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MicroRNAs (miRNAs) are short RNA molecules that are not involved in coding for
proteins. They have a significant function in regulating gene expression after the
process of transcription. Their participation in several biological processes has
rendered them appealing subjects for investigating age-related disorders.
Increasing data indicates that miRNAs can be influenced by dietary variables,
such as macronutrients, micronutrients, trace minerals, and nutraceuticals. This
review examines the influence of dietary factors and nutraceuticals on the
regulation of miRNA in relation to the process of aging. We examine the
present comprehension of miRNA disruption in age-related illnesses and
emphasize the possibility of dietary manipulation as a means of prevention or
treatment. Consolidating animal and human research is essential to validate the
significance of dietary miRNA control in living organisms, despite the abundance
of information already provided by several studies. This review elucidates the
complex interaction among miRNAs, nutrition, and aging, offering valuable
insights into promising areas for further research and potential therapies for
age-related disorders.
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1 Introduction

MicroRNAs (miRNAs) are a type of short noncoding RNAs that have emerged as
significant actors in epigenome modulatory actions. These little RNA molecules, usually
composed of 18–25 nucleotides, implement their regulatory influence by attaching to
messenger RNA (mRNA) molecules, resulting in the inhibition of protein synthesis or the
breakdown of mRNA (Bartel, 2004; Lauria and Iacomino, 2021). Multiple biological
processes have been linked to miRNAs, including cellular differentiation, development,
and disease pathogenesis (Witwer, 2015).
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In the complex system of gene regulation, miRNAs are essential
for cellular homeostasis maintenance and for fine-tuning gene
expression (Bartel, 2018). Aging and age-related disorders are
linked to disruptions in miRNA expression and function.
Cardiovascular disease, neurological illness, and cancer are only a
few of the age-related ailments linked to miRNA dysregulation
(Quinlan et al., 2017; Kinser and Pincus, 2020). New therapeutic
intervention opportunities may arise from a better understanding of
miRNAs’ roles in aging and age-related diseases (ElShelmani et al.,
2021a; Matai and Slack, 2023b).

The aging process is only one of several health and disease
outcomes that are profoundly impacted by nutrition (Leitão et al.,
2022). Nutraceuticals are bioactive substances with dietary components
that have the potential to regulate miRNA expression and function,
according to emerging data (Kocic et al., 2019). The gene expression
patterns linked to aging and age-related disorders can be influenced by
foods such as macronutrients, micronutrients, and trace minerals,
which in turn can change miRNA profiles (Beckett et al., 2014;
Quintanilha et al., 2017b). In addition, nutraceuticals have
demonstrated potential as treatment methods for age-related diseases
by altering miRNA expression (Alnuqaydan, 2020; Ghosh et al., 2021).

A comprehensive literature search was carried out between July
2023 and October 2023 to find research papers and reviews related
to the involvement of Nutraceutical and miRNA-Mediated Aging
Pathways. The search was restricted to English items published in
the past decade. We used the following electronic medical databases:

Science Direct and PubMed. The search approach included a mix of
the terms “miRNAs,” “microRNAs,” “Aging,” “nutrition,” and
“nutraceuticals.” Furthermore, phrases like “gene expression
regulation,” “molecular mechanisms,” and “pathogenesis” were
included to guarantee a thorough search. The chosen
publications underwent a comprehensive assessment, and
pertinent data was retrieved. The key material encompassed in
the article consists of the study design, sample size, miRNA
profiling methodologies, experimental models, and conclusions
about miRNA dysregulation and its influence on aging etiology
and therapy. The collected data were combined to recognize
recurring patterns, tendencies, and areas of limited understanding
in the discipline. The quality and reliability of the studies were
evaluated based on known criteria tailored to each research type,
such as the Newcastle-Ottawa Scale for cohort studies and the
Cochrane Collaboration’s tool for randomized controlled trials.

2 miRNAs biogenic pathways
and function

2.1 Canonical and non-canonical miRNA
biogenesis pathways

The role of non-coding RNAs (ncRNAs), which include
miRNAs, in gene regulation is substantial across all eukaryotic
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organisms. Research on these little but powerful regulators has
increased in recent years, illuminating their extensive effects on
many different biological processes, as well as their extraordinary
adaptability and complex regulatory networks (Cui et al., 2019; Abd
El Fattah et al., 2022; El-Sheikh et al., 2022; Li et al., 2022; Bakr
et al., 2023).

DNA sequences that are referred to as miRNA genes or clusters
of genes that are either exclusively or cooperatively generated as
miRNAmolecules are the molecular antecedents of miRNAs. On the
other hand, miRNAs can be discovered in the areas of non-
translated or intron genes that are responsible for the production
of proteins. Hereafter, we have outlined the canonical and non-
canonical processes of biogenesis (Rodriguez et al., 2004; Olena and
Patton, 2010).

Within the canonical biogenesis process, the encoding of
miRNA gene sequences by RNA polymerase II culminates in
the primary miRNA (pri-miRNA) phase, which is the first step in
the canonical pathway. The complex is responsible for
transforming the pri-miRNA into the pre-miRNA, which is
the precursor miRNA. The process of miRNA modification by
Dicer begins with its transport to the cytoplasm via Exportin 5
(Denli et al., 2004; Newman and Hammond, 2010; Wei et al.,
2021; Erturk et al., 2022). Single-stranded miRNAs that have
reached maturity are responsible for directing the functional
effector complex to modify complementary RNA targets
(Figure 1) (Shang et al., 2023). The processing of some
miRNAs will be carried out in a manner that is not deemed to
be canonical. This particular area of study has been established
with the support of a variety of various methods, such as transfer

RNAs (tRNAs) derived miRNAs and miRtrons, in addition to
small nucleolar RNAs (snoRNAs)-derived miRNAs and the
independent approach that DICER has taken. The creation of
these protocols allowed for the standardization of the many
processes that are involved in the generation of miRNA (Ruby
et al., 2007b; Babiarz et al., 2008; Ergin and Çetinkaya, 2022).

Transfer RNAs are an alternative source of non-canonical
miRNAs. Angiogenin (ANG) or DICER uses the unique
architecture of tRNAs as a substrate, cleaving the tRNA stem
into fragments of tRNA-derived RNA (tDR) (Hasler et al., 2016).
Also, some evidence suggests that AGO proteins can control gene
expression in a manner analogous to miRNAs by loading certain
tRNA segments (Abdelfattah et al., 2014). miRtrons are a kind of
non-canonical pri-miRNAs that are encoded within the introns of
coding genes. Like normal introns, miRtrons undergo early
processing by nuclear splicing machinery, where they stabilize
into hairpins with a shorter stem than conventional pri-miRNAs
(Westholm and Lai, 2011). The debranching enzyme 1 (DBR1) is
responsible for lariat-debranching rather than DROSHA/
DGCR8 for these shorter hairpin configurations (Ruby et al., 2007a).

There is growing evidence indicating that some snoRNAs
serve as a source for non-canonical miRNAs (Patterson et al.,
2017). Notably, the processing of snoRNA-derived miRNAs and
the stability of snoRNAs are influenced by key elements of the
canonical miRNA biogenesis pathway, including DICER and
DGCR8 (Langenberger et al., 2013). DGCR8, in conjunction
with other proteins, could break down snoRNAs during their
processing, therefore impacting the processing of miRNAs
produced from snoRNAs (Macias et al., 2015). To mature,

FIGURE 1
An overview of canonical and non-canonical pathways in miRNA biogenesis. In the canonical pathway, RNA Pol II transcribes the miRNA gene, and
the microprocessor complex (Drosha and DGCR8) processes it to form a pre-miRNA. The non-canonical route is Drosha/DGCR8-independent and
produces pre-miRNA directly from the entire intron. Both pathways converge as pre-miRNA is exported to the cytoplasm by EXP 5 and Ran-GTP. In the
cytoplasm, Dicer processes pre-miRNA into a smaller double-stranded miRNA, which undergoes further cleavage to create a miRNA duplex. The
duplex binds to Ago to form the RISC. The Ago-bound miRNA duplex unwinds, selecting either the 5p or 3p strand for the mature RISC complex. Ago,
argonaute1; DGCR8, DiGeorge Critical Region 8; Dicer, an endoribonuclease enzyme that in humans is encoded by the DICER1 gene; Drosha, double-
stranded RNA-specific endoribonuclease; EXP 5, Exportin-5; miRNA, microRNA; Ran, RAS-related nuclear protein; RISC, RNA-induced silencing
complex; RNA Pol II, RNA polymerase II; TRBP, transactivation response element RNA-binding protein.
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TABLE 1 The role of miRNAs in different age-related diseases.

Age-related disease miRNA Expression pattern Target Ref.

Alzheimer’s disease let-7i-5p, miR-15a-5p Apoptotic pathways Sørensen et al. (2016), Poursaei et al. (2022)

miR-29c-3p

miR-142-5p The G protein-coupled receptor BAI3 Fu et al. (2021)

miR-122-5p, miR-210-3p, and miR-590-5p Amyloidogenesis Mankhong et al. (2022)

miR-342-5p Prevent Aβ-mediated synaptic loss and regulation of some
synaptic genes

Dakterzada et al. (2021)

miR-1271 ALK and RYK Majumder et al. (2021)

Hypertension miR-181a, miR-663 Renin mRNA Marques et al. (2011)

miR-143/145 Angiotensin-converting enzyme (Boettger et al., 2009; Kohlstedt et al., 2013)

miR-21 and miR-221/222 Proliferation of vascular smooth muscles and neointimal
hyperplasia

(Chistiakov et al., 2015; Zhang et al., 2016)

hcmv-miR-UL112 Interferon regulatory factor 1 Li et al. (2011)

miR-505 The migration and tube formation of endothelial cells Yang et al. (2014b)

miR-9, miR-126 - Aldosterone-induced hypertrophic pathway -
Angiogenic signaling and vascular integrity

Kontaraki et al. (2014)

Heart Failure miR-18a-5p, −26b-5p, −27a-3p, −30e-5p, −106a-5p,
−199a-3p, -652-3p, and −199a-3p

Cardiomyocyte proliferation, myocardial matrix
remodeling, and cardiac hypertrophy

Ovchinnikova et al. (2016)

miR-21, miR-214, and miR-27b Myocyte hypertrophy and fibrotic process Gholaminejad et al. (2021)

miR-126 and -508-5p Angiogenesis pathway in endothelial progenitor cells
dysfunction

Qiang et al. (2013)

miR-30d Apoptosis mediated by tumor necrosis factor and the
downstream effector; mitogen-associated kinase 4

Melman et al. (2015)

(Continued on following page)
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TABLE 1 (Continued) The role of miRNAs in different age-related diseases.

Age-related disease miRNA Expression pattern Target Ref.

miR-155 Inflammation and neovascularization Wang et al. (2017a)

Atherosclerosis miR-122 Plasma levels of total cholesterol Huang et al. (2022)

miR-30c,

miR-33a

- LDL, and lesions of atherosclerosis - HDL-C Yaman et al. (2021)

miR-148a and miR-128-1 LDL and lipoproteins Santos et al. (2021)

miR-33 HDL and inflammatory genes ABCA1 and ABCG1 (Rayner et al., 2011; Goedeke et al., 2014); Zhang et al.
(2022)

miR-181b Endothelium inflammation Sun et al. (2014)

miR-27a/b Cholesterol metabolism genes and homeostasis of
macrophages within the plaque

Zhang et al. (2014)

miR-34a Inflammation, and macrophage cholesterol export Xu et al. (2020)

miR-133 The uptake of oxidized LDL by foam cells Gabunia et al. (2017)

miR-302 and miR-26 Foam cells development Johnson (2019)

miR-21-3p Vascular smooth muscle migration and proliferation Zhu et al. (2019)

miR-200c SIRT1, eNOS, and FOXO1 Magenta et al. (2018); Carlomosti et al. (2017)

Osteoarthritis miR-483-5p,

miR-149, -582-3p, −1227, −634, -576-5p, and −641

Cartilage function and SIRT1 pathway Díaz-Prado et al. (2012)

miR-34a Cartilage breakdown Tao et al. (2020)

miR-146a Apoptosis and autophagy of chondrocytes Zhang et al. (2021)

(Continued on following page)
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TABLE 1 (Continued) The role of miRNAs in different age-related diseases.

Age-related disease miRNA Expression pattern Target Ref.

