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The gonad has become a central organ for understanding aging in C. elegans, as
removing the proliferating stem cells in the germline results in significant lifespan
extension. Similarly, when starvation in late larval stages leads to the quiescence
of germline stem cells the adult nematode enters reproductive diapause,
associated with an extended lifespan. This review summarizes recent
advancements in identifying the mechanisms behind gonad-mediated lifespan
extension, including comparisons with other nematodes and the role of lipid
signaling and transcriptional changes. Given that the gonad alsomediates lifespan
regulation in other invertebrates and vertebrates, elucidating the underlying
mechanisms may help to gain new insights into the mechanisms and
evolution of aging.
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Introduction

Aging, characterized by a time-dependent deterioration of physiological function, is a
phenomenon that is almost universally observed in biology (Jones et al., 2014). Pioneering
work using the nematode C. elegans has provided insights into the genetics of aging (Klass,
1977; Johnson and Wood, 1982; Klass, 1983; Friedman and Johnson, 1988). These studies
showed that single gene mutations can greatly extend C. elegans lifespan, sometimes up to
tenfold compared to its normal lifespan (Friedman and Johnson, 1988; Kenyon et al., 1993;
Ayyadevara et al., 2008). Several pathways, including the highly conserved insulin signaling
pathway and a germline signaling pathway (Kenyon, 2011; Ghazi, 2013), are involved in
modulating aging (Soo et al., 2023).

Compared to the insulin signaling pathway, the germline signaling pathway is relatively
understudied (Lemieux and Ashrafi, 2016). The initial discovery was based on removing
germline precursor cells in C. elegans larvae (Hsin and Kenyon, 1999). These laser-ablated
nematodes, which have an intact somatic gonad without germline cells, reach adulthood
and live substantially longer than non-ablated animals (Hsin and Kenyon, 1999). These
findings initially supported a theory of aging stating that energy resources could be diverted
from reproduction to somatic maintenance to extend lifespan [reviewed in (Kirkwood,
1991; Lemaitre et al., 2015)]. However, the complete removal of the reproductive system
(both the somatic gonad and the germline) does not extend lifespan, contradicting this
“resource allocating” theory of aging (Hsin and Kenyon, 1999). These ablation experiments
suggest that whereas somatic gonad signals may lengthen lifespan, they are counteracted by
lifespan-shortening germline signals (Hsin and Kenyon, 1999).

Mutants that genetically mimic laser-ablated animals have been used to study the
regulation of lifespan extension in germline-less animals. The use of such mutants allows
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the generation of a large number of animals lacking a germline.
Biochemical analysis of germlineless mutants indicates they are rich
in triglyceride/phospholipid content (O’Rourke et al., 2009),
suggesting that the lifespan extension of germlineless worms may
involve changes to fat metabolism.

Naturally, in the wild, there are no animals lacking germline.
Therefore, it is crucial to determine if the conditions that prevent
germline proliferation (e.g., starvation) and lead to extended lifespan
involve the same regulatory pathways as those observed in lab-
engineered germline-less animals. These studies will give insights
into aging mechanisms and theories of aging alike. This review aims
to address the mechanisms behind the increased lifespan of mutants
lacking proliferating germ cells, connecting these findings with
recent theories of aging, identifying gaps in the literature, and
suggesting potential future research directions.

Senescent pathologies in aging
C. elegans

C. elegans is usually maintained in genetically homogenous
populations of self-fertilizing hermaphrodites. They propagate on
agar plates, using the bacterium Escherichia coli as a food source
(Stiernagle, 2006). In these conditions, the hermaphrodite lives for
an average of 18 days at 20°C. In its natural habitat on decaying
vegetable matter, C. elegans feeds on uncharacterized bacterial and
unicellular eukaryotes (Félix and Duveau, 2012; Frézal and Félix,
2015). Although C. elegans lifespan has been determined in complex
environments (Van Voorhies et al., 2005), its lifespan in the original
habitat and native food is not known. Additionally, it is unclear if C.
elegans displays signs of senescence in its natural environment
(Nussey et al., 2013).

In the laboratory, the aging C. elegans hermaphrodite displays
multiple pathologies, including the degeneration of the germline,
pharynx, body wall muscle, vulva and intestine (Garigan et al., 2002;
Herndon et al., 2002; McGee et al., 2011; de la Guardia et al., 2016;
Leiser et al., 2016), ectopic deposition of lipids (Palikaras et al., 2017;
Palikaras et al., 2023) and yolk (lipoproteins) (Ezcurra et al., 2018;
Kern et al., 2023; Spanoudakis and Tavernarakis, 2023). These
pathologies start relatively early, with some already apparent on
only the third day of adulthood (Herndon et al., 2002; Ezcurra et al.,
2018). Additionally, measures of health, such as vigor of movement,
effective pharyngeal pumping, and resistance to stressors (including
oxidative stress or thermotolerance), decline with age in C. elegans
(Bansal et al., 2015). It must be noted, however, that measures of
health in C. elegans have not yet been strictly defined (Bansal
et al., 2015).

