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Overweight, defined by a body mass index (BMI) between 25 and 30, has been
associated with enhanced survival among older adults in some studies. However,
whether being overweight is causally linked to longevity remains unclear. To
investigate this, we conducted a Mendelian randomization (MR) study of lifespan
85+ years, using overweight as an exposure variable and data from the Health and
Retirement Study and the Long Life Family Study. An essential aspect of MR
involves selecting appropriate single nucleotide polymorphisms (SNPs) as
instrumental variables (IVs). This is challenging due to the limited number of
SNP candidates within biologically relevant genes that can satisfy all necessary
assumptions and criteria. To address this challenge, we employed a novel strategy
of creating additional IVs by pairing SNPs between candidate genes. This strategy
allowed us to expand the pool of IV candidates with new “composite” SNPs
derived from eight candidate obesity genes. Our study found that being
overweight between ages 75 and 85, compared to having a normal weight
(BMI 18.5-24.9), significantly contributes to improved survival beyond age 85.
Results of this MR study thus support a causal relationship between overweight
and longevity in older adults.
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1 Introduction

Overweight, defined by a body mass index (BMI) between 25 and 30, has been
associated with certain health risks, as well as with reduced mortality in older adults
(Carr et al., 2023; Chapman, 2010; Flegal et al., 2013; Hansel et al., 2015; Johnson and Bales,
2014; Lee et al., 2001; Pes et al., 2019; Porter Starr and Bales, 2015; Reaven, 2011; Zheng
et al., 2021). This phenomenon, sometimes referred to as the “overweight/obesity paradox”,
was reported mainly by observational studies; however, it remains unconfirmed whether
overweight is causally linked to longevity. While observational studies are very valuable for
revealing associations between various risk factors and health outcomes, they struggle with
unmeasured confounding factors. As a result, uncovering causal relationships may prove
challenging. An ideal solution would be well-designed randomized clinical trials (RCTs),
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where all confounders are evenly distributed between treatment and
control groups. Such trials, however, are not readily available for
longevity outcomes and are also ethically unsuitable. Fortunately,
the wealth of information available in large observational studies can
be leveraged by modern causal inference approaches to evaluate the
underlying causal relationships between health-related risk factors
and outcomes.

One such approach is Mendelian randomization (MR)
(Plotnikov and Guggenheim, 2019; Wehby et al., 2008), a
causal inference method, which capitalizes on the random
distribution of genetic variants, allowing the separation of the
study population into different groups. If specific alleles are
significantly associated with a modifiable risk factor of interest
and meet all necessary assumptions and criteria, they can serve
as instrumental variables (IVs). These IVs create a setting akin to
an RCT and enable researchers to explore causality more
effectively. In this study, we applied the MR approach to
explore causal relationships between overweight and longevity
in participants of the Health and Retirement Study (HRS) and
the Long Life Family Study (LLFS). The HRS data were used in
primary analysis, and the LLFS data were used for
replication purposes.

2 Materials and methods

2.1 Data

The HRS is a longitudinal panel study conducted by the
University of Michigan and supported by the National Institute
on Aging (grant number NIA U01AG009740) and the Social
Security Administration. The data collection was launched in
1992. A representative sample of about 20,000 Americans aged
50 years and above is surveyed every 2 years. The original HRS
cohort targeted the population of adults in the contiguous
United States born during the years 1931–1941 with a 2:
1 oversample of African-American and Hispanic populations.
New birth cohorts were added every 6 years. Data collection
includes a mixed mode design combining in-person, telephone,
mail, and Internet. The RAND Center for the Study of Aging, with
funding and support from the NIA and the Social Security
Administration, created easy-to-use longitudinal files for
researchers. We used version 2018 RAND data, which includes
fourteen waves of core interview data across twenty-six survey years
(1992-2018). Consent forms were read and signed by each
respondent and collected by the interviewer. More details about
the study can be found in Sonnega et al. (2014).