- miR-146a-5p and miR-34a-5p

- miR-127-5p and miR-140-5p

Mesenchymal stem cells and transforming growth
factor-β

Liu et al. (2023)

miR-124 Chondrocyte apoptotic cascade, extracellular matrix
breakdown, and synovial thickness

Shi et al. (2023)

miR-107 and miR-143-3p Protein translation, proliferation, and hypertrophy in
chondrocytes

Balaskas et al. (2023)

Osteoporosis miR-133a Osteoblastogenesis Li et al. (2018b)

miR-214 Osteoblast and osteoclast activities, bone metabolism (Sadu et al., 2023; Wang et al., 2023)

miR-138-5p Microtubule actin cross-linking factor 1 and the
differentiation of aged osteoblasts

Chen et al. (2022)

miR-182 Forkhead box O1 and osteogenesis Chen et al. (2019)

miR-148a Osteoclastogenesis (Tian et al., 2021; Pan et al., 2022)

Macular Degeneration miR-885-5p, miR-486-5p and miR-626 Apoptotic and neovascularization pathways Elbay et al. (2019)

miR-155 and miR-27a, miR-146a Genes implicated in the transforming growth factor-β
route Nuclear factor Kappa B, tumor necrosis factor, and
Toll-like receptors

Romano et al. (2017)

MiRNA-7, miRNA-9-1, miRNA-23a/miRNA-27a,
miRNA-34a, miRNA-125b-1, miRNA-146a

Complement factor H (Hill et al., 2015; Pogue and Lukiw, 2018)

miR-15/107 group, the miR-17~92 cluster, miR-21, miR-
132, miR-296, miR-378, and miR-519c

Angiogenesis and macular related-apoptosis (Ren et al., 2017; Urbańska et al., 2022)

miR-19a, miR-126, and miR-410 Regulate angiogenesis and retinal vascular development
or Corneal neovascularization

ElShelmani et al. (2020)

let-7a-5p, miRNA-17-5p, miRNA195-5p, miRNA26b-5p,
and miRNA-30c-5p

Apoptotic pathways ElShelmani et al. (2021b)
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miRNAs may need the AGO2 slicer activity in a DICER-
independent mode, which occurs when the stem-loop
structure is too short to be cleaved by DICER (Cheloufi et al.,
2010). Some of the benefits of small hairpin RNAs (shRNAs)
processing that is not dependent on DICER include the ability to
target genes in tumor cells that lack DICER and the preferential
loading of small interfering RNAs (siRNAs) into AGO2, which
improves RNAi (Herrera-Carrillo and Berkhout, 2017).

2.2 Function of miRNA

Even thoughmiRNAs have been known for a considerable amount
of time, it is only recently that their major role in an organism’s
functioning has been understood. Cancer, skin issues, a broad range of
lung disorders, neurological diseases, and other age-related diseases
have all been the subject of extensive miRNA studies (Ugalde et al.,
2011; Condrat et al., 2020; Semina et al., 2021). Evidence suggests that
miRNAs can have a positive impact on a wide variety of critical
biological processes. Inflammation, cell differentiation, and
angiogenesis are all examples of such processes. Several complicated
disorders have been linked to the improper regulation of non-coding
RNAs. It is possible to affect cell function if the processing of these small
but powerful regulators is disrupted (Abd El Fattah et al., 2023; El-
Sheikh et al., 2023; Salman et al., 2023).

Research into complicated illnesses such as cancer,
cardiovascular disease, and diabetes mellitus is facilitated by an
increase in the quantity of data relevant to the interactions between
miRNA and aging. These interactions apply to the process of aging.
MiRNAs have also been shown to be responsible for the modulation
of pathways that are involved in the sensing of nutrition (Ismail
et al., 2019; Sohel, 2020; Abdelmaksoud et al., 2023).

To regulate a wide range of biological processes, miRNAs play
an essential role. These regulatory molecules are likely to play a
part in the etiology of inflammation and aging, and they might be
utilized as therapeutic targets. There is little doubt about their
involvement. Their actions are very context-dependent since
miRNAs are engaged in post-transcriptional control of many
messenger RNAs. Several factors impact these processes. These
include the degree to which miRNAs interact with genes, the
amount and affinity of miRNAs with their targets, the type of cell,
the level of miRNA expression, and the concentration of miRNAs
inside cells (Smith-Vikos and Slack, 2012; Quintanilha et al.,
2017b; O’Brien et al., 2018). Epigenetics examines genetic control
and acquired traits. Many epigenetic changes occur, including
DNA methylation, histone modification, and miRNA channel
silencing. (Al-Noshokaty et al., 2022; Rizk et al., 2022). The
complicated mechanism that governs gene expression relies on
miRNAs by the utilization of miRNA sponges, miRNA-Masking
Antisense Oligonucleotides, or antisense oligonucleotides that

FIGURE 2
miRNA dysregulation in age-related diseases. Neurodegenerative and age-related disorders, including Alzheimer’s disease, cardiovascular
conditions (hypertension, heart failure, and atherosclerosis), osteoarthritis, osteoporosis, and macular degeneration, are strongly associated with miRNA
dysregulation. MicroRNAs are involved in disease etiology andmay be biomarkers and therapeutic targets. Furthermore,miRNA dysregulation is crucial to
understanding age-related diseases’ biological processes as well as personalized therapy. ACE: angiotensin-converting enzyme; ALK, anaplastic
lymphoma kinase; AMPKs: AMP-activated protein kinases; BAI3, brain angiogenesis Inhibitor-3; ch, cholesterol; ECs, endothelial cells; HDL-C, high-
density lipoprotein cholesterol; LDL, low-density lipoprotein; MACF1, Microtubule Actin Crosslinking Factor 1; miRNA, microRNA; NF-κB: nuclear factor
kappa beta; RYK, receptor-like tyrosine kinase; TLR4: Toll-like receptor 4.
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specifically target miRNAs (AMOs) (Lima et al., 2018). In
miRNA-sponge technology, mRNA molecules containing
several target miRNA binding sites are expressed to act as a
“sponge” or decoy for the target miRNAs (Ebert and Sharp,
2010). In other cases, instead of inhibiting the target miRNA,
miR-Mask molecules shield the mRNA whose function is desired
to retain. This technique is also known as BlockmiR, target
protectors, or target site blockers (Wang, 2011; Beavers
et al., 2015).

3 miRNAs and age-related diseases

3.1 Dysregulation of miRNAs in age-
related diseases

One major risk factor for chronic illnesses in the elderly is
aging. By attaching base pairs to their target mRNAs, miRNAs
control the silencing of genes that occur post-transcription. Upon
analyzing whole blood from healthy adults, recent studies found
nonlinear variations in age-related miRNAs, with age having a
greater influence than sex. In healthy aging, a transition in
miRNAs to their 5′mature form was proved. With distinct
disease biomarker sets for young and elderly patients, the
inclusion of ill individuals highlighted pan-disease and disease-
specific modifications in aging profiles (Meder et al., 2014;
Fehlmann et al., 2020).

The altered expression of aging miRNA across various human
and animal tissues has been confirmed through multiple studies
(Smith-Vikos and Slack, 2012). Alterations in the expression of
proteins, mRNA, and miRNA associated with aging and growth in
the prefrontal cortex of rhesus macaques and humans have been
noticed throughout their lives (Somel et al., 2010). Similar
modifications in miRNA levels have been described in human
skeletal muscle with aging (Drummond et al., 2011), as well as in
bodily fluids like serum (Zhang H. et al., 2015). This lays the
groundwork for recognizing the connection between disease and
healthy aging as well as the creation of disease biomarkers particular
to a person’s age (Table 1).

Extracellular vesicles (EV) are considered fragments of dead or
senescent cells secreted upon physiological or pathological processes
(Misawa et al., 2020). EVs are used to send signals for exchanging
information among cells via a complex packet of lipids, and proteins
rich in ncRNAs and miRNAs. They are also known as exosomes or
microvesicles and have an important role in aging (Tkach and
Théry, 2016; Cooks et al., 2018).

3.2 Role of miRNAs in different age-
related diseases

Our current knowledge of the significant role miRNAs perform
in age-related disorders is not sufficiently comprehensive due to the
varied nature of intracellular and extracellular miRNAs.
Nonetheless, interesting research has been done that will help us
grasp the fundamental causes of these diseases. Herein, we will
discuss a growing number of publications about particular miRNAs
and their involvement in different age-related disorders.

3.2.1 miRNAs in Alzheimer’s disease
A fundamental neurodegenerative process linked to aging in

individuals with Alzheimer’s, dementia, Huntington’s, and
Parkinson’s disease patients is cognitive loss. Noncoding miRNAs
have a major role in CNS, which has led to the discovery of
promising novel clinical prospects for these illnesses, which lack
current effective therapies (Abdelmaksoud et al., 2024).

The most frequent cause of dementia is Alzheimer’s disease
(AD), which is characterized by a gradual degeneration of neurons
and cognitive abilities (Bandakinda and Mishra, 2023). The let-7
miRNA family has been shown to have pro-apoptotic properties in
the central nervous system and to control the proliferation and
differentiation of neural stem cells. Numerous investigations have
demonstrated that aberrant let-7 miRNA activity may contribute to
the disease linked to dementia and cognitive decline via important
neuronal signaling pathways (Fairchild et al., 2019). Sorensen et al.
examined the blood and CSF of people suffering from AD and other
forms of dementia in a different investigation (Sørensen et al., 2016).
When comparing AD patients to healthy controls, they found
52 miRNAs in the CSF of nearly all patients, of which two (let-
7i-5p and miR-15a-5p) were elevated and one (miR-29c-3p) was
downregulated (Poursaei et al., 2022).

Through the G protein-coupled receptor BAI3, miR-142-5p
stimulates neuronal synaptotoxicity and prevents apoptosis; its
downregulation in the brain of an AD animal model may
increase BAI3 expression. In cultured neurons, inhibition of miR-
142-5p restores spatial learning and memory (Fu et al., 2021).
Furthermore, Blood samples from AD patients show
dysregulation of miR-122-5p, miR-210-3p, and miR-590-5p
expression in comparison to healthy controls. Moreover, plasma
levels of miR-342-5p may be able to predict the rate of cognitive
deterioration in AD (Dakterzada et al., 2021; Mankhong et al., 2022).
These results imply that dysregulated miRNAs may be a reflection of
neuropathological outcomes in AD patients (Figure 2).

Insulin resistance is a major risk factor for Type 2 Diabetes and
AD, two of the biggest global health concerns in aging, which have a
similar reaction to the regulation of miR-1271 (Arnold et al., 2018).
Anaplastic lymphoma kinase (ALK) and Receptor-Like Tyrosine
Kinase (RYK), two non-canonical receptor tyrosine kinases (RTKs),
have been shown to target miR-1271 in post-mortem AD and Type
2 diabetes tissues. miR-1271 caused the downregulation of both ALK
and RYK, which were found to be in charge of the cytoskeleton
structural degeneration in both AD and Type 2 diabetes mice
(Majumder et al., 2021).

Moreover, exosomes derived from serum and cerebrospinal
fluid can be used for miRNA profiling in neurodegenerative
diseases such as AD. Many forms of dementia can be
distinguished by the degree of expression of miR-193b, miR-
135a, and miR-384 in serum and exosomes (Ting et al., 2018; Liu
et al., 2021). Furthermore, the ongoing association seen between
dysregulated miRNAs, namely miR-132 and miR-212, and cognitive
decline in AD patients could lead to advancements in the clinical
management of such individuals (Cha et al., 2019).

3.2.2 miRNAs in cardiovascular diseases
Elderly people are more likely to experience cardiovascular

troubles due to their aging and fragility, even with advancements
in detection and treatment. Over time, age-associated cardiovascular

Frontiers in Aging frontiersin.org08

Salama et al. 10.3389/fragi.2024.1373741

https://www.frontiersin.org/journals/aging
https://www.frontiersin.org
https://doi.org/10.3389/fragi.2024.1373741


diseases (CVDs) such as atherosclerosis, heart failure, and
hypertension can lead to a reduction in an individual’s standard
of life and capacity to carry out routine tasks. Important modulators
of many biological processes, miRNAs offer an intriguing
prospective treatment target for CVDs. Furthermore, identifying
trustworthy biomarkers for diagnosis, prognosis, and treatment
response prediction is a significant challenge in the field of
geriatric medicine. Because of their distinctive hallmark in CVDs
and longevity in blood circulation, miRNAs are a very promising
approach (Figure 2) (de Lucia et al., 2017).

3.2.2.1 miRNAs in hypertension
One of the most frequent diseases and a major risk factor for

renal failure and cardiovascular illnesses is hypertension. Presently,
only half of people with hypertension respond to treatment. A vital
role in the pathophysiology of hypertension is played by circulating
miRNAs, which are becoming useful biomarkers in essential
hypertension and are inherently associated with every element of
the renin-angiotensin-aldosterone system (Klimczak et al., 2017).