C. elegans males tend to live longer than hermaphrodites,
provided they are kept in isolation (McCulloch and Gems, 2003;
Ancell and Pires-daSilva, 2017). Because male proportions are low in
the laboratory and nature (Frézal and Félix, 2015), combined with
their tendency to kill each other when raised in groups, and their
propensity to escape the plates, determination of their lifespan is
often excluded (Gems and Riddle, 2000). In a few studies designed to
characterize the pathological changes in aging males, neither
intestine (Ezcurra et al., 2018) nor germline disintegration occurs
(de la Guardia et al., 2016), and motor decline is detected before any
visible morphological changes (Guo et al., 2012).

Comparing germline-ablated
animals and germline-less mutants

The first larval stage of C. elegans contains two germline
precursor cells, named Z2 and Z3 (Kimble and Hirsh, 1979).
Removal of these cells by laser cell ablation results in an adult
with an intact somatic gonad lacking oocytes and sperm. C. elegans
hermaphrodites lacking a proliferating germline are long-lived
(Hsin and Kenyon, 1999) and resistant to stress (Arantes-Oliveira
et al., 2002; Sinha and Rae, 2014). In C. elegansmales, the ablation of
germline precursor cells results in a slight life extension when grown
on agar plates (Arantes-Oliveira et al., 2002), but not when kept in
liquid culture (McCulloch, 2003).

In the wild-type C. elegans adult, the proliferation of the
germline stem cells is mediated by signals from the distal tip cells
of the somatic gonad [for review, see (Hubbard and Schedl, 2019)].
Removing these somatic cells causes premature differentiation of the
germline stem cells into gametes (Kimble and White, 1981). glp-1, a
member of the Notch receptor family (Yochem et al., 1988; Austin
and Kimble, 1989; Kimble and Simpson, 1997) expressed in the
germline (Cinquin et al., 2015; Gutnik et al., 2018; Sorensen et al.,
2020), is required to keep stem cells in an undifferentiated state.
Thus, glp-1 loss-of-function mutants mimic the Z2/Z3-ablated
animals because both lack proliferating and undifferentiated germ
cells. The most commonly used mutants are temperature-sensitive
and are subjected to the restrictive temperature during larval stages
to induce their phenotype (Arantes-Oliveira et al., 2002). Similar to
the Z2/Z3-ablated animals, glp-1 mutant hermaphrodites are long-
lived (Hsin and Kenyon, 1999), display delayed senescent
phenotypes (Palikaras et al., 2017) and are stress-resistant
(Arantes-Oliveira et al., 2002; Miyata et al., 2008; Alper et al.,
2010; Soo et al., 2023).

Additional examples of long-lived mutants with no proliferating
germ cells include glp-4,mes-1, and pgl-1 (Beanan and Strome, 1992;
Arantes-Oliveira et al., 2002; Tatar, 2002; Curran et al., 2009). There
are only a few studies with the pgl-1 mutant; therefore, we will not
discuss them further. glp-4 codes for a tRNA synthetase (Rastogi
et al., 2015). Similar to glp-1 mutant animals, mutants for a loss-of-
function temperature-sensitive allele of the gene glp-4 (allele bn2)
share many phenotypes: the germline does not proliferate (Beanan
and Strome, 1992), fat storage is altered (Wang et al., 2008) and are
resistant to stress (Alper et al., 2010; Greer et al., 2010; TeKippe and
Aballay, 2010; Labbadia and Morimoto, 2015). glp-4 (bn2) animals
show delays to pathological signs of senescence (Ezcurra et al., 2018;
Kern et al., 2023) and have an extended lifespan (Arantes-Oliveira
et al., 2002; Okuyama et al., 2010; TeKippe and Aballay, 2010),
although there are reports that contradict this finding (Tohyama
et al., 2008; Greer et al., 2010). For instance, glp-4 animals have a
wild-type lifespan when grown on live bacteria but show an
extended lifespan only when grown on dead E. coli (TeKippe and
Aballay, 2010).