The LLFS is a longitudinal study of exceptional survival,
longevity, and healthy aging, which is carried out in four field
centers (Boston, New York, Pittsburgh, and Denmark).
4,953 individuals from 539 families of exceptional longevity that
are determined by the criteria of Family Longevity Selection Score
(FLOSS) ≥7 (Sebastiani et al., 2009) were enrolled into study. The
first visit was between 2006 and 2009, and the willing participants
completed a second in-person visit during 2014–2017 following the
same protocols. Between the visits and after the second visit,
participants were continuously contacted annually for telephone
follow-up to update vital status, medical history, and general health.

More details about LLFS can be found in Wojczynski et al. (2022).
We used the 6 March 2023 release of LLFS data provided by the
LLFS Data Management and Coordinating Center (DMCC).

For both data sets, ages at death were computed using dates of
birth and death. For those who did not die within the follow-up
period, ages at censoring were determined from dates of birth and
the last follow-up: November 2022 in the LLFS and June 2019 in the
HRS data. BMI values were determined by the average of BMI
measurements between age 75 and 85. The main characteristics
(mean, standard deviation, percentage) of variables for samples used
in analyses are presented in Table 1.

2.2 Genotyping and candidate genes

Genetic data on 15,620 HRS respondents were provided by the
database of Genotypes and Phenotypes (dbGaP), dbGaP Study
Accession: phs000428. v2. p2. Genotyping was performed by the
National Institute of Health (NIH) Center for Inherited Disease
Research (CIDR) (see details in Sonnega et al. (2014)). The HRS
used Illumina’s Human Omni2.5-Quad (Omni2.5) BeadChip to
genotype 2.4 million single nucleotide polymorphisms (SNPs).
The LLFS used similar genotyping platform. 4692 LLFS
participants have genotyping information in our data. Blood
samples were processed at University of Minnesota and
genotyping was performed by the CIDR. Details on genotyping
in LLFS are provided in Lee et al. (2013).

Mendelian randomization can offer robust causal inferences
provided that genetic variants used as IVs have plausible biological
links with the risk factor (Burgess et al., 2018). We, therefore,
selected SNPs in eight obesity/overweight related genes that were
reported in the literature (Choquet and Meyre, 2011; Walley et al.,
2009) as candidates for constructing the IVs in our MR study:
ADIPOQ, FTO, LEP, LEPR, INSIG2, MC4R, PCSK1, and
PPARG. We aimed to ensure a stronger association between
SNPs and the exposure of interest, as SNPs in the obesity
related genes tend to be correlated with increased BMI/
weight. Table 1s (Supplementary Material) shows the
numbers of SNPs available in each gene after Quality
Control (QC) in HRS and LLFS data, as well as the locus
and functional descriptions, according to National Center
for Biotechnology Information Reference Sequence Database.
QC procedures were performed based on published protocols
(Anderson et al., 2010; Marees et al., 2018).

2.3 Instrumental variables

The validity of MR method depends heavily on several key
assumptions (Greenland, 2020). This may result in a bottle neck
scenario where a majority of the IV candidates are discarded due
to their failure to satisfy all requirements. Due to limited number
of individual genetic variants in candidate obesity genes, we
introduced a novel method to create additional “composite”
SNPs, and therefore substantially expanding the pool of
candidate IVs (see details in Section 2.7 ““Composite” SNPs
creation”). We then selected qualified IVs for further
downstream MR analysis.
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TABLE 1 Characteristics of the HRS and LLFS samples used in analyses.

HRS LLFS

White
Males

White
Females

Black
Males

Black
Females

Total White
Males

White
Females

Total

Continuous variables: mean(SD)

aEnrollment Age 66.67(6.93) 67.62(6.78) 65.45(7.41) 65.66(7.27) 66.94(6.92) 77.54(4.58) 78.18(4.39) 77.89(4.48)

bLast Follow-Up Age or age of death 87.40(5.46) 89.24(5.62) 85.90(5.75) 87.45(6.11) 88.2(5.68) 87.63(4.55) 89.28(4.35) 88.54(4.51)