It has been demonstrated that miR-181a and miR-663 directly
bind renin mRNA, and their levels were markedly decreased in
hypertension individuals (Marques et al., 2011). The miR-143/
145 cluster targets the angiotensin-converting enzyme, and it was
activated by shear stress through the AMPK-p53 pathway, which
decreased the expression of the ACE gene (Kohlstedt et al., 2013).
Furthermore, loss of miR-143/145 resulted in overexpression of the
Angiotensin-converting enzyme and a change in the phenotype of
vascular smooth muscles from contractile to synthetic, which
maintains the vascular remodeling that occurs during
hypertension and raises the risk of developing neointimal lesions
(Boettger et al., 2009). Two investigations additionally demonstrated
that miR-21 and mir-221/222 are regulators of aberrant
proliferation of vascular smooth muscles and neointimal
hyperplasia in rats using a model of balloon-induced vascular
wall injury (Chistiakov et al., 2015; Zhang et al., 2016).

Through a comparative analysis of the miRNA expression levels
in hypertensive and control patients, it was shown that the human
cytomegalovirus-encoded miRNA hcmv-miR-UL112 was
upregulated in the diseased patients. This suggests this miRNA
may have a role in controlling blood pressure (Li et al., 2011). Using
a similar methodology, Yang et al. discovered elevated levels of miR-
505 in hypertension after screening plasma samples from three
separate patient cohorts (Yang Q. et al., 2014). Another investigation
was carried out to find the miRNA signature in exosomes and
peripheral blood taken from individuals who showed metabolic risk
of CVDs. MiR-130a and −195 correlate positively with blood
pressure levels, and are upregulated in hypertension. Likewise,
miR-92 was upregulated in cardiovascular and metabolic
disorders (Karolina et al., 2012). Furthermore, a study comparing
hypertension patients to healthy controls revealed reduced
expression levels of miR-9 and miR-126 (Figure 2) (Kontaraki
et al., 2014).

3.2.2.2 miRNAs in heart failure
Circulating miRNAs of a cardiac origin mirror alterations in

miRNAs seen in cardiac tissue as people age (Vegter et al., 2016).
When compared to healthy controls who were at a higher risk of
dying, miR-18a-5p, −26b-5p, −27a-3p, −30e-5p, −106a-5p, −199a-

3p, −652-3p, and −199a-3p were considerably lower in older
individuals suffering acute heart failure (Ovchinnikova et al.,
2016). Circulating miR-21, miR-214, and miR-27b were found to
be substantially upregulated in ischemia patients, but 13 different
miRNAs were downregulated, according to metanalysis done in
individuals with heart failure (Gholaminejad et al., 2021). Furtherly,
Qiang et al. discovered that miR-126 and −508-5p could be used to
predict death in individuals with heart failure (Qiang et al., 2013).

According to a separate investigation, individuals with heart
failure-related dyspnea had considerably higher levels of miR-423-
5p (Ellis et al., 2013). Based on a translational pilot investigation,
miR-30d expression was upregulated as a defense mechanism in
cardiac desynchrony zones. Additionally, there is a correlation
between the responsiveness to resynchronization therapy and the
initial plasma concentration of this miRNA (Melman et al., 2015).
Upregulated miR-155 was linked to a favorable outcome from left
ventricular assist device implantation, an essential therapy for those
suffering from end-stage heart failure (Figure 2) (Wang T.
et al., 2017).

3.2.2.3 miRNAs in atherosclerosis
Atherosclerosis is a multi-stage inflammatory disease of the

arterial wall that is distinguished by endothelial dysfunction and
lipoprotein accumulation, causing gradual remodeling of the artery
intima. As the lesion ages, it becomes more advanced and eventually
leads to the development of atherosclerotic plaque, which obstructs
blood vessels and causes thrombotic episodes. Recent research has
yielded new molecular insights into the regulation and clinical
diagnosis of atherosclerosis and the corresponding miRNAs in
aging related manner (Sharma et al., 2022).

Lipid profile dysregulation is regarded as a primary risk factor
for atherosclerosis. miRNAs that can control the production of LDL
and HDL reveal a potential therapeutic target for this disease.
According to in vivo research, mice and non-human primates
with miR-122 suppression had lower plasma levels of total
cholesterol (Huang et al., 2022). In mice fed a high-fat diet,
hepatic upregulation of miR-30c reduced hyperlipidemia and
LDL production, and lessened lesions of atherosclerosis, while
miR-33a decreased HDL-C in postprandial lipemia (Yaman et al.,
2021). Numerous miRNAs were also shown to be connected with
dyslipidemia when they were located close to loci for single-
nucleotide polymorphisms in a genome-wide association
investigation. Among these, the expression of many proteins
involved in lipid metabolism and trafficking is regulated by miR-
128-1, miR-148a, miR-130b, and miR-301b (Figure 2) (Wagschal
et al., 2015).

MiR-148a and miR-128-1 inhibition increased LDL clearance in
C57BL/6J mice and altered the amounts of lipoproteins in
circulation in ApoE−/− mice given a western diet (Santos et al.,
2021). Furthermore, in both mice and monkeys, suppression of
miR-33 raised the amounts of HDL cholesterol in the bloodstream.
Anti-miRNA-treated animals displayed decreased atherosclerotic
lesion size and were able to infiltrate plaque macrophages and
reduce the expression of inflammatory genes (Rayner et al., 2011;
Goedeke et al., 2014).

The fact that atherosclerosis is a chronic inflammatory condition
was the focus of numerous investigations. Data has demonstrated
that miR-181b is a key modulator of inflammation in the

Frontiers in Aging frontiersin.org09

Salama et al. 10.3389/fragi.2024.1373741

https://www.frontiersin.org/journals/aging
https://www.frontiersin.org
https://doi.org/10.3389/fragi.2024.1373741


endothelium. MiR-181b decline might contribute to the formation
of atherosclerosis, as excessive expression of this miRNA managed
to hinder leukocyte recruitment at the atherosclerotic plaque both
in vitro, as well as in the plasma of patients suffering from coronary
artery disease (Sun et al., 2014). By using a nanoparticle approach,
Ma et al., 2016 have devised a procedure to deliver miR-146a and
miR-181b directly to the atherogenic lesion, allowing them to
decrease the size of atherosclerotic plaque and downregulate the
production of chemokines. Through targeting genes involved in
cholesterol metabolism, miR-27a/b also regulates the homeostasis of
macrophages within the plaque (Zhang et al., 2014). A recent study
demonstrated the pivotal function that miR-34a plays in controlling
inflammation, atherosclerosis, and macrophage cholesterol export,
in which reversing diet-induced metabolic problems and promoting
atherosclerosis regression are achieved with therapeutic suppression
of miR-34a (Xu et al., 2020).

MiR-133 has been found by Gabunia et al., 2017 to be a regulator
of the production of foam cells in vascular smooth muscle, which
lowers the proliferation and uptake of oxidized LDL by these cells.
As a result, miR-133 might be a useful target for treating
inflammatory vascular disorders. Further, it has been
demonstrated that other miRNAs, such as miR-302 and miR-26,
promote the development of foam cells (Johnson, 2019).
Additionally, by promoting vascular smooth muscle migration
and proliferation, exosomal miR-21-3p from nicotine-treated
macrophages may hasten the onset of atherosclerosis (Zhu
et al., 2019).

Additionally, miR-33 was discovered to be an essential regulator of
lipoprotein metabolism and cellular lipid homeostasis. It also controls
downstream target genes, such as ATP-binding cassette transporter G1
(ABCA1 and ABCG1). The preventive effects of miR-33 loss on the
progression of atherosclerosis are due to its actions on macrophages.
Through the activation of ABCA1 and ABCG1 in macrophages,
therapeutic suppression of miR-33 in mice and nonhuman
primates increases HDL levels and prevents the advancement of
atherosclerosis by either boosting HDL or improving cholesterol
outflow (Zhang et al., 2022). Furthermore, there are variations in
the distribution and control of the miR-33 family, especially the
advancement of atherosclerosis; miR-33b is thought to be more
effective than miR-33a. Indeed, the mice deficient in apolipoprotein
E/miR-33a−/−/miR-33b+/+ developed higher levels of atherosclerotic
plaque when fed a diet high in fat and cholesterol than the mice
deficient in apolipoprotein E/miR-33a+/+/miR-33b−/−, which was
consistent with the liver’s prevalent levels of miR-33b and a
deteriorated lipid profile (Koyama et al., 2019).

Early detection of susceptible carotid plaques may be useful in
identifying high-risk stroke patients who could benefit from
revascularization sooner rather than later. Atherosclerotic plaque
progress biomarker miR-200c might be clinically helpful in
identifying patients who are at high risk of embolism (Magenta
et al., 2018). Endothelial dysfunction is more likely to occur
in situations when oxidative stress is elevated, such as ischemia
and aging. Recently, the relationship between miR-200c and sirtuin
1 (SIRT1), endothelial nitric oxide synthase (eNOS), and forkhead
box O1 (FOXO1), three closely related proteins that regulate
endothelial cell function and ROS production was examined.
Through a decrease in NO and an increase in the acetylation of
SIRT1 targets, FOXO1, and p53, miR-200c directly targets these

proteins. Acetylation of FOXO1 reduced its transcriptional impact
on target genes, namely, SIRT1, catalase, manganese superoxide
dismutase, and ROS scavengers. Consequently, miR-200c
strengthened this molecular circuitry by upregulating ROS and
suppressing FOXO1 transcription. Furthermore, anti-miR-200c
therapy restored limb perfusion and saved these targets in the
mouse model of hindlimb ischemia (Carlomosti et al., 2017).

Circulatory miRNAs are now known as a novel class of
atherosclerosis biomarkers, which surfaced to help with clinical
diagnosis and open up new treatment options. A study was
performed on candidate tissue-derived miRNAs from
atherosclerotic plaque in individuals with stable and unstable
coronary artery disease. MiR-125b-5p and miR-193b-3p were
boosted in individuals with stable coronary artery disease, while
miR-223-3p and miR-142-3p were upsurged in those with unstable
type, suggesting that these candidate tissue-derived miRNAs could
be markers of plaque instability (Singh et al., 2020).

3.2.3 miRNAs in bone and cartilage age-related
conditions

Based on the available research, it is clear that miRNAs are
strongly involved in the regulation of musculoskeletal system
disorders and age-related events. Chiefly in frailty, miRNAs have
been found to have an impact on the start and progression of age-
related musculoskeletal diseases, including osteoporosis and
osteoarthritis (Castanheira et al., 2021).

3.2.3.1 miRNAs in osteoarthritis
Numerous investigations have exhibited the significance of

miRNAs in the process of cartilage formation, preservation, and
degradation (Vonk et al., 2014). Using chondrocytes derived
from osteoarthritis patients, the cells of donors with
osteoarthritis showed higher levels of miR-483-5p. On the
other hand, through affecting pathways linked to cartilage
function, such as SIRT1, miR-149, −582-3p, −1227, −634,
-576-5p, and −641 were downregulated in osteoarthritis (Díaz-
Prado et al., 2012). Since suppressing miR-34a in an
osteoarthritis rat model reduced cartilage breakdown, elevated
levels of miR-34a are thought to contribute to osteoarthritis (Tao
et al., 2020). Overexpression of miR-146a was also found to have
a beneficial effect on cartilage preservation in an osteoarthritis
animal model, while its downregulation hinders apoptosis and
augments autophagy of chondrocytes (Zhang et al., 2021).

A meta-analysis was conducted recently to identify miRNAs that
exhibit abnormal expression as osteoarthritis progresses in the elderly.
According to the study, miR-146a-5p and miR-34a-5p were the most
elevated miRNAs, while miR-127-5p and miR-140-5p were the most
suppressed miRNAs. In osteoarthritis, mesenchymal stem cells and
transforming growth factor-β were discovered to be the primary
downstream effectors regulated by these miRNAs (Liu et al., 2023).

An efficient drug delivery method was recently created to
improve miR-124 stability and its ability to reach chondrocytes,
which is thought to be a strong target for its anti-inflammatory
properties. By reducing chondrocyte apoptotic cascade, repressing
extracellular matrix breakdown, and improving synovial thickness,
the tetrahedral framework nucleic acids launching miR-124
efficiently prevent osteoarthritis from progressing and effectively
preserve articular cartilage (Shi et al., 2023).
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In another recent investigation on cartilage aging and
osteoarthritis, multiple miRNAs were found to be differently
expressed in youthful intact compared to osteoarthritic lesioned
cartilage. After IL-1β treatment, the expression of miR-107, miR-
143-3p, miR-361-5p, and miR-379-5p were declined in human
primary chondrocytes. Additionally, the study demonstrates the
significance of miR-107 and miR-143-3p in controlling protein
translation, proliferation, and hypertrophy in chondrocytes
(Figure 2) (Balaskas et al., 2023).