When raised at the restrictive temperature, C. elegans mutants
with the temperature-sensitive alleles of mes-1 do not develop the
germline precursors Z2 and Z3 and therefore do not contain
germline cells (Strome et al., 1995). Lifespan extension and stress
resistance were reported for both hermaphrodites (Arantes-Oliveira
et al., 2002; Alper et al., 2010; Wu et al., 2015) and males, although
only slightly for the latter (McCulloch, 2003).
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The use of genetic mutations to replicate germline ablations has
significantly advanced our understanding of the metabolic and
genetic changes in animals lacking a proliferating germline (Pu
et al., 2017; Wan et al., 2017; Burkhardt et al., 2023; Chaturbedi and
Lee, 2023). However, the strengths of using glp-1 temperature-
sensitive alleles, such as glp-1 (q224ts) and glp-1 (bn18) (Austin
and Kimble, 1987; Kodoyianni et al., 1992) may affect the
interpretation of some studies as they show phenotypes in other
tissues that could influence lifespan (Apfeld and Kenyon, 1999;
Singh et al., 2011; Entchev et al., 2015; Zhang et al., 2018; Uno et al.,
2021). Furthermore, the glp-4 (bn2) mutant has a partial loss of
function in the soma (Rastogi et al., 2015). Given that glp-4 (bn2)
does not show the same extent of lifespan extension as glp-1
(TeKippe and Aballay, 2010), it would be beneficial to also
include alternative models such as mes-1 and pgl-1, or engineer
new strains that allow spatiotemporal control of gene expression of
genes that affect the proliferation of germline cells [e.g., (Zhang
et al., 2015)].

Changes in transcriptional
control mechanisms following
germline removal

The germline removal in C. elegans results in the differential
expression of thousands of transcripts (Sinha and Rae, 2014;
Blackwell et al., 2015) and hundreds of proteins (Krijgsveld et al.,
2003; Bantscheff et al., 2004; Pu et al., 2017). Among these are
transcriptional regulators previously implicated in modulating
lifespan, such as the pro-longevity transcription factors DAF-16
(mammalian FOXO) and DAF-12. The activity of DAF-16 is
essential for the increased lifespan of animals with Z2/
Z3 ablation (Hsin and Kenyon, 1999). The translocation of DAF-
16 from the cytoplasm to the nucleus, a requirement for its function
(Lin et al., 2001), relies on the activity of DAF-12. Interestingly, this
specific activity of DAF-12 in regulating DAF-16 nuclear
localization occurs only when the germline cells are removed
(Berman and Kenyon, 2006). Similarly, the kinase MBK-1, the
transcription elongation factor TCER-1, and the cytoskeleton
adaptor protein KRI-1 modulate DAF-16 activity only in glp-1
mutants, but not in long-lived mutants of the insulin pathway
(Berman and Kenyon, 2006; Mack et al., 2017; Amrit et al., 2019).

DAF-12 is a nuclear hormone receptor similar to the vitamin D
receptors found in vertebrates (Antebi et al., 2000). Its activation is
mediated by the ligand dafachronic acid (DA), a cholesterol-derived
hormone (Motola et al., 2006). However, significant lifespan
extension can be induced in animals lacking germline and
somatic reproductive tissues by supplementation with DA
(Yamawaki et al., 2010). This suggests that the somatic gonad
triggers the production of the DAF-12 ligand in animals lacking
only the germline (Gerisch et al., 2007). In addition to regulating
DAF-16 cellular localization, DAF-12 also activates the fatty acid
reductase fard-1, a gene required for lifespan extension in animals
lacking germline (McCormick et al., 2012).

The intestine is a key site where DAF-16 exerts its effects. While
DAF-16 is present in both muscles and neurons, its activity in
extending lifespan upon germline removal is specifically required in
the intestine (Libina et al., 2003). Targets of DAF-16 include genes

involved in proteolysis rpn-6, a subunit of the proteasome (Vilchez
et al., 2012). DAF-16 can form a complex with the transcription
factor HLH-30 (mammalian TFEB), leading to the joint regulation
of a shared group of promoters (Lin et al., 2018), or independently
regulating their specific targets (Lin et al., 2018). Proteostasis is also
regulated by endogenous siRNAs that activate stress-responsive
genes through the heat-shock transcription factor HSF-1 (Cohen-
Berkman et al., 2020).