Binary variables: N(percent)

cEducation 1271(91.97) 1652(94.62) 103(63.19) 169(80.86) 3195(91.29) 172(90.53) 203(87.5) 375(88.86)

dEver smoked 975(70.75) 776(44.44) 117(71.78) 96(45.93) 1964(56.11) 116(61.05) 90(38.79) 206(48.82)

eComorbidity (1) 924(66.86) 973(55.73) 115(70.55) 138(66.03) 2150(61.43) 136(71.58) 143(61.64) 279(66.11)

fOverweight (1) 807(58.39) 784(44.90) 97(59.51) 124(59.33) 1812(51.77) 135(71.05) 119(51.29) 254(60.19)

gSurvive ≥85 (1) 980(70.91) 1421(81.39) 100(61.35) 144(68.90) 2645(75.57) 146(76.84) 204(87.93) 350(82.94)

Notes: Abbreviations: LLFS – Long Life Family Study, March 6, 2023 release; HRS –Health and Retirement Study, RAND Longitudinal File 2018 (v1); SD – standard deviation. The numbers in table are the numbers of participants used in analysis. Binary variables are

coded as: Overweight between age 75-85: 1 – overweight, 0 – normal weight; Survive ≥85: 1 – life span ≥ 85 years, 0 – died before age 85; Comorbidity (presence of cancer, diabetes or cardiovascular diseases): 1 – yes, 0 - no; Education: 1 - High school or above, 0 – below

high school; Ever smoked: 1 – yes, 0 - no.

Number of people with missing values: LLFS: HRS
a10:1
b10:1
c26:45
d47:98
e13:0
f199:22
g10:1
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2.4 Assumptions

For a genetic variant to be eligible as an instrumental variable, it
is critical that it satisfies three key assumptions (Greenland,
2020) (Figure 1).

(1) Relevance assumption: The SNP must be associated with the
exposure of interest.

(2) Independence assumption: The SNP is not associated with
any confounders.

(3) Exclusion assumption: The SNP should be independent of the
outcome given the exposure and confounders.

These assumptions can be expressed in the following Equations
1–3 respectively:

exposure � β1i · SNPi + ε1i (1)
outcome � β21 · exposure + β22 · covariates + ε2 (2)

outcome � β31i · SNPi + β32i · exposure + β33i · confounders + ε3i

(3)
here coefficient β1i should be statistically significant (see Strength of
instrumental variables section for detail), i.e., SNP has to be strongly
associated with the exposure. Covariates with significant β22 are
identified as confounders, and we then test their associations with
each SNP. Any SNP associated with any of the identified
confounders is removed. Coefficient β31i should not be
significant, i.e., an IV should not be associated with the outcome
with the presence of exposure and confounders because an IV
should influence the outcome only through the effect of
exposure (Figure 1).

Since our exposure variable is dichotomized from a
continuous variable, BMI, we also tested the continuous
variable BMI measured during the same age period of interest
(see description of variables below in Analysis), i.e., between age
75 and 85, for these assumptions (Burgess and Labrecque, 2018).
All selected genetic variants passed both sets of tests, i.e., for both
dichotomized and continuous BMI.

2.5 Independence between SNPs

The dependence between SNPs is a potential source of
violation for assumption 3, as an IV could influence the
outcome through its effect on another IV. To avoid this issue,
we calculated the coefficient of determination (r2) for each SNP
pair based on their genotype allele counts to determine their
correlations. We used a pre-defined threshold of 0.3 as cutoff
point for r2. If correlation is measured between any pair of SNPs,
the SNP least associated with exposure variable is removed.
Supplementary Table 1s shows the starting count of SNPs in
each gene after quality control procedures.

2.6 Strength of instrumental variables

To ensure the strength of selected IVs, we applied criterion of F
value > 10 (Burgess et al., 2013) to confirm selected SNPs are
associated with exposure with enough significance (assumption 1).
The F value can be calculated by the following formula (Palmer
et al., 2012):

F � n − k − 1
k

· R2

1 − R2

where n is sample size, k denotes given number of SNPs (here is
k � 1 since we calculated this value for each SNP), and R2 denotes
the coefficient of determination, which is the proportion of variation
explained by the SNP.