3.2.3.2 miRNAs in osteoporosis
It has also been demonstrated that miRNAs have a significant

role in other age-related illnesses like osteoporosis and osteopenia.
For instance, miR-133a inhibits osteoblastogenesis and may be a

possible biomarker because osteoporosis patients have greater
levels of miR-133a than do postmenopausal women in good
health (Li Z. et al., 2018). Recently, miR-214 has been
considered a potential marker of osteoporosis as its expression
has a negative correlation with recognized markers of bone
production (Sadu et al., 2023). Furthermore, in the femoral
condyles of osteoporotic rats, anti-miRNA-214 increased
osteoblast activity and decreased osteoclast activity, enhancing
bone metabolism and delaying the onset of osteoporosis (Wang
et al., 2023). It has been shown that miR-138-5p targets
microtubule actin cross-linking factor 1 to control the
differentiation of aged osteoblasts. Ultimately, the reduction in
bone production and age-related bone loss in elderly mice was
compensated by the therapeutic suppression of miR-138-5p (Chen

TABLE 2 Role of nutraceuticals and nutrition in miRNA regulation in aging.

Nutrient or
nutraceuticals

Nature Affected miRNAs Expression
change

Impact Ref.

Glucose Macronutrient miR-29a Upregulated Beta cell dysfunction (Bagge et al., 2012)

Macronutrient miR-21 Upregulated Mediate the nephropathy complication (Dey et al., 2011)

Saturated fatty acids Macronutrient miR-29a Upregulated Increase insulin resistance in myocytes (Yang et al., 2014c)

Fat Macronutrient miR-21 Upregulated Increased lipid accumulation in the liver
and carcinogenesis

(Heng et al., 2016)

Macronutrient miR-195 Upregulated Impairs insulin sensitivity (Yang et al., 2014d)

Macronutrient miR-210 Upregulated Induce endothelial cell apoptosis and
atherosclerosis

(Li et al., 2017)

Protein Macronutrient miR-200, miR-192 Downregulated Decrease epithelial to mesenchymal
kidney transition

(Sene et al., 2018)

Xylobiose Macronutrient miR-122a/33a Upregulated Reduce hepatic lipogenesis in diabetes
mellitus

(Lim et al., 2016)

Selenium Micronutrient miR-185 Upregulated Increase expression of selenoproteins
such as GPX2

(Maciel-Dominguez
et al., 2013)

Micronutrient miR-374 Downregulated Cardiac function (Xing et al., 2015)

Selenium and resveratrol Micronutrient miR-134 Downregulated Alleviate neuroinflammation in
Alzheimer’s disease

(Abozaid et al., 2022)

Vitamin D Micronutrient miR-148a and miR-
122-5p

Downregulated Improve bone health Al-Rawaf et al. (2021)

Zinc Micronutrient miR-223, miR-21, and
miR-31

Downregulated Reduce esophageal cancer risk Fong et al. (2016)

Vitamin B12 Folic acids Micronutrients miR-483 Downregulated Protect against type 2 diabetes mellitus
in the offspring’s adult life

(Mahajan et al., 2019)

Olive oil Rich in phenolics miR-484, miR-137-3p,
miR-27, and miR-124-3p

Upregulated Reduce brain plasticity and improves
neurological and behavioral function

(Luceri et al., 2017a)

Grape seed Flavonoid,
procyanidin

miR-1249, miR-483, miR-
30c-1, and miR-3544

Altered expression Improve pancreatic function in diabetes (Castell-Auví et al.,
2013)

Pistachio Others miR-192 and miR-375 Downregulated Reduce plasma glucose level and
improve insulin resistance

(Hernández-Alonso
et al., 2017)

Probiotics Others miR-181a and miR-155 Downregulated Modulate the inflammatory response of
systemic lupus erythematosus

(Vahidi et al., 2018)

Others miR-34 Downregulated Enhance health and wellbeing (Haslberger et al., 2021)

Nicotinamide
mononucleotide

Others miR-146a, and miR-203 Upregulated Improve the health of the aged aorta (Kiss et al., 2019)

Others miR-99b and miR-127 Downregulated
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et al., 2022). Additionally, by removing Forkhead box O1, miR-182
inhibits the osteogenesis of bone-forming osteoblasts (Chen et al.,
2019). However, decreasing miR-148a expression in vivo resulted
in reduced osteoclast formation and elevated bone mass in
ovariectomized and control animals. Meanwhile, MiR-148a was
demonstrated to promote osteoclastogenesis in vitro (Figure 2)
(Tian et al., 2021; Pan et al., 2022).

3.2.4 miRNAs in macular degeneration
One of the leading causes of blindness in the world is age-related

macular degeneration or AMD. Recent research indicates that
epigenetic mechanisms, such as the regulation of gene expression
by miRNAs, may be significant to AMD in addition to
environmental and genetic variables, offering a promising new
direction for therapy and research (Berber et al., 2017).
According to a recent investigation, miR-885-5p was considerably
downregulated in the serum of AMD patients, while miR-486-5p
and miR-626 were more expressed than in the control group. The
apoptotic and neovascularization pathways, which are involved in
the pathophysiology of AMD, are known to depend critically on
these miRNAs (Elbay et al., 2019). Other involved pathways in the
pathophysiology of AMD include amyloid-β retinal deposition,
which triggers apoptotic and inflammatory responses in addition
to varying miRNA expression, thus causing dysregulation of the
transforming growth factor-β pathway. Furthermore, it has been

demonstrated that miR-155 and miR-27a impact 42 genes
implicated in the transforming growth factor-β route, while miR-
146a can target genes involved in inflammatory pathways, including
nuclear factor-κB, tumor necrosis factor signaling pathways, and
Toll-like receptors (Romano et al., 2017).

Additionally, IL-2, STAT3, and ERK were found to be a novel
global pathway with activation hallmarks of AMD that are
implicated in the cell-based inflammatory response (Makarev
et al., 2014). Four miRNAs (miRNA-9, miRNA-125b, miRNA-
146a, and miRNA-155) were shown to be increased in AD and
AMD, according to the most recent research. The expression of
complement factor H, a key inhibitor of the innate immunological
and inflammatory response that is implicated in both AMD and AD,
is subsequently downregulated because of these increased miRNAs.
It has been shown that there are many increased miRNAs in the
retina of AMD patients, which are also common in complement
factor H deficiency, resulting in inflammatory neurodegeneration.
MiRNA-7, miRNA-9-1, miRNA-23a/miRNA-27a, miRNA-34a,
miRNA-125b-1, miRNA-146a, and miRNA-155 are highly
expressed in the retinal macular region afflicted by AMD and the
AD-affected superior temporal lobe neocortex (Figure 2) (Hill et al.,
2015; Pogue and Lukiw, 2018).

Treatment targets for AMD are thought to include several
miRNAs implicated in either retinal pigment epithelium atrophy
or choroidal neovascularization (Urbańska et al., 2022). For

FIGURE 3
Nutritional factors and nutraceuticals’ role in miRNA regulation. The illustration depicts how nutrients and nutraceuticals modulate miRNAs in aging
processes. MiRNA expression is influenced by macronutrients such as carbohydrates and fatty acids, as well as micronutrients like selenium and zinc,
which impact aging and age-related diseases. Flavonoids and polyphenols in olive oil and grape seeds influencemiRNA function in the fight against aging.
Nutraceuticals, such as pistachios and probiotics, also affect miRNA expression, suggesting promising treatments for age-related diseases.
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neovascular AMD, anti-vascular endothelial growth factor therapy
is a crucial treatment (Cornel et al., 2015). It has been established
that a certain subset of miRNAs is crucial to angiogenesis. The miR-
15/107 group, the miR-17~92 cluster, miR-21, miR-132, miR-296,
miR-378, and miR-519c are some of these miRNAs. It is thought
that miR-23a mimics reduce macular related-apoptosis whereas
miR-23a inhibition increases it (Ren et al., 2017; Urbańska
et al., 2022).

The pathogenic significance of the newly detected miR-19a, miR-126,
and miR-410 in AMD was determined by another recent bioinformatics
technique. There was a substantial link found betweenAMDpathogenesis
and these miRNAs, and their target genes. Because of this, they might
serve as promisingnew targets forAMDpatients’ treatments or prognostic
biomarkers (ElShelmani et al., 2020). Using exosomes produced from
AMD, the study also explained the functional roles of miRNAs in in vitro
human cell line models. The findings show that, when compared to the
control group, the expression of human apoptotic miRNAs is more
impacted by dry AMD-derived exosomes than by wet-derived ones.
After being exposed to dry AMD-derived exosomes, the used cell line
expressed greater levels of let-7a-5p, miRNA-17-5p, miRNA195-5p,
miRNA26b-5p, and miRNA-30c-5p (ElShelmani et al., 2021b).

3.3 Potential implication of miRNA in clinical
trials to enhance longevity

With the first FDA-approved small RNA drugs entering
clinical medicine, continuous research for the microRNA
(miRNA) class of small RNAs has expanded its preclinical and
clinical research application. The growing evidence from the
huge number of reports indicates that miRNAs could be put
to significant utility as biomarkers for pathogenic conditions,
modulators of drug resistance, and/or drugs for medical
intervention in almost all human health conditions (Hanna
et al., 2019). In a study involving 16 non-Hispanic men aged
between 50 and 60, whose lifespans ranged from 58 to 92 years,
PCR arrays were used to track changes in miRNA levels in their
serum over time. Notably, variations in the expression of these
miRNAs were observed. Specifically, at the age of 50, 24 miRNAs
were found to be significantly more active, while 73 showed
reduced activity in those who lived longer (76–92 years),
compared to those who had shorter lifespans (58–75 years).
For the group that lived longer, miR-373-5p showed the
highest increase in activity, whereas miR-15b-5p was the most
decreased. Over the years, a strong correlation between the
lifespan and the activity levels of nine specific miRNAs was
observed, with significant changes noted in six of these (miR-
211-5p, 374a-5p, 340-3p, 376c-3p, 5095, 1225-3p) when
comparing the longer-lived to the shorter-lived participants.
These six miRNAs affect 24 proteins linked to aging, such as
PARP1, insulin-like growth factor-1 receptor (IGF1R), and
IGF2R. Based on the findings, activity patterns of these six
miRNAs are suggested to be valuable indicators of aging
(Smith-Vikos et al., 2016). This suggests that a single miRNA
candidate could have the ability to control whole biological
pathways related to aging, thereby promoting longevity.

Despite significant advancements in preclinical studies, miRNA-
based therapies are still in the preliminary phase of development. A

limited number have advanced to clinical trials, with none making it
to phase III or receiving approval from the FDA. Additionally, some
have been discontinued due to concerns about toxicity. These
obstacles underscore the need to overcome current obstacles to
fully realize the potential of miRNA-based treatments in clinical
settings (Seyhan, 2024). Currently, no miRNAs are undergoing
clinical trials for longevity enhancement. However, the promise
of miRNAs as treatments for a range of diseases is evident, and
further research is crucial to assess their practicality in clinical
environments.

4 Impact of nutritional factors and
nutraceuticals on miRNA modulation

This review will discuss recent studies investigating the impact
of nutritional factors and nutraceuticals on aging, which affect
miRNA functions or expression. The interrelation between
nutrition and age-related diseases has been studied for years as
malnutrition, cachexia, or weight loss are related to cancer or other
diseases (Witwer, 2012).

4.1 Impact of macronutrients on miRNA
expression and function in aging

Macromolecules such as carbohydrates, fatty acids, and amino
acids can protect or induce aging through miRNA modulation. Beta
cell dysfunction is associated with overexpressed miR-29a in beta
cells of Langerhans supplemented by high glucose media (Bagge
et al., 2012). Moreover, miR-29a is also induced by saturated fatty
acids repressing insulin receptor signaling −1 (IRS-1) and increasing
insulin resistance in myocytes (Yang et al., 2014c) (Table 2). A high-
fat diet is shown to increase the expression of miR-21 which
promotes liver carcinogenesis (Heng et al., 2016). In addition, a
high-fat diet could overexpress miR-195 impairing insulin
sensitivity and glycogen metabolism in the liver (Yang et al.,
2014d). Moreover, a high-fat diet is involved in the pathogenesis
of atherosclerosis through upregulation of miR-210 inducing
endothelial cell apoptosis (Li et al., 2017).

Hyperglycemia also induces the expression of miR-21 reducing the
tumor suppressor protein phosphatase and tensin homolog deleted in
chromosome 10 (PTEN)mediating the pathogenesis of nephropathy in
diabetic patients (Dey et al., 2011). While protein is important for
kidney health, low maternal protein intake accelerates epithelial-
mesenchymal transition in the later adult life of the offspring
through increasing expression of miR-192 and miR-200 (Sene et al.,
2018). Xylobiose intake as an alternative to sucrose and present in
bamboo can be favorable for diabetic patients as it regulates hepatic
lipogenesis by overexpressing miR-122a/33a resulting in reducing
triglyceride levels and inflammatory cytokines (Lim et al., 2016).