Together with TCER, DAF-16 regulates lipid homeostasis
(Ghazi et al., 2009; Amrit et al., 2016). Among the genes
regulated by these factors are lipases lipl-1 and lipl-2 [90, lips-17
{McCormick, 2012 #10478], the fatty acid desaturase fat-5 (Goudeau
et al., 2011; McCormick et al., 2012), and the fatty acid elongase elo-2
(McCormick et al., 2012). A DAF-16 target, the lipase LIPL-4 (Wang
et al., 2008; Mony et al., 2021), activates the nuclear hormone
receptor NHR-49 (mammalian PPARɑ) (Folick et al., 2015).
NHR-49 is necessary for lifespan extension in C. elegans lacking
germline, and it upregulates the expression of genes involved in de
novo fat synthesis (Ratnappan et al., 2014). LIPL-4 also induces
autophagy by upregulating the activity of the transcription factor
PHA-4 (Lapierre et al., 2011).

The nuclear hormone receptor, NHR-80 (Goudeau et al., 2011),
together with NHR-49, is activated by LIPL-4 (Folick et al., 2015).
Following a common theme from the transcriptional regulators
mentioned above, NHR-80 regulates lipid metabolism by
controlling the expression of desaturases, requiring DAF-12
(Goudeau et al., 2011). Likewise, the transcription factor SKN-1
is activated in the intestine upon germline removal and regulates
lipid metabolism and stress resistance (Steinbaugh et al., 2015). The
activation of SKN-1 is mediated by the generation of redox species
and H2S, enabled by KRI-1 (Wei and Kenyon, 2016). How exactly
KRI-1 changes the redox chemistry is not known.

In summary, fat-processing enzymes are overrepresented in C.
eleganswithout a proliferating germline (Wang et al., 2008; Goudeau
et al., 2011; McCormick and Kennedy, 2012). Some of those
enzymes (e.g., LIPL-4), when constitutively expressed, result in
lifespan extension (Wang et al., 2008). Although initially it was
proposed that the main benefit of lipids was the result of catabolism
processes (Wang et al., 2008), it was later found that the synthesis of
lipids was also important (see next section).

Changes in lipid metabolism in C.
elegans lacking a proliferating germline

One of the hallmarks of C. elegans lacking a proliferating
germline is the remodeling of lipid distribution and metabolism
(O’Rourke et al., 2009; Wang et al., 2008; Hansen et al., 2013; Bustos
and Partridge, 2017; Wan et al., 2019). Lipids are structurally
diverse, but share common biophysical properties such as
hydrophobicity. They have multiple functions, including roles as
components of cellular structures, signaling molecules, and energy
storage (Mutlu et al., 2021). C. elegans lipid constitution and
metabolism were reviewed recently (Watts and Ristow, 2017; An
et al., 2023), as well as their role in aging (Papsdorf and Brunet, 2019;
Parkhitko et al., 2020; Mutlu et al., 2021; Bresgen et al., 2023).

The cholesterol-derived hormone dafachronic acid (DA) is
critical for glp-1 lifespan extension by enhancing the activity of
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the transcription factor DAF-12. The enzyme DAF-9, essential for
the synthesis of DA, is expressed in the somatic gonad. This evidence
is suggestive of the role of DA as the somatic pro-longevity signal in
germline-less C. elegans (Yamawaki et al., 2010). A simple model is
that somatic gonad can stimulate DA production when the germline
cells are removed. However, although an initial report indicated an
increase in the concentration of DA in glp-1 mutants (Shen et al.,
2012), more sensitive detection methods have disputed these
findings (Li et al., 2015). It is thus yet unknown how DAF-12
activity towards the ligand is increased in glp-1 mutants.

The composition of lipids is influenced by enzymes involved in
the processes of fatty acid elongation, desaturation, β-oxidation,
and lipase activity. In glp-1 mutants, the elongase ELO-3 is critical
for the activation of SKN-1 (but not for the activation of DAF-16
or HSF-1) (Wang et al., 2021). Synthesis of a lipid intermediate
by ELO-3 results in changes in the membrane of lysosomes,
ultimately suppressing a nutrient-sensing pathway that
promotes the activation of SKN-1 (Wang et al., 2021). Together
with NHR-49 (Ratnappan et al., 2014), SKN-1 upregulates genes
involved in mitochondrial ß-oxidation (Steinbaugh et al., 2015) in
glp-1 mutants, generating energy and reducing lipid storage. The
lysosomal lipase LIPL-4 also increases levels of mitochondrial ß-
oxidation, apparently independently of SKN-1. LIPL-4, which is
required for lifespan extension in glp-1 animals (Wang et al., 2008),
generates oleoylethanolamide (OEA) (Folick et al., 2015). OEA
is a monounsaturated fatty acid that binds to the lipid chaperone
LBP-8, which induces nuclear translocation of NHR-80 and
NHR-49 (Folick et al., 2015). These transcription factors
activate genes in the mitochondria responsible for ß-oxidation
(Ramachandran et al., 2019). Consistent with the importance of
mitochondrial ß-oxidation for lifespan extension, inhibition of
this process in glp-1mutants results in a shorter lifespan (Macedo
et al., 2020).