In unrelated samples, standard logistic regression is employed.
The maximum rescaled R square (Nagelkerke, 1991) was calculated
by dividing the regular R square by its upper bound to address when
the upper bound less than 1. F values were calculated using the
formula above, with F value > 10 considered as fulfillment of this
criterion. However, in the case of related samples, such as in LLFS, a
mixed model was chosen for analyses, which has an unclear
definition of R square. As such, we used a slightly different
strategy. First, we calculated residuals as alternative outcomes
using SAS GLIMMIX procedure, and then use a general linear

FIGURE 1
Instrumental variable assumptions in MR. Note: Red lines with crosses denote violations of assumptions if significant associations were identified.
Blue line denotes that significant association should exist.
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model to regress the SNP on the residuals. R squares were taken and
F values were calculated using the above formula.

2.7 “Composite” SNPs creation

When testing SNPs from candidate genes, few, if any of the
original SNPs successfully pass all required tests. This issue becomes
a significant bottleneck for reliable MR analysis, since the validity of
the causal effect identified by MR analysis heavily depends on the
qualified IVs that satisfy all assumptions. To address this issue, we
tested the effect of SNP-SNP interaction on the exposure variable
using SNPs from the same obesity/BMI related genes. We found that
numerous SNP pairs are significantly associated with the exposure
(Supplementary Figure 1s), which suggests that we can create a
“composite” SNP by pairing the candidate SNPs to expand the
candidate pool for IVs.

Our approach involved first selecting all original SNPs that
passed quality control from candidate genes and pairing them with
each other. Then we summed the dosages of minor alleles (MA) of
the two original SNPs and used it to denote the newMA count of the
paired SNPs (see Figure 2).

For each new pair of SNPs, we denote its MA as follows: 0 if the
sum is 0 or 1, 1 if the sum is 2, and 2 if the sum is 3 or 4. In the
subsequent analysis, we treated these “composite” SNPs as “original”
SNPs with newly denoted minor allele numbers. We then created
new binary Plink genetic data incorporating these new “SNP”s, and
tested all three key assumptions, as well as F value and LD criteria.
MR analysis was then performed using those “composite” SNPs that
survived all of these tests. To avoid confusion, we will use the term
“composite SNPs” for the paired SNPs, and “single SNPs” for the
original unpaired SNPs in the remainder of this paper.

2.8 Analysis

Table 1 describes the key characteristics of study populations of
HRS and LLFS data. Our study adhered to the STROBE-MR
(Skrivankova et al., 2021) reporting guidelines (checklist is
provided in the Supplementary Table 2s). For each dataset, we
created survival outcome variable (group 1: survived age 85 or above;
group 0: died before age 85), and exposure variable (group 1: average
BMI ≥25 and <30 (“overweight”) at ages [75, 85]; group 0: average
BMI ≥18.5 and <25 (“normal weight”) at ages [75, 85]). Covariates
used include sex (1 –male, 2 – female), race (1 – white, 2 – black, 3 -
others), education (0 – below high school, 1 – high school, 2 – above
high school), smoking status (1 – ever smoked, 0 – never smoked),

first two principal components, and comorbidity (presence of
cancer, diabetes or cardiovascular disease (CVD), 1 – yes, 0 -
no). For LLFS data, we also included field center (1 – US,
2 – Denmark) as a covariate. Individuals with any missing
value(s) were excluded from the study. We did not use covariates
in calculating statistics from composite SNP-risk factor and
composite SNP-outcome associations for downstream MR
analysis (Hartwig et al., 2021).

Coefficients, βXj and βYj, along with standard errors were
calculated using logistic regression models (Equation 4) and
(Equation 5) due to the binary nature of both the exposure and
outcome variable:

exposure � βXj · SNPj + εXj (4)
outcome � βYj · SNPj + εYj (5)

SAS 9.4 was used to calculate these statistics, which were then
delivered to R package (“MendelianRandomization”) for
downstream MR analysis adjusted for association between
outcome and risk factor to address the fact that we applied one-
sample MR analysis in this study.