4.2 Influence of micronutrients and trace
minerals on miRNA regulation

Non-optimum levels of micronutrients such as selenium, zinc,
and vitamin D generate several aging-related diseases (McCann and
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Ames, 2011; Prasad, 2012; Sinha et al., 2013). They are included in
miRNA modulation being included in their structure. Selenium is
one of the micronutrients that has gained attention recently, due to
its incorporation into selenoproteins such as glutathione peroxidase
or other antioxidant enzymes (Bellinger et al., 2009). An in vitro
experiment utilizing colorectal cancer cell lines in a selenium-
deficient environment results in a changed expression of miR-185
with a feedback mechanism regulating selenoproteins as glutathione
peroxidase 2 (Maciel-Dominguez et al., 2013). In selenium-deficient
rats, miR-374 is overexpressed leading to a dysregulated Wnt
signaling pathway and cardiac dysfunction (Xing et al., 2015).
Moreover, combining resveratrol with selenium nanoparticles
enhanced the effectiveness of resveratrol against Alzheimer’s
disease reducing neuroinflammation through downregulating
miR-134 (Abozaid et al., 2022). Vitamin D deficiency in diet
upregulates miR-148a and miR-122-5p and it is related to bone
loss and eventually osteoporosis in post-menopausal women (Al-
Rawaf et al., 2021). Moreover, zinc deficiency is linked to an

increased risk of esophageal cancer due to overexpression of
miR-223, miR-21, and miR-31 (Fong et al., 2016).

Vitamin B12 and folic acid are essential for several biological
processes and are also important for maternal nutrition for the
offspring’s health. Imbalanced nutritional levels in maternity are
linked to insulin resistance and type 2 diabetes mellitus in the
offspring’s adult life through upregulating miR-483 which limits
fats in the adipose tissue (Figure 3) (Mahajan et al., 2019).

4.3 Modulation of miRNAs by flavonoids and
polyphenols

Phenolic compounds or flavonoids act as anti-aging agents by
regulating miRNA function. Olive oil rich in phenols intake in
middle age increased the miRNA expression of miR-484, miR-137-
3p, miR-27, and miR-124-3p resulting in reduced brain plasticity
and improving neurological and behavioral function (Luceri et al.,

FIGURE 4
Molecular mechanisms underlying miRNA-mediated regulation of aging processes. This figure illustrates the molecular basis of miRNA-mediated
control over aging, with a focus on nutrition-sensing pathways and aging-related signaling networks. Across various species, miRNAs play a crucial role in
regulating lifespan and key aging mechanisms. Lifespan and age-related processes are governed by AMPK, Sirtuins, and the Insulin/IGF-1 signaling
pathways. The interconnection between cell metabolism, stress response, and longevity is established through nutrient-sensing mechanisms such
as mTOR and the IGF1/PI3K/AKT pathway. Diet affects miRNA modulation, highlighting the complex link between nutrition, molecular aging pathways,
and lifespan regulation. A comprehensive understanding of the complex interplay between miRNAs and nutrient-sensing pathways can shed light on the
causes of aging and identify potential drug targets. AGE, advanced glycation end products; Akt, protein kinase B; AMP, adenosine monophosphate;
AMPKs, AMP-activated protein kinases; BDNF, brain-derived neurotrophic factor; ER, estrogen receptor; FOXO, Forkhead box proteinO; HSP, heat shock
protein; IGF-1, insulin-like growth factor-1; IGFR, insulin-like growth factor receptor; IRS, insulin receptor substrate; mTOR, mammalian target of
rapamycin; mTORC,mTOR complex; NF-κB, nuclear factor kappa beta; PDK1, 3-phosphoinositide-dependent kinase 1; PGC1α, peroxisome proliferator-
activated receptor gamma coactivator 1-alpha; PI3K, phosphoinositide-3-kinase; PIP2, phosphatidylinositol (4,5)-bisphosphate; PIP3,
phosphatidylinositol (3,4,5)-trisphosphate; PRAS40, proline-rich Akt substrate of 40 kDa; PTEN, Phosphatase and Tensin Homolog; ROS, reactive oxygen
species; SIRT1, Sirtuin 1; SOD, superoxide dismutase; TGF-β, Transforming growth factor β; TLR4, Toll-like receptor 4; TMAO, trimethylamine N-oxide;
TrkB, Tropomyosin receptor kinase B; TSC, Tuberous sclerosis protein.
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2017a). Another study investigated the impact of grape seed intake
rich in procyanidin on diabetic rats, it was found that the flavonoids
of grape seed modulate glucose metabolism and improve pancreatic
function through downregulating the expression of miR-1249, miR-
483, miR-30c-1, and upregulating miR-3544 expression (Figure 3)
(Castell-Auví et al., 2013).

4.4 Other nutraceuticals and their effects on
miRNA expression

Chronic pistachio intake, rich in unsaturated fat, minerals, and
vitamins, modulates insulin resistance through downregulating miR-
192 and miR-375 involved in increasing plasma glucose levels and
insulin resistance (Hernández-Alonso et al., 2017) (Table 2). Probiotics
modulate different inflammatory diseases. For instance, probiotics such
as Lactobacillus rhamnosus and Lactobacillus delbrueckii downregulate
the expression of miR-181a and miR-155 involved in the inflammatory
response of systemic lupus erythematosus (Vahidi et al., 2018). In
addition, the intake of probiotics such as bifidobacteriummodulates cell
cycle senescence by regulating miR-34 and increasing Sirtuins
1 resulting in wellbeing and reduced aging (Haslberger et al., 2021).
Nicotinamidemononucleotide supplementation enhances the antiaging
properties of the aging aorta by upregulating miR-146a, and miR-203
and downregulatingmiR-99b andmiR-127 (Figure 3) (Kiss et al., 2019).

5 Mechanisms and pathways

5.1 Molecular mechanisms underlying
miRNA-mediated regulation of
aging processes

MiRNAs are increasingly acknowledged as key players in aging
and longevity. Several miRNAs directly impact lifespan by affecting
major aging pathways. While most insights into miRNAs that
influence longevity come from invertebrate studies, the
mechanisms, and roles of miRNAs in aging are similarly
observed in mammals.

Mechanisms in which miRNAs control gene expression often
involve their “seed” sequences interacting mostly with the 3′-end,
and less frequently with the 5′-end, of mRNA that is transcribed
from targeted genes. In the past decade, many studies have focused
on both quantitative and qualitative evaluations of miRNA
expression, revealing significant alterations in miRNA expression
patterns in different diseases. Consequently, analyzing miRNA
expression profiles can be a crucial method for diagnosing and
treating diseases (Gulyaeva and Kushlinskiy, 2016).

Cellular and molecular damage gradually accumulates over
time, triggering the intricate process of aging. Ultimately, this
accumulation results in a generalized decline in physiological
functions, an elevated risk of mortality, and the end of life. Even
while a variety of environmental and random circumstances have a
role in an individual’s aging process, there is a significant basic
inherited component to aging too. It has been proposed that systems
crucial for organism development and cell proliferation may
indirectly affect gene expression patterns that govern aging and
senescence (Campisi, 2005). Furthermore, it has been found that

several elements that play a universal function in all species control
how long Caenorhabditis elegans survives. These include heat-shock
factors (HSFs), sirtuins, AMP-activated protein kinases (AMPKs),
mitogen-activated protein kinases (MAPKs), and signaling through
the insulin/insulin-like growth factor-1 (IGF-1) signaling (IIS)
pathway (Smith-Vikos and Slack, 2012).

5.1.1 Interplay between insulin signaling and the
aging process

The most studied system in aging research, the IIS Signaling
pathway, was initially found to control longevity in C. elegans
(Friedman and Johnson, 1988; Kenyon et al., 1993). The insulin
or IGF-1 receptor, also known as DAF-2 in C. elegans, is activated
in this pathway. This activation starts a series of subsequent
events that eventually control longevity. In situations of
gathering and resource scarcity during development, DAF-2
affects the organism’s decision to enter dauer, a dormant state.
In adulthood, DAF-2 reacts to insulin-like peptides that are
mostly released by neurons in maturity, when its function
changes to controlling longevity on a cellular level. Through a
phosphorylation cascade involving PI3K (AGE-1 in C. elegans),
the phosphatidylinositol (PtdIns)-dependent kinase (PDK)
(counteracted by DAF-18, the C. elegans counterpart of the
PtdInsP3 phosphatase PTEN), AKT, and SGK, it suppresses
the FOXO transcription factor, DAF-16 in C. elegans. DAF-16
travels to the nucleus while this sequence is inactive, but
phosphorylation retains it in the cytoplasm. It either activates
or inactivates several genes that control metabolism, pathogen
resistance, heat-shock proteins, superoxide dismutase, catalase,
and metallothionein, among other components of the cellular
stress response. This coordinated reaction results in increased
longevity (Zhu et al., 2010).

It has been determined that DAF-2, DAF-16, and HSF-1 are all
involved in the same pathway as LIN-4 and LIN-14 (Boehm and
Slack, 2005). This suggests a theoretical approach where DAF-2 and
LIN-14 either concurrently downregulate DAF-16’s function or
where LIN-14 might function upstream of DAF-2. Furthermore,
DAF-16 has been shown to decrease lin-4 expression, suggesting
that there may be a negative feedback loop between lin-4 and DAF-
16. It’s crucial to remember that the aging process has not yet been
proven to involve this particular mechanism (Figure 4) (Baugh and
Sternberg, 2006).

5.1.2 Role of AMP-Activated protein kinases in the
aging process

Under regular circumstances, the AMPK, known for its role in
prolonging longevity, is primarily responsible for maintaining
metabolic balance and autophagy. This involves the elimination of
damaged cellular components and molecules. A variety of molecules
from the sirtuin family, known for their life-span extension capabilities,
are involved in regulating metabolism and repairing DNA damage.
Thesemolecules have eithermono-ADP-ribosyltransferase or deacylase
activity. Additionally, another group of factors promoting longevity
includes FOX (forkhead box) proteins. These proteins are a class of
transcription factors that regulate the expression of genes linked to the
development, division, growth, and lifespan of cells. Nicotinamide
mononucleotide (NMN), a precursor to NAD+ that is associated
with longer life spans, is produced by the enzyme nicotinamide
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phosphoribosyltransferase (NAMPT) (Siamak, 2020). Through the
renewal of autophagic flux and the NAD+ synthetic rescue strategy,
AMPK protects cells from oxidative stress-induced senescence by
raising NAD+ levels in aged cells. (Han et al., 2016). The enzyme
Klotho, which helps control insulin sensitivity and minimizes oxidative
stress, declines with age, accelerating aging in mice. Furthermore,
transsulfuration pathways and hydrogen sulfide are essential for
preserving cells and extending life. The dysfunction of several
cellular pathways, including PI3K/AKT, mTOR, insulin/IGF
signaling, and p53, is another hallmark of aging. These pathways
can result in immune system deterioration, metabolic problems, and
poor cell maintenance. These alterations have the potential to cause
cancer by reducing the number of stem cells and inducing senescence or
death in cells (Figure 4) (Siamak, 2020).

5.1.3 The impact of SIRT1 signaling on the
aging process

Elevated expression levels of sirtuins, especially SIRT2 and SIRT6,
have been found to prolong the lifespan in many taxa, including
budding yeast (S. cerevisiae), nematodes (C. elegans), fruit flies (D.
melanogaster), and mice (Kaeberlein et al., 1999; Tissenbaum and
Guarente, 2001; Rogina and Helfand, 2004; Kanfi et al., 2012). Sirtuin
affects a variety of biological processes, which helps organisms survive
more. More specifically, it has been shown that SIRT1 activation
improves insulin sensitivity and lowers insulin resistance (Wang et al.,
2019). Alkylresorcinols, belonging to the group of phenolic lipids,
stimulate SIRT1-mediated deacetylation. This results in decreased
acetylated histone levels in human monocyte cells and contributes to
the development of lifespan in D. melanogaster (Kayashima et al.,
2017). Ursolic acid possesses the ability to activate SIRT1 directly by
binding to its external surface. This binding alters SIRT1’s
configuration, switching it from a dormant to an active state. This
interaction is observed in computational simulations (in silico),
laboratory experiments in vitro, and in vivo, and it is significantly
important in the aging process (Figure 4) (Kayashima et al., 2017).
Kim et al., 2015 have found that dehydroabietic acid, a diterpene resin
acid naturally present in conifer trees, can directly activate SIRT1. This
activation contributes to reducing the buildup of lipofuscin and
decreasing collagen secretion in humans. Additionally, this
compound has demonstrated an ability to extend the lifespan of C.
elegans. A03, a compound developed to interact with ApoE4 and
boost SIRT1, has shown effectiveness in enhancing SIRT1 expression
in the hippocampus of 5xFAD-ApoE4 (E4FAD) mice, a model for
AD. This increase in SIRT1 expression has resulted in improved
cognitive abilities in these mice (Campagna et al., 2018). 17β-estradiol
triggers the ERα/SIRT1 pathway, which helps reduce oxidative stress,
neuroinflammation, and neuronal apoptosis in male mice induced
with d-galactose. Additionally, it elevates SIRT1 levels by promoting
the degradation of PPARγ through the E3 ubiquitin ligase NEDD4-1,
thereby delaying cellular aging (Han et al., 2013; Khan et al., 2019).
Despite the numerous positive impacts of SIRT1 on aging and its
widespread presence in the body, the mechanisms by which it
contributes to anti-aging are not clearly understood.