The C. elegans fat-5, fat-6, and fat-7 genes encode Δ9-
desaturases, which preferentially convert saturated C16:0 and
C18:0 fatty acids to the monounsaturated C16:1 and C18:1 fatty
acids (Watts and Browse, 2000), have repeatedly been found to be
upregulated after removing the germline (Goudeau et al., 2011;
Ratnappan et al., 2014; Steinbaugh et al., 2015; Amrit et al., 2016).
Dietary supplementation with monounsaturated fatty acids
(MUFAs), such as oleic, palmitoleic, or cis-vaccenic acids, is
sufficient to increase lifespan (Han et al., 2017; Lee et al., 2019),
and their presence is abundant in other long-lived C. elegans
mutants (Shmookler Reis et al., 2011). It is not yet clear how
MUFAs regulate lifespan, but they have suggested roles in
promoting membrane fluidity, enhancing energy storage, and
minimizing oxidative stress (Koyiloth and Gummadi, 2022).

The role of lipids in lifespan extension is an area of active
investigation, which is complicated by the fact that these
molecules are pleiotropic, as well as being very diverse in
structure and function. Lipid remodeling also occurs in other
sterility mutants (Chaturbedi and Lee, 2023), although it does
not result in lifespan extension at 20°C (Kenyon et al., 1993;
Arantes-Oliveira et al., 2002; Chaturbedi and Lee, 2023). Recent
lipidomic and transcriptomic analysis showed that lower
sphingosine levels correlate with a longer lifespan (Chaturbedi
and Lee, 2023), but the significance of this correlation still needs
to be determined.

Prolonged lifespan and reproductive
quiescence in starved C. elegans

Our discussions have so far centered on lifespan extension
through germline removal by artificial means. It is interesting to
note that lifespan can also extend naturally, particularly under
conditions like food scarcity. C. elegans, with its rapid
reproductive cycle and short generation time, faces frequent food
shortages (Schulenburg and Felix, 2017). This nematode has
developed adaptations to survive these events, with its response
to food availability varying depending on the developmental stage
when food becomes scarce [for review, see (Baugh and Hu, 2020;
Rashid et al., 2020)]. Understanding these natural adaptive
responses offers valuable insights into lifespan regulation.

Dietary restriction, which includes caloric restriction,
intermittent fasting, and food deprivation, is a well-known
condition that modulates lifespan (Loo et al., 2023). When food
deprivation (FD) is limited to adulthood, it results in a 50% increase
in lifespan (Figure 1) (Kaeberlein et al., 2006; Lee et al., 2006).
Animals lacking proliferating germline (e.g., glp-1 mutants) on FD
do not show a further lifespan increase (Thondamal et al., 2014),
indicating that the somatic gonad signal and the diet restriction
pathways may converge to the same downstream mechanisms
(Crawford et al., 2007; Thondamal et al., 2014).

C. elegans molts four times, going through larval stages named
L1-L4 before becoming a reproducing adult. However, lack of food
and other environmental conditions (e.g., pheromones, high
temperatures) experienced by late L1 larvae results in the
development of the L2d stage, followed by a non-feeding
alternative stage called “dauer” (Golden and Riddle, 1984). In C.
elegans, the dauer stage can last for up to a few months (Klass and
Hirsh, 1976), a period during which the germline stops proliferating
and remains undifferentiated. The process of dauer entry involves a
rewiring of the metabolism (Penkov et al., 2020), including
upregulation of genes involved in stress response and
downregulation of genes involved in growth (Cohen et al., 2021).
Despite active glp-1 activity (Seidel and Kimble, 2015), germline
stem cells arrest the cell cycle and require the PTEN tumor

FIGURE 1
A glp-1 mutation and ARD additively extend longevity. Animals
can be subjected to diet restriction during adulthood or late larval
stages (ARD). Food deprivation (FD) during adulthood does not
increase lifespan in glp-1 mutants but in ARD conditions.
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suppressor DAF-18 as well as LKB1/AMPK (AMP-activated protein
kinase) signaling to maintain cell cycle quiescence (Ogg et al., 1998;
Narbonne and Roy, 2006; Tenen and Greenwald, 2019). Larvae that
hatch in the absence of food do not form dauers, but arrest
development as L1 for up to 21 days (Johnson et al., 1984; Lee
et al., 2012; Baugh, 2013). Germ cell arrest in this stage is also
dependent on DAF-18 and AMPK (Fukuyama et al., 2006;
Fukuyama et al., 2012), but does not require DAF-16 (Baugh and
Sternberg, 2006; Fukuyama et al., 2006).