The Inverse-Variance Weighted (IVW) method, widely used in
health studies, was used to evaluate causal estimates (Burgess and
Thompson, 2017). It benefits from an explicit expression, averaging
the ratio estimates from each IV using an inverse-variance weighted
formula and provides an overall causal estimate. The causal estimate
of IVW is averaged βYj/βXj of all IVs. Significance was determined
based on having statistically significant IVW, and MR-Egger
regression intercept non-distinct from the origin. P
value <0.05 was considered statistically significant.

IVW is a commonly used approach, but suffers from bias if all
IVs are not valid. To address this issue, we employed a weighted
median approach (Bowden et al., 2016) as a complementary
analysis. Ratio estimates of each SNP are ordered and weighted
by the inverse of variance. The median MR estimate is considered
unbiased if at least 50% of the total weight comes from valid IVs,
therefore, it is rather robust. This approach assumes no single IV can
contribute more than 50% of the weight.

Additionally, we computed the Kaplan-Meier estimates of
survival curves (Supplementary Figure 2s) to visually illustrate
the survival difference between the overweight and normal
weight groups. Age at baseline or age 75 years (whichever was
the largest) was used as the left truncation variable.

2.9 Sensitivity analysis

Sensitivity analyses were performed to assess the sensitivity of
specific IVs sets using SNPs obtained from genome-wide association
study (GWAS) conducted on LLFS data. We performed a GWAS
using the same dichotomized exposure variable (group 1:
overweight, at ages [75, 85]; group 0: normal weight, at ages [75,
85]) as the trait, and the same covariates described in Analysis
section. All SNPs with p-value <0.05 from the GWAS were
considered as IV candidates. Then, those that satisfied all key
assumptions and passed LD and F value criteria were selected as
IVs to perform MR analysis. To address relatedness between
samples, generalized mixed model (SAS GLIMMIX procedure)

FIGURE 2
Determination of MA number of “composite” SNP.
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was used to calculate statistics from Formulas 4, 5. In this analysis,
we used penalized IVW method if standard IVW method did not
show significance to address the issue of relatively weaker IV in LLFS
data (Xu et al., 2023).

To address the concern that residual unmeasured confounding
may compromise causal induction in this observational study,
E-values were computed. The E-value is defined as the minimum
strength of association on the risk ratio (RR) scale that an
unmeasured confounder would need to have with both the
exposure and the outcome, conditional on the measured
covariates, to completely explain away an observed
exposure–outcome association. This helps rule out spurious
association even with statistically significant results. For each IV,
we used the following formula to calculate the E-value (Swanson and
VanderWeele, 2020).

RR + ����������
RR RR − 1( )√

2.10 Pleiotropy assessment

In addition to assumptions test described above, we also
employed MR-Egger regression (Bowden et al., 2015) to address
the issue of potential pleiotropy. SNPs from obesity/BMI related
genes often involve different mechanisms, and in turn impact

longevity in various ways. These pleiotropy effects are difficult to
assess directly. Despite using a predefined small LD to remove SNPs
that are correlated with others, residual correlation may still exist to
some extent. The intercept of MR-Egger regression offers unbiased
evidence for pleiotropy effect. If the regression intercept is observed
as non-distinct from the origin, it provides confidence that
pleiotropy does not bias the causal effect.

3 Results

3.1 Descriptive Analyses

Table 1 shows the characteristics of the HRS and LLFS samples
at the baseline visit and follow-up. The number of missing values for
each variable can be found in the notes under the table. The numbers
shown in the table are derived from the participants that were
selected in this analysis. Participants need to have a valid value for
exposure and outcome variables, as well as all other covariates, to be
included in the study. Furthermore, they must have mean BMI
measurements ranging from 18.5 to 30 (including normal and over-
weight) during the age of between 75 and 85 years old.