5.1.4 The influence of mTOR signaling on aging
The fact that mTOR is linked to many aging-related processes,

its function as a crucial regulator of longevity and aging has been
extensively studied over the last 10 years (Weichhart, 2018; Liu et al.,

2019; Papadopoli et al., 2019). While the detailed mechanisms
remain partially understood, the link between mTOR signaling
and aging is evident across species, from worms to mammals
(Vellai et al., 2003; Kapahi et al., 2004; Kaeberlein et al., 2005;
Guertin et al., 2006). The Ras-related GTP-binding protein (Rag),
which controls amino acid signaling, and the tuberous sclerosis
complex (TSC)-Rheb pathway are both involved in the regulation of
mTORC1 (Arriola Apelo and Lamming, 2016; Soukas et al., 2019).
Numerous studies indicate that mTORC1 responds to various
environmental stimuli, including glucose, growth hormones,
oxygen, and amino acids. It affects many biological processes,
such as autophagy, cell division, and protein synthesis (Widlund
et al., 2013; Arriola Apelo and Lamming, 2016). Similarly,
mTORC2 is a downstream effector of IIS signaling following
PI3K activation and plays a vital role in activating a range of
kinases. For example, the important regulator of cell survival,
Akt/PKB, is phosphorylated and activated by mTORC2
(Sarbassov et al., 2006; Arriola Apelo and Lamming, 2016).
Given that mTOR has negative impacts on aging, it seemed
plausible to believe that mTOR expression would increase in the
older ages. However, it was found that as people aged, mTOR
activity as well as that of its upstream signaling pathways, such
as brain-derived neurotrophic factor (BDNF)/PI3K/Akt, decreased
(Figure 4) (Yang F. et al., 2014). Numerous negative effects, such as
glucose intolerance, diabetes, lowered activity levels, and
immunosuppression, have been brought upon by interfering with
mTORC2 (Arriola Apelo and Lamming, 2016; Chellappa et al.,
2019). As a result, it has been demonstrated that reducing
mTORC1 can increase lifespan and slow down the aging process,
whereas blocking mTORC2 can have an adverse effect on health and
longevity. Age-related deficiencies in spatial learning and memory
are reduced when mTOR is long-term suppressed. However, an
inverted U-shaped curve characterizing the link between mTOR
activity and cognitive function suggests a dose-effect relationship
(Chellappa et al., 2019). Trimethylamine-N-oxide (TMAO), an
intestinal flora metabolite, suppresses mTOR signaling in
SAMP8 and SAMR1 mice, which has a deleterious effect on age-
related cognitive decline. This is evidenced by exacerbated synaptic
damage and reduced expression of proteins associated with synaptic
plasticity (Li D. et al., 2018).

5.1.5 Aging and inflammatory processes
Aging is marked by widespread chronic inflammation,

associated with cellular aging, immune system decline, organ
malfunction, and various diseases linked to aging. The
Senescence-associated secretory phenotype (SASP) refers to a
multifaceted process linked with cellular aging, marked by the
secretion of pro-inflammatory cytokines from cells that are aging
(Olivieri et al., 2015). Essential components of the SASP encompass
a range of inflammatory cytokines, chemokines, proteases, and
growth factors (Coppe et al., 2008; Davalos et al., 2013; Basisty
et al., 2020). This occurrence plays a role in numerous age-related
transformations, such as increased inflammation, changes in the
immune system, and the proliferation of tumors (Birch and Gil,
2020). Recent research has determined shared components of the
SASP across various cell types and triggers of senescence. Some of
these components, like serine protease inhibitors, stanniocalcin, and
growth differentiation factor 15, are also recognized as markers of
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aging in human blood plasma (Basisty et al., 2020). Elements such as
impaired mitochondria, a persistent DNA damage response, (Rodier
et al., 2009), and activation of proteins like C/EBPβ and NF-κB are
critical in driving this process (Kulkarni et al., 2020).

5.1.6 Other factors contributing to the
aging process

Numerous aging-related biological processes and molecular
activities could be associated with ferroptosis. As cells age and
undergo alterations in function and metabolism, they may become
more prone to external influences, increasing their susceptibility to
ferroptosis. Current studies have emphasized the contribution of
ferroptosis in the acceleration of aging in skeletal muscles. In this
scenario, aging skeletal muscles exhibit reduced expression of Tfr1 and
increased expression of Slc39a14, predominantly observed on the cell
membranes of skeletal muscle cells in aging mice. The heightened
expression of Slc39a14 results in enhanced absorption of non-
transferrin-bound iron, causing an accumulation of free iron ions in
skeletal muscles, which in turn initiates ferroptosis (Ding et al., 2021).

Additionally, the connection between ferroptosis and aging seems
to be bidirectional. Ferroptosis could play a role in triggering various
age-related conditions, thereby accelerating the aging process in tissues
and cells. On the other hand, the alterations in cellular function and
metabolism that occur with agingmay increase the cells’ vulnerability to
ferroptosis, potentially worsening the progression of diseases.

5.2 Signaling pathways involved in miRNA
modulation by nutrients and nutraceuticals

Aging research is progressively concentrating on alterations in
nutrient sensing pathways, recognizing their potential to be
modulated through pharmacological interventions as well as
dietary modifications (Longo et al., 2015). Important nutrition
sensing mechanisms, including the AMPK/Sirtuin/PGC1 and
IGF1/PI3K/AKT/mTOR pathways, can be disrupted by aging.
Numerous cellular activities, including protein synthesis, cell cycle
progression, DNA replication, autophagy, stress response, and glucose
homeostasis, are dependent on these pathways. Environmental factors
such as pollution, physical exercise, smoking, and food can alter the
biological mechanisms linked to aging.

Caloric restriction (CR) is recognized as an effective dietary
strategy to extend lifespan healthily, highlighting diet as a key
environmental factor influencing the aging process (Longo et al.,
2015; Most et al., 2017). Dietary choices and compounds can impact
molecular aging pathways, thereby altering the quality and
healthfulness of aging. Recent research indicates that miRNAs
play a role in regulating age-related activities, such as DNA
replication, cellular aging (senescence), and programmed cell
death (apoptosis). Additionally, miRNAs have been found to
influence nutrient sensing pathways Thus, miRNAs not only
regulate nutrient sensing pathways but can also be influenced by
dietary factors (Figure 4) (Micó et al., 2017).

5.2.1 The role of nutrient sensing pathways in
molecular aging

Studies indicate that mTOR, the insulin/IGF-1/PI3K/AKT, and
the AMPK/SIRT1 pathways are important participants in the

process by which CR prolongs life (Johnson et al., 2013; Longo
et al., 2015; Altintas et al., 2016; Martins et al., 2016). These pathways
demonstrate a connection between nutrition, age, and metabolism.
Elevated glucose causes insulin production, which in turn raises
IGF-1 levels. IGF-1 causes autophosphorylation when its receptor
binds to it, which activates PI3K. PI3K then phosphorylates and
activates AKT, which in turn phosphorylates and activates mTOR
while suppressing FOXO. This complete signaling cascade is
influenced by CR, which decreases glucose levels. Studies have
demonstrated that prolonging the life span of species such as
yeast, worms, flies, and mice can be achieved by decreasing
mTOR signaling (Johnson et al., 2013). Longevity was increased
in mice given the mTOR inhibitor rapamycin. Since rapamycin
reduces glucose tolerance and doesn’t mimic the effects of dietary
restriction on insulin, IGF-1, or leptin levels, the exact mechanism is
yet unknown (Miller et al., 2014). FOXO transcription factors play a
critical role in pathways related to longevity that include antioxidant
activity, stress response, and cellular processes like autophagy,
apoptosis, and proliferation (Martins et al., 2016), which also
play a role in extending lifespan. Reduced insulin/IGF-1-like
signaling in C. elegans increases lifespan and stress tolerance via
blocking the FOXO protein DAF-16 and resulting in the nuclear
build-up of SKN-1, a process that is independent of DAF-16
inhibition and controlled by AKT1/2 and SGK-1 phosphorylation
(Tullet et al., 2008). CR has been shown to change the transcriptional
and post-transcriptional levels of genes associated with the PI3K/
AKT/FOXO pathway in both humans and rats. Notably, certain
polymorphisms in the FOXO3 gene have been linked to increased
lifespan and a reduced risk of mortality from both overall and
coronary heart disease (Willcox et al., 2016). Furthermore, CR was
able to improve several pathways in both humans and rats, including
mitochondrial function, oxidative phosphorylation, muscular
contraction, glycolysis, and gluconeogenesis. Conversely,
pathways linked to the “aging brain” and insulin/IGF-1 signaling
became less active (Mercken et al., 2013a).

5.2.2 Role of miRNA as modulators of nutrient
sensing pathway

Recent studies indicate that miRNAs have a notable impact on
various aspects of aging, such as the disturbance of nutrient-sensing
pathways, weakening of the immune system, cellular damage, and the
onset of age-related diseases (López-Otín et al., 2013). ThemiRNA let-7,
which targets the IGF1 receptor and mTOR among other components
of the IGF1 pathway, has an impact on the IGF1/PI3K/AKT/mTOR
pathway (Jung and Suh, 2014). Myoblast research has demonstrated
that miR-432 inhibits myoblast development and proliferation by
interfering with the PI3K/AKT/mTOR pathway (Chartoumpekis
et al., 2012; Ma et al., 2017). Diet has been found to modulate this
miRNA; for instance, miR-432 is downregulated in the adipose tissue of
mice on a high-fat diet (HFD) (Chartoumpekis et al., 2012). Age-related
decreases in miR-17-92 cause more DNA damage and oxidative stress
(Grillari et al., 2010). MiRNAs also affect the AMPK/Sirtuins/PGC1-
1 pathway, with let-7 controlling the production of SIRT1 in human
biliary epithelial cells (Xie et al., 2014). miR-217 downregulates SIRT1,
impacting endothelial cell aging through the silent information
regulator 1 (SIR1) (Figure 4) (Menghini et al., 2009). Additionally,
miR-133 inhibits AMPK expression, targeting this pathway at multiple
points. Kurylowicz et al. observed in humans that a decrease in SIRT1 is
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associatedwith higher levels ofmiR-22-3p in obese individuals, while an
increase in SIRT7 is linked to lower miR-125a-5p levels in thin
individuals (Kurylowicz et al., 2016). Studies using in vitro and in
vivo models have demonstrated that miR-16 reduces cell proliferation
by targeting the IGF1R (Chen et al., 2013). Additionally, miR-144 plays
a crucial role in regulating key pathways. It controls the IGF-1/PI3K/
AKT pathway by targeting PTEN (Zhang et al., 2013) and IRS1 (Wu
et al., 2016), and also directly influences mTOR (Xiang et al., 2016) and
AMPK (Xiang et al., 2016). Olivieri et al. observed reduced levels of
miR-182, miR-223, and miR-142-3p in the skeletal muscle of
postmenopausal women. These miRNAs are involved in the
regulation of IGF-1R and FOXO3A expression and activate the
insulin/IGF-1 pathway by promoting the phosphorylation of AKT
and mTOR (Olivieri et al., 2014). Notably, miR-142-3p was found
to increase in the adipose tissue of mice on a HFD (Chartoumpekis
et al., 2012), and a similar upregulation of miR-182 was observed in the
liver of mice on an HFD (Tessitore et al., 2016).