When starved in the late larval stages (e.g., L3 and L4), C. elegans
reaches adulthood with a reduced number of germline cells that
remain arrested in their cell division and differentiation (Angelo and
Van Gilst, 2009; Schindler et al., 2014; Seidel and Kimble, 2015;
Gerisch et al., 2020). This adult in reproductive diapause (ARD) lives
almost three times the normal worm lifespan (Figure 1) (Angelo and
Van Gilst, 2009; Gerisch et al., 2020). Once food becomes available,
the germline starts to proliferate and the animal resumes to undergo
a normal lifespan. glp-1 mutants submitted to ARD live even longer
(Figure 1), indicating that gonad signaling and ARD act through
different pathways.

Molecular studies indicate some overlap between the germline
pathway and ARD. Similar to glp-1mutants that lack a proliferating
germline, ARD animals require HLH-30 and DAF-16 for lifespan
extension (Gerisch et al., 2020). HLH-30 directly upregulates some
genes involved in fat metabolism, such as fat-5, fat-6, nhr-80, and
lipl-3 (Gerisch et al., 2020). However, reduced activities of DAF-12,
dafachronic acid, SKN-1, NHR-49, PHA-4, and HSF-1, which are
necessary for the lifespan extension of glp-1mutants, had little or no
effect on ARD lifespan (Gerisch et al., 2020). NHR-49, however, may
be required for the initiation of ARD (Eustice et al., 2022).

In summary, food deprivation during late larval stages results in
adults in reproductive diapause (ARD) that superficially resemble
germline-ablated animals and mutants for germline proliferation.
Although they share the lack of dividing germ cells, the extent of the
longevity and molecular mechanisms seem to be different. It is
possible that other ecologically relevant scenarios better mimic
germline ablation. Nevertheless, it would be interesting to further

investigate the molecular mechanisms underlying ARD to
understand lifespan extension in a more natural context.

The effects of germline removal
in other nematodes

To understand the generality of mechanisms behind lifespan
extension in mutants lacking germline, a comparative analysis is
necessary. Recent research has shown that early reproductive
efforts are linked to pathologies emerging at post-reproductive age.
Hermaphrodites from species of the Caenorhabditis and Pristionchus
genera that can reproduce with males (androdioecious species) die
sooner than their relatives that have females and males (gonochoristic
species) (Kern et al., 2023) (Figure 2). This earlier death of
hermaphrodites is largely attributed to the significant amount of
energy expended in producing yolk (Kern et al., 2023).

In most androdioecious species studied, removing the germline in
hermaphrodites led to a significant increase in lifespan (Hsin and
Kenyon, 1999; Patel et al., 2002; Kern et al., 2023). In contrast,
corresponding experiments in gonochoristic sibling species resulted
in little or no lifespan extension in females (Hsin and Kenyon, 1999;
Patel et al., 2002; Kern et al., 2023). The germline removal in
hermaphrodites may suppress “reproductive death,” a rapid death
process typically caused by the intense demands of reproduction
(Gems et al., 2021). This type of death is considered programmatic
rather than random, as signals from the somatic gonad can modulate
it. Indeed, removing the entire gonad in hermaphroditic species does
not delay senescence onset, whereas germline ablation does, indicating
counteracting signals between the gonad tissues (Kern et al., 2021).

In hermaphrodites of androdioecious species, a common
senescent pathology during aging is excessive yolk production by
the intestine (Ezcurra et al., 2018; Sornda et al., 2019; Kern et al.,
2023). This yolk overproduction leads to intestinal atrophy, driven
by extensive autophagy and lipophagy, which are essential processes
for generating the biomass necessary for lipoprotein synthesis
(Ezcurra et al., 2018). In contrast, virgin females of gonochoristic
species do not exhibit intestinal atrophy or yolk accumulation in the
pseudocoelom, typically resulting in a longer lifespan compared to
their androdioecious sibling species (Kern et al., 2021). However,
upon mating, these females exhibit aging patterns and pathologies
similar to those of hermaphrodites. It has been proposed that the
abundant production of yolk may be adaptive in hermaphrodites, as
lipoproteins can be released into the environment to serve as a
nutritional source for the offspring (Kern et al., 2021). Mated
females release only minimal amounts of yolk, and mating in
hermaphrodites similarly decreases the levels of yolk they vent.
This reduction is hypothesized to result from the absorption of yolk
into oocytes that are fertilized later (Kern et al., 2023).