Comparatively, the age at enrollment is about 22 years older in
LLFS than in HRS, which represents the specific selection of
exceptional longevity families in LLFS. HRS participants exhibit a

TABLE 2 MR analysis results in HRS data using composite SNP from obesity/BMI related genes as IV.

Strata No. of
Indiv.

No.
of IVs

IVW
Estimate
(95% CI)

IVW
P
value

Weighted
Median
Estimate
(95% CI)

Weighted
Median
P value

MR-Egger
regression
Intercept
(95%CI)

E-value
Average
(min, max)

White
female

1746 52 0.189 (0.031,0.404) 5.926E-3 0.214 (0.026,0.402) 2.541E-2 0.044 (-0.060,0.147) 2.14 (1.60,3.35)

White male 1,382 51 0.158 (0.041,0.275) 8.226E-3 0.188 (0.021,0.354) 2.713E-2 −0.074 (-0.175,0.028) 2.29 (1.65,3.67)

White F
+ M

3,128 69 −0.00032
(−0.108,0.108)

9.95E-1 −0.00052
(−0.155,0.154)

9.95E-1 −0.025 (−0.079,0.029) 2.03 (1.46,3.73)

Black
female

209 144 0.057 (−0.119,0.312) 1.151E-1 0.034 (−0.117,0.481) 5.137E-1 −0.075 (−0.231,0.081) 3.23 (2.24,9.19)

Black male 163 76 0.115 (0.022,0.207) 1.529E-2 0.108 (−0.025,0.241) 1.122E-1 0.047 (-0.210,0.305) 3.15 (2.39,7.06)

Black F
+ M

372 175 0.144 (0.083,0.205) 3.502E-6 0.130 (0.044,0.216) 3.119E-3 −0.057 (-0.150,0.037) 3.02 (1.92,8.68)

Numbers in bold indicate important results.

TABLE 3 MR analysis results in LLFS data using composite SNP from obesity/BMI related genes as IV.

Strata No. of
Indiv.

No.
of IVs

IVW
Estimate
(95% CI)

IVW
P
value

Weighted
Median
Estimate
(95% CI)

Weighted
Median
P value

MR-Egger
regression
Intercept
(95%CI)

E-value
Average
(min, max)

White
female

232 — — — — — —

White male 190 135 0.192 (0.145,0.239) 1.016E-
15

0.243 (0.180,0.307) 6.407E-14 0.442 (-0.088,0.795) 5.26 (3.78,6.61)

White F
+ M

422 47 0.307 (0.206,0.408) 2.517E-9 0.296 (0.164,0.428) 1.069E-5 −2.632 (−5.115,-0.149) 4.37 (3.67,4.68)

Numbers in bold indicate important results.
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higher proportion of highly educated people and a history of
smoking, but a lower incidence of major diseases, including
diabetes, cancer, and cardiovascular diseases. Notably, this
difference can be explained by different age ranges in the two
samples. When we compare the two cohorts at specific age range
75–85, 56.18% of LLFS participants have the above major diseases,
compared with 60.16% in HRS data. Moreover, LLFS has a relatively
late onset of the above major diseases (67.95 vs. 65.33 in HRS) at the
same age range. The ages at death or last follow-up are similar in the
two data sets. Furthermore, we observed a higher percentage of
participants survived beyond 85 years old in LLFS, along with a
higher percentage of overweight between ages 75 and 85,
as expected.

3.2 Mendelian randomization

Associations between genetic variants and exposure, as well as
between genetic variants and outcome are reported (Supplementary
Table 3s 1-6 for HRS, 7-8 for LLFS). Stratified and non-stratifiedMR
results including causal effect estimates, 95% confidence intervals
and P-values using HRS and LLFS data, are reported in Tables 2, 3,
respectively. In general, a positive IVW effect estimate suggests that
an increase in the exposure is associated with an increase in the
outcome. In our study, this means overweight at age 75-85 increase
the chance of surviving above age 85. The larger estimate implies
that the exposure has a more substantial impact on the outcome,
assuming all other factors remain constant.