Although the exactmechanisms throughwhich CR prolongs lifespan
remain unclear, miRNAs are assumed to be crucial. In rat studies, CR led
to a decrease in miR-144 expression in cerebromicrovascular endothelial
cells, which helpsmaintainNRF2 levels, a key regulator of cellular defense
against oxidants (Csiszar et al., 2014). In rhesus monkeys aged rhesus,
miR-144, which is typically upregulated in skeletal muscle with age,
showed reduced upregulation. The same study found that other age-
relatedmiRNAs, which regulate the PI3K/AKTpathway and SIRT1,were

significantly increased in older monkeys undergoing CR. Additionally,
the role of miR-221, which is downregulated by both CR (Mercken et al.,
2013b) and polyunsaturated fatty acids (Ortega et al., 2015), is
noteworthy.

In contrast, the regulation miR-145 doesn’t appear to be affected
by CR, though it is increased by a HFD (Sangiao-Alvarellos et al.,
2014). It is noteworthy to acknowledge the ongoing debate regarding
alternative dietary approaches to promote longevity, such as protein
restriction, which has the potential to alter the expression of specific
miRNAs. Furthermore, it has been observed that a low-protein diet
reduces the expression of miR-124a in the pancreatic islets of
pregnant rats (de Siqueira et al., 2018), whereas, in overweight or
obese males, a high-protein diet decreased HDL-associated miR-223
levels (Tabet et al., 2016). These findings suggest that different
miRNAs can be affected by dietary interventions associated with
longevity, such as CR or protein restriction. However, the precise
consequences of these changes on extending lifespan still require
further investigation to be fully elucidated.

5.2.3 Nutraceuticals: regulation of miRNAs
Research has established a connection between typical neural

development and the onset of neural disorders, which arises from a
complex interplay between genetic factors and environmental
influences, including nutrition. The role of diet in maintaining brain
health throughout life is well-documented, with research indicating that

FIGURE 5
miRNA involvement in the therapeutic impact of nutraceuticals on aging and age-related diseases. Nutraceuticals rich in polyphenols and bioactive
compounds exhibit anti-inflammatory and antioxidant effects, potentially enhancing cellular longevity and mitigating age-related changes. These
compounds can influence miRNA expression, offering promising strategies for promoting healthy aging and preventing or treating age-related diseases.
COX-2, cyclooxygenase 2; EGCG, epigallocatechin-3-gallate; H-EVOO, high-extra virgin olive oil; MAPKs, mitogen-activated protein kinases; NF-
κB, nuclear factor kappa beta; ROS, reactive oxygen species; SIRT1, sirtuin 1.
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whatwe eat affects neuron development, regeneration, function, and the
maintenance of neural networks (Maher, 2000; Dauncey, 2009; Nurk
et al., 2009; Gomez-Pinilla and Nguyen, 2012; Milte et al., 2012; Sinn
et al., 2012). Interestingly, nutrition is one of the factors that can control
gene expression without altering the DNA sequence itself. Recent focus
has shifted to the role of miRNAs in both development and disease,
including how their expression is influenced by nutrition. Although
there has been extensive exploration of the role of nutrition in nervous
system development and related issues like aging and
neurodegenerative disorders, studies on the regulation of miRNAs in
brain pathology by nutraceuticals are relatively sparse (Li D. et al., 2018).
This review will cover a few existing studies on how nutraceuticals can
regulate miRNAs associated with brain pathologies, including cancers
and neurodegenerative disorders.

5.2.3.1 Resveratrol
The primary mechanism by which resveratrol reduces

proinflammatory lipid mediators is via inhibiting cyclooxygenase
1 and 2 (COX-1 and COX-2), as well as by reducing the mobility
and activity ofNF-κB’s p65 subunit when stimulated by TNF. This leads
to reducing the levels of pro-inflammatory cytokines like TNF-alpha,
IL-1 beta, and IL-6 (Latruffe et al., 2015). Additionally, resveratrol
inhibits JNK and its upstream kinase MEK activation, which is
advantageous for AP-1 activity suppression. Tili et al., 2010
demonstrated in human monocytes (THP-1), resveratrol could
modulate AP-1 through epigenetic means by upregulating anti-
inflammatory miR-663, targeting JunB and JunD, and
downregulating pro-inflammatory miR-155. Song et al., 2016 further
showed that longer exposure to resveratrol increased miR-Let7A
expression in THP-1 cells, leading to reduced TNF-α and IL-6.

In a human study, researchers conducted a randomized,
placebo-controlled trial involving 35 men with type-2 diabetes
and hypertension. Over a year, participants were given capsules
containing either a placebo (maltodextrin), grape extract
supplemented with over 8 mg of resveratrol (GE-RES), or grape
extract without resveratrol (GE). Compared to the control group, the
GE-RES group showed alterations in miRNA associated with
inflammation: miR-21, −181b, −663, and −30c2 levels increased,
while miR-155 and −34a levels decreased. This suggests that
resveratrol’s modulation of miRNAs might provide a protective
effect against physiological variations (Tomé-Carneiro et al., 2013).

5.2.3.2 Vitamins
Several vitamins have been shown to affect immunity and

contribute to the prevention of disease. A good example of this is
vitamin D, which can regulate the transcription of miRNA genes
through its active form, dihydroxy vitamin D (1,25(OH)2D). This
active form binds to the transcription factor vitamin D receptor
(VDR) and influences the stability of miRNA or the genes
responsible for miRNA processing (such as Drosha and Dicer) to
enhance the maturity of miRNAs (Dambal et al., 2017; Zeljic
et al., 2017).

Vitamin D inhibits inflammation through its effects on
miRNAs, particularly miR-155, which has an antagonistic
relationship with the vitamin D receptor (VDR). In patients with
primary biliary cholangitis, the SOCS1 protein in the liver and
PBMCs is correlated with the levels of miR-155 (Kempinska-
Podhorodecka et al., 2017). Furthermore, vitamin D decreases

miR-146a, miR-150, and miR-155 in murine adipocytes to
suppress NF-κB signaling, which in turn affects p65 and IκB
phosphorylation (Karkeni et al., 2018). VDR activators, like
calcitriol and paricalcitol, suppress miR-29b and miR-30c in
nephrectomized rats, impacting genes like COL1A1, MMP-2, and
CTGF, thus reducing cardiac fibrosis (Panizo et al., 2017). A 12-
week treatment was shown to reduce inflammatory and
atherosclerotic cytokines and miRNAs in patients with moderate
chronic renal disease (Mansouri et al., 2017). Moreover, the research
indicates that supplementing with vitamin D enhances the presence
of miRNAs that suppress tumors in the prostate tissue of patients
(Giangreco et al., 2013)

Vitamin A derivatives, such as various forms of retinoic acid,
are known to control gene expression in both normal and disease
conditions (Perri et al., 2017). In an experiment with mouse
embryonic stem cells, exposure to retinoic acid resulted in the
upregulation of 31 miRNAs and the downregulation of
175 miRNAs. The decreased miRNAs miR-200b and miR-200c
were distinguished for their noteworthy ability to significantly
upregulate the expression of two pluripotent genes that are
critical for development and epithelial phenotyping: Oct4 and
Nanog (Zhang J. et al., 2015). The expression of miR-10a and the
Retinoic Acid Receptor Beta (RARβ) is significantly increased by
retinoic acid (RA) in two breast cancer cell lines, T47D and SK-
BR-3. Due to their associations with tumor suppression in breast
tissue samples, reduced expression of RARβ and miR-10a has
been related to breast cancer (Khan et al., 2015).

5.2.3.3 Curcumin
Besides inflammation recent research has revealed that

curcumin can influence certain miRNAs in various cancer cell
types through its impact on the inflammatory response. Kronski
et al. (Kronski et al., 2014) found that treating breast cancer cells
with curcumin leads to an increase in miR-181b levels, which in turn
reduces the production of pro-inflammatory cytokines
CXCL1 and −2. This reduction contributes to a decreased
metastatic potential in these cells. Additionally, research on
breast stromal fibroblasts has demonstrated that the tumor-
suppressing protein p16INK4A, which is regulated by miR-146b-
5p, lowers the carcinogenic effects of these cells by regulating IL-6
production and secretion. This particular miR targets a specific
sequence in the IL-6 3′UTR. Treatment with curcumin may increase
the levels of p16INK4A and miR-146b-5p, which could then result
in the reduction of IL-6 (Al-Ansari and Aboussekhra, 2015).

5.2.3.4 Quercetin
Quercetin’s role in reducing inflammation is connected to its

capability to suppress both the ERK and JNK proteins, as well as
their phosphorylated forms, and to lower the production of TNF-α
induced by these proteins.

In research by Boesch-Saadatmandi et al. (Boesch-
Saadatmandi et al., 2012), it was revealed that female mice
consuming a diet high in quercetin (2 mg/g) showed notably
increased levels of hepatic miR-125b and miR-122 compared to
those on a regular diet. miR-125b is known for its capacity to
diminish inflammation, whereas miR-122 plays a key role in the
control of lipid metabolism. In a separate study focusing on the
influence of quercetin and its main metabolites on miR-155,
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researchers observed that the use of quercetin and isorhamnetin
on LPS-stimulated macrophages resulted in a reduction in miR-
155 expression. This effect could suggest a potential mechanism
by which this polyphenol hinders NF-κB activation,
consequently contributing to the attenuation of inflammation
(Boesch-Saadatmandi et al., 2011).

Diets high in saturated fatty acids, particularly from high-fat foods,
are linked to health issues like gut imbalance, low-grade inflammation,
and insulin resistance (Cani et al., 2007; O’Keefe et al., 2008; Ruiz-
Núñez et al., 2013; Martinez et al., 2017). Certain saturated fats, like
lauric and palmitic acids, trigger inflammation in various cells by
activating specific receptors, leading to increased inflammatory gene
expression (Wong et al., 2009;Wang Y. et al., 2017). Recent studies also
suggest that saturated fats can influence these processes through
epigenetic changes, including the action of miRNAs.

5.2.3.5 Polyunsaturated fatty acids
Lipid mediators formed from essential fatty acids, such as

thromboxanes, lipoxins, resolvins, and leukotrienes, are a few
examples of how polyunsaturated fatty acids (PUFA) might affect
the inflammatory response. Studies have demonstrated that these
lipid mediators can control the expression of genes by means of
miRNAs (Fredman et al., 2012; Krishnamoorthy et al., 2012; Visioli
et al., 2012). In a study by Zheng et al., 2015 rats that were about
3 weeks old were given a Western-style diet for a week. After that,
the rats were divided into three groups, one of which received an
omega-3 PUFA diet (a combination of EPA and DHA), another of
which received an omega-6 PUFA diet (linoleic acid), and a control
group. After 16 weeks, in comparison to the control group, the
omega-3 group showed a reduction in subcutaneous fat and pro-
inflammatory cytokines. Unlike the omega-6 and control groups,
this group’s levels of miRNAs (rno-miR-19b-3p, −146b-5p,
and −183-5p) were decreased. These miRNAs were found to
suppress genes involved in inflammatory pathways.

Additionally, during 8 weeks, thirty healthy participants in a human
trial ate 30 g of polyunsaturated fatty acid-rich almonds and pecans
every day. ElevenmiRNAs were altered in their plasma as a result: levels
of miR-192, miR-486-5p,miR-19b, miR-106a, miR-130b,miR-18a, and
miR-769-5p were elevated and levels of miR-328, miR-330-3p, miR-
221, and miR-125a-5p were lowered. Notably, favorable changes in the
levels of the plasma protein C-reactive were associated with miR-221
and miR-130b (Ortega et al., 2015).

6 Implications for prevention and
treatment of age-related diseases

6.1 miRNA involvement in the therapeutic
impact of nutraceuticals on aging and age-
related diseases

Aging and age-related diseases occur due to multi-faceted
pathologic incidences. One of these pathologic incidences is the
chronological increase in senescent cells (SCs) which undergo
irreversible cell cycle arrest, and simultaneously increase the release
of various chemicals that stimulate inflammation and oxidative stress
signaling pathways. This SCs phenotype is identified as a senescence-
associated secretory phenotype (SASP) (Prasnikar et al., 2021).

Therefore, foods high in polyphenols and other bioactive
compounds, which have anti-inflammatory and antioxidant
properties, may be used as “anti-senescence” or “senolytic” foods in
a nutraceutical strategy for enhanced cellular longevity and better aging
(Gurau et al., 2018). Indeed, nutraceuticals rich in polyphenols have
shown excellent results in many age-related diseases owing to their
antioxidant and anti-inflammatory effects (Zhor et al., 2023).