Germline removal in non-Caenorhabditis nematodes, such as P.
pacificus, results in gene expression changes and phenotypes that are
similar to those found in C. elegans. These include the accumulation
of fat and upregulation of genes involved in fat metabolism (e.g., fat-
7), enrichment for DAF-16 targets, and downregulation of the
insulin pathway (Rae et al., 2012). However, whether those
changes are functionally relevant for influencing lifespan in P.
pacificus is unclear. It would be interesting to further investigate
the Oscheius species since ablation of the germline cells in two of the

FIGURE 2
Germline ablation results in significant lifespan extension in
hermaphrodites of most androdioecious species. Phylogeny of
nematodes showing androdioecious species in red font. The arrow
indicates the species that show significant lifespan extension
after removing the germline, either by Z2/Z3 ablation or by performing
glp-1 RNAi. Strain names are in parenthesis. The phylogenetic tree was
adapted from (Kiontke et al., 2005; Susoy et al., 2016; Stevens et al.,
2019). D. coronatus is an outgroup and no germline ablation
experiments were performed in this species.
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hermaphroditic species does not seem to extend lifespan (Patel et al.,
2002) (Figure 2). It is possible these species recently evolved
hermaphroditism and have yet to develop mechanisms associated
with reproductive death. Nematode species that have both
hermaphrodites and females may also provide valuable insights
(Chaudhuri et al., 2011; Kanzaki et al., 2017).

Reproduction and the evolution
of aging

The concept that there is a trade-off between the probability of
death and reproduction underpins the evolutionary theory of aging
(Maklakov and Immler, 2016). According to the “disposable soma”
theory, there is a competition for resources between somatic
maintenance and reproduction (Kirkwood, 1991; Lemaitre et al.,
2015). However, removing germ cells not only extends lifespan but
also enhances resistance to a wide range of environmental and
biological stressors (Hsin and Kenyon, 1999), contradicting this
theory. Lifespan extension as a result of germ cell removal is not
restricted to nematodes. The fruitfly Drosophila without
proliferating germline stem cells shows increased longevity (Flatt
et al., 2008), and gonad removal in vertebrates such as fish also
results in extended lifespan (Gems et al., 2021). Likewise, human
eunuchs have been reported to live about 15 years longer than non-
castrated men (Min et al., 2012), although the accuracy of these
historical records has been challenged on methodological grounds
(Le Bourg, 2015).

Critical to understanding aging is to identify the proximal
causes. The disposable soma theory assumes that resources are
required to repair somatic tissues and that the accumulation of
damage is the proximate cause of aging. Nevertheless, the concept
that aging is driven by molecular damage from oxidative damage
(Gems and Doonan, 2009; Perez et al., 2009; Van Raamsdonk and
Hekimi, 2010), or change in telomere length (Raices et al., 2005;
Cook et al., 2016) [but see (Joeng et al., 2004)] lacks empirical
support, at least in nematodes. In fact, it has been suggested that
many of the elements identified as “hallmarks of aging” (López-Otín
et al., 2013; Lopez-Otin et al., 2023), which include cellular damage,
cannot be generalized to many organisms including C. elegans
(Gems and de Magalhães, 2021). It would be useful to identify
what are the primary, secondary, and tertiary causes of aging, as well
as how they give rise to aging (Gems and de Magalhães, 2021).

From the work on comparison between the rate of aging in
nematodes with different modes of reproduction (Kern et al., 2023),
hermaphrodites seem to undergo a mechanistically non-stochastic
(programmatic) aging process (Blagosklonny, 2006). This is an
alternative theory of aging, which proposes that exaggerated
investment in reproduction leads to post-reproductive senescent
pathologies (Kern and Gems, 2022). When this investment is
prevented by germline removal, hermaphrodites live as long as
the females of sister species (which do not have programmatic
aging) (Kern et al., 2023). Interestingly, the most significant
lifespan increases following germline removal have been observed
in semelparous animals, which show a terminal reproductive effort
that leads to their death (Kern and Gems, 2022). It is thus likely that
interventions proven to significantly extend the lifespan of C.
elegans, such as mutations stopping germline proliferation or the

removal of germline cells, might be specific to organisms that
experience reproductive death.