In HRS data, MR analysis revealed that being overweight at ages
75–85 had a significant causal effect on improved survival above
age 85, compared with normal weight at this age range, in white
female (IVW p-value = 5.926E-3), white male (IVW effect
estimate = 0.189, p-value = 8.226E-3), black male (IVW effect
estimate = 0.115, p-value = 1.529E-2), and non-stratified black
subsamples (IVW effect estimate = 0.144, p-value = 3.502E-6).
The most significant results were observed in non-stratified black
samples (Table 2). However, the same significant level of causal
effect was not seen in black females, warranting further
evaluation. All significant results are supported by a
significant weighted median test (except for black males) and
have survived the MR-Egger regression intercept test.

In LLFS data (Table 3), being overweight at ages 75–85 showed
protective effect on living beyond age 85 in white males (IVW effect
estimate = 0.192, p-value = 1.016E-15), but the same effect was not seen
in white females as none of the composite SNPs met all criteria.
However, a similar effect was observed in white non-stratified
samples (IVW effect estimate = 0.307, p-value = 2.517E-9); weighted
median tests are also significant for these two tests. Non-stratified
samples did not pass MR-Egger regression intercept test though.

In a sensitivity analysis using LLFS data, we selected the single
SNPs significantly associated with exposure variable (p< 0.05) from
GWAS results. All SNPs satisfied each assumption and criteria as
IVs. We observed significant causal effect on life span over 85 years
old in penalized IVW method and weighted median test in male
(penalized IVW effect estimate = 0.156, p-value = 7.905E-3,
weighted median p-value = 6.203E-3) and non-stratified
participants (penalized IVW effect estimate = −0.2, p-value =
2.142E-3, weighted median p-value = 3.401E-3). The standard

IVW did not show significance. Both results (Supplementary
Table 4s) and statistics (Supplementary Table 3s 9-11) are reported.

In another sensitivity analysis, we calculated E-values to test the
robustness of our causal effect estimation to residual confounding
(Tables 2, 3). Although there were no universally accepted or
standardized ad-hoc thresholds for the E-value in the context of
Mendelian randomization, an E-value of 2 or 3 is considered large
enough to reasonably conclude that any residual confounding is
unlikely to explain away the causal effect.

4 Discussion

Our MR study found that being overweight between the ages
75–85 years significantly contributes to a better survival at ages
85 and beyond in both HRS and LLFS participants. An earlier MR
analysis utilizing the UK Biobank data found that the significance of
a high BMI as a risk factor in coronary artery disease (CAD) declines
in older age (Jansen et al., 2022). Other studies suggested that being
moderately overweight could be a marker of a healthy aging that
may also protect, at least in part, against comorbidities (Chapman,
2010; Lee et al., 2001; Pes et al., 2019; Porter Starr and Bales, 2015;
Zheng et al., 2021). Our MR findings are broadly in line with these
earlier studies and strongly support the idea that being overweight is
a causal factor for longevity. This can have an important implication
for clinical practice.

Physicians often consider overweight, defined by BMI between
25 and 30, as detrimental to health, and commonly recommend
lifestyle changes to decrease BMI. While some major conditions,
such as cardiovascular diseases and type II diabetes, have been
associated with high BMI, our study found that BMI that is
moderately higher than “normal” (18.5-24.9) could be beneficial
for lowering all-cause mortality risk in the very old. Potential
mechanisms may involve improved resilience of overweight
individuals to late-life stressors (Cho et al., 2018; de Miguel-Diez
et al., 2022; Nie et al., 2014; Prescott and Chang, 2018). Indeed,
larger energy reserves in overweight individuals may be essential for
recovery after adverse health events (e.g., pneumonia, fractures),
treatments, or surgeries, commonly experienced at the oldest old
ages. Conversely, lower energy reserves may adversely affect the
capacity of the immune system to fight infections and address
harmful exposures. Additional amounts of fat may also better
protect older individuals from fall-related fractures, which is a
leading factor contributing to mortality in advanced years of life.

