions, while also suggesting
potential for slowing aging through healthier lifestyles. Although we
validated our results using an independent cohort, certain aspects
remain unvalidated. In the validation cohort, lung function and
pack-years could not be analyzed, and the impact of psychosocial
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status on EAAs did not reach statistical significance (p-value > 0.05).
Additionally, the impact of EAAs on disease onset could not be
confirmed due to insufficient follow-up cases for T2D (six cases) and
failure to meet the statistical threshold in the hypertension analysis.
Further investigations with larger sample sizes may clarify the
association between them in East Asian populations. Aging is
represented by various indicators, and our investigation has
shown that each epigenetic clock is linked to different indicators,
necessitating a comprehensive interpretation that incorporates
multiple epigenetic clocks.

Methods

Study population

The present study utilized two independent, community-based
genomic cohort datasets from the KoGES (Kim et al., 2017). The first
cohort, KARE, consisted of 10,030 individuals aged 40–69 years
residing in the urban area of Ansan and the rural area of Ansung.
These participants were initially recruited between 2001 and
2002 and underwent biennial follow-up examinations until 2010.
For the validation of the results from KARE, we employed the
second cohort, HEXA (Health Examinees Study Group, 2015),
which comprised 65,642 participants from urban areas. These
individuals were recruited between 2004 and 2013 at 38 hospitals
and local health-screening centers, following standardized
procedures. Epidemiological data for both cohorts were provided
by the Korea Centers for Disease Control and Prevention. Written
informed consent for participation in the KoGES cohorts was
obtained from all study participants and confirmed by the
Institutional Review Board.

Phenotype definition

To classify the participants into T2D case and control groups, we
used their responses to the questionnaire on T2D diagnostic history
and fasting glucose levels. Participants who answered “Yes” to the
questionnaire or had a fasting glucose level above 126 mg/dL were
classified as the case group. Conversely, those who answered “No” to
the questionnaire and had a fasting glucose level below 126 mg/dL
were placed in the control group.

We classified participants into hypertension case and control
groups based on their responses to the questionnaire on
hypertension diagnosis and their systolic and diastolic blood
pressure measurements (SBP and DBP). Participants who
answered “Yes” to the questionnaire or had an SBP above
140 mmHg or DBP above 90 mmHg were classified into the case
group. Those who answered “No” to the questionnaire and had an
SBP below 140 mmHg and DBP below 90 mmHg were placed into
the control group. The mean value of two measurements was used
for both SBP and DBP.

For the survival analysis, we used follow-up data. Since
methylation data from the KARE was generated for the 4th
follow-up participants, we examined the data from the 5th to the
9th follow-up surveys. T2D and hypertension cases were classified
based on upper criteria. The follow-up time for each participant was

determined from the date of the 4th follow-up survey to the date of
the follow-up survey at which the participant satisfied the
classification criteria. The control groups for T2D and
hypertension were defined as participants who met the control
criteria in the follow-up data from the 4th to the 9th surveys.
The methylation data for HEXA was collected at baseline, and
the classification of case and control groups for T2D and
hypertension was based on data from the first follow-up survey.

Income level was determined by the average monthly income of
the family and divided into eight categories. Education attainment
was categorized into nine groups, ranging from not attending school
to completing graduate education. PWI comprises 18 items,
including 11 positive wellbeing items and 7 negative feeling items
such as pain, discomfort, anxiety, and depression. Each question is
scored from 0 to 3 for stress level, and the total PWI score is the sum
of these subscales. A higher PWI score indicates a higher level of
psychosocial stress.

DNA methylation

Methylation data of KoGES were generated from genomic DNA
extracted from the blood of the subjects. Genome-wide DNA
methylation was profiled using Illumina Infinium Human
Methylation 450k BeadChip which measured methylation
approximately 450,000 CpG sites (450K), and Illumina Infinium
Human Methylation EPIC BeadChip covers over 850,000 CpG sites
(EPIC). Illumina intensity data (IDAT) files were processed using R
package minfi (Aryee et al., 2014). We screened for samples where
fewer than 95% of probes had a detection p-value < 0.01 and applied
functional normalization preprocessing (preprocessIllumina
function). The beta-value was computed by dividing the intensity
of the methylated channel by the sum of the intensities from both the
methylated and non-methylated probes. This value reflects the
methylation level at each CpG site, ranging between 0 and 1,
where higher methylation yields a value closer to 1. For KARE,
methylation data from 1,925 subjects were used in the analysis, with
397 from 450K chip and 1,528 from EPIC chip. The data from the
450K and EPIC chips were combined into a single dataset, including
only the overlapping CpG sites. Methylation data from 822 HEXA
subjects, profiled using EPIC chip, were used in the
validation analysis.

Since methylation data of KARE derived from two different
chips, we applied the ComBat function from the R package sva to
correct for batch effects (Leek et al., 2012). The Supplementary
Figure S7 illustrates the pattern of changes in PC after correction.

Epigenetic clocks and epigenetic age
acceleration

We employed a total of eight epigenetic clocks trained on blood
samples. Most epigenetic clocks were estimated using R package
dnaMethyAge from Github (https://github.com/yiluyucheng/
dnaMethyAge) (Wang et al., 2024), with missing CpGs filled
using median values from the reference dataset. We calculated
four first-generation clocks: PCHorvath (Horvath et al., 2018),
PCHannum (Hannum et al., 2013), ZhangQ (Zhang et al., 2019),
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and Bernabeu (Bernabeu et al., 2023), along with four second-
generation clocks: PCPhenoAge (Levine et al., 2018), PCGrimAge
(Lu et al., 2019), DunedinPACE (Belsky et al., 2022), and ZhangY
(Zhang et al., 2017).We prioritized PC-based clocks whenever feasible
to minimize noise and improve accuracy (Higgins-Chen et al., 2022).
Additionally, iCAS-DNAmAge was calculated using the beta-values
of 65 CpGs from the iCAS-DNAmAge paper (Zheng et al., 2024). For
the calculation of epigenetic clocks trained using Transfer Elastic Net
on Japanese data (Tomo and Nakaki, 2024), we transformed beta-
values of CpGs through PCs according to the workflow implemented
on Github (https://github.com/MorganLevineLab/PC-Clocks). We
then estimated the three clocks trained on Japanese data
(PCHorvath, PCHannum, and PCPhenoAge) using the coefficients
available at another GitHub repository (https://github.com/t-yui/
TransferENet-EpigeneticClock).

Based on the epigenetic age estimates from the clocks, we
computed EAA to assess whether individuals are biologically
younger or older than their chronological age. EAAs for the
clocks were generated by calculating residuals after regressing
epigenetic age on chronological age. Since DunedinPACE and
ZhangY directly measure the pace of aging and all-cause
mortality, respectively, they can be used as EAAs response variables.

Statistical analysis

Student’s t-tests, Pearson correlation analyses, and regression
analyses were performed using basic packages of R version 4.2.3. To
correct for batch effects, we generated 1 to 10 PCs for the
methylation data using the prcomp function in R and adjusted
for them in the regression analyses. We selected 1 to 10 PCs,
identifying the point where the variance explained by the PCs
flattened. Elbow curves of the PCs variance were visualized in
Supplementary Figure S8. The Kaplan-Meier curves, scatter plots,
forest plots, and visualization of the elbow point for PCs were
created using the R package ggplot2. Cox regression analysis was
conducted using the R package survival, and the correlation matrix
was visualized using the R package ggcorrplot.
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