Although not addressing directly the evolution of aging, a
potentially interesting avenue of research would be to compare
the pattern andmechanisms of aging between closely related species.
For instance, it would be interesting to determine if transcription
factors known to be active in germline-less hermaphrodites are also
active in females of sister species, and whether interventions found
to increase the lifespan in wild-type hermaphrodites (e.g.,
constitutive expression of lipl-4) has the same effect on females.
In species with no reproductive death such as Drosophila, similar
changes to C. elegans occur after germline ablation, such as lifespan
extension, fat storage, and lipid enzyme regulation (Steinbaugh et al.,
2015; Rodrigues et al., 2023). These results would suggest the
conservation of mechanisms of lifespan extension, but more
research is required to determine this.

Concluding remarks and outlook

Somemechanisms explaining the increased longevity of germline-
less C. elegans are seemingly contradictory. For example, while high
autophagy is thought to shorten lifespan in wild-type animals by
leading to the consumption of their gut (Ezcurra et al., 2018; Kern
et al., 2023), long-lived germline-less individuals also exhibit high
levels of autophagy (Lapierre et al., 2011). This discrepancy may be
due to different uses of autophagy products in these scenarios,
resulting in different outcomes. For instance, glp-1 animals
produce more yolk protein than wild-type animals on the first day
of adulthood (Steinbaugh et al., 2015). However, yolk levels increase
substantially with age inwild-typeworms, peaking around the seventh
day of adulthood (Ezcurra et al., 2018). This suggests that the elevated
yolk in germline-less animals might not result from the same harmful
autophagic gut-to-yolk biomass conversion seen in wild-type animals
but from the synthesis of fat from other sources. Indeed, a glp-4
mutation abrogates intestinal atrophy (Ezcurra et al., 2018),
suggesting this autophagic process may not function in the same
manner in germline-less animals. An additional possibility is that
other mechanisms triggered by the absence of a proliferating germline
could compensate for the harmful effects of high autophagy seen in
animals with an intact germline.

Most studies have primarily focused on possible pro-longevity
factors mediated by the somatic gonad. However, there is now an
increasing interest in exploring pro-aging signals mediated by the
germline. The Hedgehog signaling pathway, a conserved regulator of
animal development (Ingham et al., 2011), has been recently
implicated in this process (Shi and Murphy, 2023). Germline
hyperactivity, triggered by mating, activates the Hedgehog
pathway and also mediates the lifespan in other invertebrates
(Rallis et al., 2020).

For a comprehensive understanding of how aging mechanisms
work in C. elegans, further research should systematically involve
both sexes (Ancell and Pires-daSilva, 2017). For some longevity
treatments, there are clear differences between the sexes (Honjoh
et al., 2017). Diet restriction, for example, extends the lifespan of C.
elegans hermaphrodites, but not of males. The response to diet
restriction is mediated by the terminal effector of sex determination
TRA-1 (Honjoh et al., 2017), a transcription factor that promotes
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longevity in hermaphrodites by upregulating some isoforms of daf-
16 (Hotzi et al., 2018). The lower. TRA-1 activity in males leads to
higher expression of the nuclear receptor DAF-12, resulting in a
weaker DR response (Honjoh et al., 2017).

There is still a large gap in our understanding of the relationship
between molecular changes, lifespan, and causes of death. Some of
the remaining broader questions include the proximate causes of
aging and the causes of pathologies of aging that result in death
(Gems and de Magalhães, 2021), and commonalities of mechanisms
of lifespan extension under different conditions (e.g., dauer,
L1 arrest, ARD, germline-less) within and between species. For
example, it is unclear if regulators of germ cell quiescence in L1 and
dauer (DAF-18/PTEN and AMPK) also have a role in the lifespan
extension of germline ablated or germ-cell nematodes. It is also
unclear why many of the genes necessary for lifespan extension in
germline-less animals (e.g., DA/DAF-12 signaling, TCER-1, and
lipid metabolism genes) are also required for reduced fecundity in
post-dauer adults (Adams et al., 2022). The identity of the signals
that mediate the communication between the soma and germline
cells (Conine and Rando, 2022; Ow and Hall, 2024), and that could
influence lifespan (Hsin and Kenyon, 1999), are also largely
unexplored. Answering these questions will guide the research to
formulate hypotheses that could be tested experimentally. For
instance, while the accumulation of cellular damage has been a
popular paradigm for explaining the primary cause of aging,
experimental evidence has raised doubts about its validity (de
Magalhaes and Church, 2006; Gems and Doonan, 2009; Perez
et al., 2009). Thus, new theories that consider biological
constraints (Gems and Kern, 2022) and that can unite proximal
with the ultimate causes of aging (Gems, 2022) are welcome.
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