One should note that “overweight” may not always equate to
“over-fat” because BMI does not directly measure body
composition. Such situations could be especially relevant to elite
athletes and body-builders with increased muscle mass. In such
individuals, an elevated BMI may not always reflect fatness. Our
study, however, focuses on older individuals. Recent research found
that older individuals tend to have higher fat percentage than
younger people, so BMI may even underrepresent ‘fatness’ in this
population (Di Renzo et al., 2022). Still, the interpretation of causal
effect in this study might be limited by the use of BMI as an indicator
of “overweight”, so we recognize this potential limitation.

Our results also imply that being overweight may differentially
influence longevity in males and females, indicating that they should
be analyzed separately. Analyses of combined and unstratified
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samples yielded less significant and consistent results. For instance,
in LLFS, sensitivity analysis found an adverse effect of overweight on
survival, while in HRS it showed protective effect, without statistical
significance. This discrepancy between the data might result from
different study designs. E.g., LLFS cohort has a shorter follow-up
period with only two visits, while HRS has fourteen waves of core
interviews. This fact could potentially affect calculated mean weight.
The observed male-female differences in outcomes may also be due
to variations in the composition of weight. Males typically have
more muscle mass compared to females, which might contribute to
the differing impacts of BMI on mortality between sexes.

Several other factors may also contribute to the discrepant
results between the HRS and LLFS data. For example, although
BMI is widely used as a criterion of obesity, it is difficult to
differentiate between the amount of fat and the amount of
muscle. Additionally, studies have shown a significant pattern of
assortative mating for BMI (Conley et al., 2016), resulting in the
clustering of body weight. These factors are likely more significant in
the LLFS data and could act as effective confounders. It is worth
noting that SNPs from the eight candidate genes may have different
biological effects on obesity and overweight, despite the fact that
these genes are all significantly correlated with these traits. In this
paper, we introduced a novel method for constructing and selecting
instrumental variables for MR studies. According to our search of
up-to-date literature, this is the first time this method has been
applied for such purpose. Our approach offers several advantages.
Firstly, it uses a straightforward computation and can be easily
performed by other researchers. Secondly, it greatly increases the
number of the IV candidates and is more likely to lead to a successful
selection of qualified IVs. We used all the qualified “composite”
SNPs as multiple IVs for the downstream analysis. Alternatively,
these IVs can be combined into a ‘polygenic risk score’ by summing
their weighted effect alleles, and using this score as a single IV in
downstream MR analysis (Dudbridge, 2021). However, careful
consideration of assumptions and potential biases is crucial when
making the decision to apply such score as single IV. Our strategy of
leveraging the SNPxSNP interactions to construct IVs from the
single SNPs selected from biologically relevant genes was successful
and we plan to expand the list of the candidate genes in
future analyses.

We acknowledge several other study limitations. We did not
take advantage of HRS sample weights, limiting us from making
inferences at the population-level. This is due to the use of a
subsample of HRS data, and binary variables based on the
continuous measurement of BMI. Additionally, we analyzed a
unique sample (LLFS) selected for exceptional longevity (which
was the goal of LLFS); the LLFS participants also have better health
and function in several domains compared to other cohorts.
Therefore, the results are not generalizable to the general
population. Furthermore, limited number of participants in LLFS
data decreased the power of this analysis to detect the underlying
causal relationship. The relatively small number of LLFS
participants increased the difficulty of identifying appropriate
SNPs as IVs as the F value changes almost linearly with sample
size. We also assumed that the genetic variants exhibit consistent
associations with the outcome across various strata, such as different
age groups and ethnicities, which could affect result interpretation,
especially in unstratified analysis. We did not investigate other

potential confounders (such as gait speed, or other physical
activity measures) beyond the ones listed as covariate. The
potential issues of pleiotropy were addressed by intercept testing
of MR-Egger regression.

Altogether, results of our study suggest that attempts to lose
weight (e.g., via diet or meds) in excess to its natural aging-related
decline may reduce physical resilience and increase vulnerability to
death in the very old. Additional MR studies conducted in different
datasets may help further clarify these mechanisms.
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