Epigenetic dysregulation is a part of the aging process, and many
nutraceuticals are regarded as promising candidates to counteract
these age-related epigenetic changes (Bacalini et al., 2014). Likewise,
changes in miRNA expression play a prominent role in regulating
the mRNA expression of genes involved in the shaping of aging and
age-related diseases (Matai and Slack, 2023a). Therefore, it’s
expected that diets or nutraceuticals that control specific miRNA
expression can enhance healthy aging or halt the progression of age-
related diseases. So far, it has been reported that dietary intake of
micronutrients, macronutrients, vitamins, minerals, flavonoids, and
polyphenols can modulate the expression of various miRNAs
(Dimmeler and Nicotera, 2013; Milenkovic et al., 2013; Beckett
et al., 2014; Yu et al., 2021). However, future research will need to
determine whether dietary manipulation of miRNAs contributes to
the prevention or treatment of age-related illnesses.

As we age, we experience a low-grade systemic inflammation, a
condition that has been previously termed “inflammaging.” This
condition is marked by an increase in the levels of pro-inflammatory
cytokines (mostly TNF-α and IL-6) and circulating acute-phase proteins
(Franceschi et al., 2000; Franceschi, 2007). Frailty and the onset and
advancement of age-related illnesses, such as cancer, osteoporosis,
neurodegenerative diseases, atherosclerotic cardiovascular diseases,
and type 2 diabetes mellitus are linked to this inflammaging
phenomenon (Vasto et al., 2007; Cevenini et al., 2013). Numerous
research provided evidence in favor of the theory that achieving extreme
longevity likely necessitates a unique control of inflamma-miRs gene
expression (ElSharawy et al., 2012; Olivieri et al., 2013). Quercetin, a
plant flavonol, shielded CCD-18Comyofibroblasts from reactive oxygen
species (ROS) and prevented inflammation by enhancing the activity of
antioxidant enzymes and stimulating the upregulation of miR-146a, a
negative regulator of pro-inflammatory nuclear factor kappa B (NFκB)
activation (Noratto et al., 2011b).

Changes in miRNA expression were evident in brain aging and
neurodegenerative diseases. Whether these changes in miRNA
expression are the cause or consequence of brain aging is still a
riddle (Somel et al., 2010). In the study of Luceri et al. (Luceri et al.,
2017b), mice fed extra-virgin olive oil (EVOO) rich in phenols
(H-EVOO) for 6 months demonstrated improvements in their
motor and cognitive functions when compared to controls given
the same olive oil but devoid of phenolics (L-EVOO). Interestingly,
mice fed L-EVOO demonstrated a substantial modification in the
expression of 175 miRNA, unlike mice fed H-EVOO which showed
alterations in the expression of only 20 miRNAs compared to young
mice. These results demonstrate the capacity of phenolic-rich olive
oil to mitigate age-related modifications in miRNA expression.
Moreover, miR-29, miR-30, miR-34, miR-101, miR-124, and
miR-181, which have been linked to neurodegenerative diseases
or senescence (Dimmeler and Nicotera, 2013), were among the
miRNAs that were either low or not expressed in the cortex of young
and H-EVOO-fed mice and strongly expressed in mice fed
L-EVOO (Figure 5).
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As stated by Sir William Osler in his historical textbook in 1898:
“Longevity is a vascular question, which has been well expressed in the
axiom that man is only as old as his arteries” (COOK, 1908). Indeed,
aging is intricately linked to the development of CVDs. Growing older is
the primary risk factor for vascular endothelial dysfunction, which raises
the possibility of CVDs, one of the leading causes of death in developed
nations (Gaidai et al., 2023). These CVDs are mostly attributable to the
sedentary lifestyle in the developed world, characterized by a diet rich in
saturated fats and sugars (Kirkpatrick andMaki, 2021). On the contrary,
a reduction in the onset of CVDs could be attributable to health-
promoting dietary patterns, such as the Mediterranean diet rich in
nutraceuticals (Accardi et al., 2016). An in vitro study conducted by
Noratto et al. (2011a) showed that treatment of lipopolysaccharide-
induced inflammation in human umbilical vein endothelial Cells
(HUVEC) with a polyphenol extracted from grapes reduced the
mRNA expression of vascular cell adhesion molecule-1 (VCAM-1) as
a result of modulating the expression of miR-126.

Bone health deteriorates and the incidence of osteoporosis
increases with increased age (Pignolo et al., 2021). Vitamin D is
a key regulator of bone health by promoting calcium absorption, and
its active form, 1,25-dihydroxyvitamin D (1,25-(OH)2-D), acts as a
steroid hormone and exerts pleiotropic effects (Veldurthy et al.,
2016). In a previous study by Jiao et al., 2020, the beneficial role of
miR-140-5p in bone health was disclosed. Results revealed that miR-
140-5p promoted osteogenic differentiation and led to a significant
increase in osteocalcin expression, bone mineral density, and bone
mass in addition to enhancing bone healing of miR-140-5p-
transgenic mice with fracture. In the study conducted by Luo
et al., 2018, a positive correlation between miR-140-5p and 1,25-
(OH)2-D was revealed. In this study, miR-140-5p was upregulated in
2 types of murine osteoblasts treated with 1,25-(OH)2-D. The
enhanced expression of miR-140-5p by 1,25-(OH)2D3 occurred
through transcriptional activation of the vitamin D receptor and
this activated vitamin D/vitamin D receptor/miR-140-5p axis led to
a downstream inhibition of MAPK signaling in
osteoblasts (Figure 5).

Cancer is regarded as one of the age-related diseases due to the
build-up of mutations throughout life (Laconi et al., 2020). miR-100
and miR-125b were shown to have tumor suppressor effects and
their expression levels were found to be reduced in several cancers.
The study conducted by Giangreco et al., 2013 revealed another
health benefit for 1,25-dihydroxy vitamin D3 in prostate cancer
patients, in which vitamin D3 supplementation managed to enhance
the expression of these tumor-suppressive miRNAs. This suggests
that miRNAs may be important physiological mediators of vitamin
D3 action in the early detection and prevention of prostate cancer.

All-trans-retinoic acid treatment upregulatesmiR-29a andmiR-142-
3p. In patients with acutemyeloid leukemia (AML) and healthy controls,
enhanced expression of either miRNA-induced myeloid differentiation.
This shows that miR-29a and miR-142-3p are important regulators of
healthy myeloid differentiation and that the development of AML is
influenced by their decreased expression (Wang et al., 2012). Selenite is a
nutraceutical and dietary form of selenium. It was shown that treatment
of human prostate cancer cells (LNCaP) with selenite upregulated the
expression of p53 and miR-34b/c, where miR-34 is known to target the
p53 gene, and induction of p53 enhances apoptosis. This indicates that
selenite may be beneficial for both the prevention and treatment of
human prostate cancer (Sarveswaran et al., 2010).

Resveratrol, found in red grapes, is a popular bioactive compound
that was extensively studied during the last 2 decades and found to have
a myriad of protective effects against a wide variety of diseases (Meng
et al., 2020). Adding to its well-known benefits, resveratrol can be
protective against age-related problems such as hearing loss in which
miR-34a was found to be involved in resveratrol’s protective
mechanism. In the study of Xiong et al., 2015, miR-34a expression,
p53 acetylation, and apoptosis were found to be enhanced in the cochlea
of C57BL/6 mice with aging, however, an age-linked reduction in
SIRT1 was noted. In the inner ear HEI-OC1 cell line, an inverse relation
was revealed between miR-34a and SIRT1 expression; where the
overexpression of miR-34a inhibited SIRT1 expression, which led to
a rise in p53 acetylation and apoptosis. Inversely, silencing of miR-34a
led to a significant increase in SIRT1 expression, and consequent
reduction in p53 acetylation, and apoptosis. Resveratrol, being a
SIRT1 activator, following 2-month administration, significantly
attenuated miR-34a expression, which led to a significant reduction
in hearing loss and hair cell loss in C57BL/6 mice (Figure 5).

Epigallocatechin-3-O-gallate (EGCG) is the most abundant and
active polyphenol in green tea. The study of Rasheed et al., 2016
investigated the effect of EGCG in an in vitromodel of osteoarthritis,
one of the age-related chronic diseases. The study revealed that
EGCG inhibited COX2 expression and prostaglandin E2 (PGE2)
production via upregulating miR-199a-3p expression in an IL-1β-
stimulated human osteoarthritis chondrocytes.

Notably, the majority of the data supporting the modification of
miRNA by nutraceuticals in aging comes from cell lines and some of
this data comes from in vivo pre-clinical studies. Translational
research that can advance these studies from bench-to bedside or
from pre-clinical to clinical studies in older adults will help determine
if nutraceutical manipulation of miRNAs can improve healthy aging
or halt the occurrence or progression of age-related diseases.

6.2 Strategies for utilizing miRNA-based
interventions in age-related diseases

miRNAs have a crucial function in regulating gene expression
post-transcription. They have emerged as important regulators of
cellular functions and can be altered by dietary factors. Specific
miRNAs selectively target genes responsible for encoding proteins
and enzymes involved in pathways that sense nutrition. This
targeting has the potential to greatly impact the regulation of the
aging process (Lai et al., 2019). Several studies have demonstrated
that diet and nutraceuticals can potentially control the expression of
miRNAs linked to aging, neurodegenerative disorders, and brain
tumors. Nutrients possess the capacity to control the amounts of
miRNA, which plays a pivotal role in influencing gene expression.
Therefore, the control of miRNA aging through nutrition and
nutraceuticals holds great potential for treating age-related
diseases and improving overall healthy aging.

The approaches for employingmiRNA-based interventions in age-
related diseases encompass the identification of disease-linked
miRNAs, the manipulation of miRNA expression through nutrition
and nutraceuticals, the creation of miRNA-based therapeutics, and the
investigation of miRNAs as biomarkers for age-related diseases. These
methods show potential for creating new strategies to encourage
healthy aging and tackle age-related ailments (Lai et al., 2019).
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Studies have demonstrated that different miRNAs play a role in
the regulation of age-related illnesses, including AD, age-related
macular degeneration, neurological disorders, and cancer (Natoli
and Fernando, 2018; Eshkoor et al., 2022). Studies have shown that
nutritional components and nutraceuticals can control the activity
of miRNAs that have a role in age-related disorders. This suggests
that they could be used as potential treatments (Ghosh et al., 2021).

miRNAs have been recognized as promising candidates for
therapeutic intervention in age-related macular degeneration and
other age-related ailments. Several miRNA-based medicines are
currently undergoing Phase 2 clinical studies, indicating the efficacy
of miRNAs as therapeutic targets (Natoli and Fernando, 2018).

This topic investigates the impact of nutrition on the
alteration of gene expression through epigenetic mechanisms
associated with miRNAs. This study assesses the impact of
nutrients and bioactive chemicals on the expression of
miRNA, which may have consequences for regulating
inflammation and chronic diseases (Quintanilha et al., 2017a).
Specific miRNAs have been proposed as prospective biomarkers,
diagnostic tools, or desirable targets for the management and
treatment of age-related illnesses, such as age-related macular
degeneration (Cruz-Aguilar et al., 2023).

7 Nutraceuticals’ impact on aging and
related diseases

In a previously reported systematic review, 200 adults were
assessed on their use of different nutraceuticals. It was found that
using nutraceuticals has improved mitochondrial oxidative
capacity and bioenergetics (Lippi et al., 2022). A balanced diet
supplemented with limonene controlled inflammation in elderly
individuals decreasing fibrinogen and inflammatory markers
(Ostan et al., 2016). In a retrospective study, administration of
folic acid and vitamin B was linked to speed of processing, recall,
identification, and verbal capability in middle-aged and elderly
women (Bryan et al., 2002). Moreover, nutraceuticals containing
fish oil and coenzyme Q10 are associated with reduced risk and
retard the progression of Parkinson’s disease (Mischley et al.,
2017). Further, a polyphenolics-rich diet inhibits lipid
peroxidation in the CNS reducing aging-related diseases in a
double-blinded clinical study (Arcusa et al., 2023).

8 Conclusion

MiRNAs hold great potential as a field of study for
comprehending the molecular pathways that drive aging and age-
related illnesses. The data given in this review emphasizes the
possible influence of dietary variables and nutraceuticals in
regulating miRNA expression and function. Existing research
indicates that certain macronutrients, micronutrients, trace
minerals, and nutraceuticals might impact miRNA profiles.
Nevertheless, the majority of the existing research has been

carried out in laboratory settings, and further investigations are
required to clarify the impact of dietary miRNA manipulation on
living organisms, including animal models and human patients.
Subsequent studies should prioritize the examination of the specific
mechanisms via which dietary variables and nutraceuticals regulate
miRNA, as well as the exploration of the therapeutic possibilities of
miRNA-based therapies in age-related disorders. By enhancing our
comprehension of the intricate nutritional coordination facilitated
by miRNAs, we might potentially establish novel approaches to
encourage the process of healthy aging and counteract age-
related disorders.
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Glossary

AD Alzheimer’s disease

ALK Anaplastic lymphoma kinase

AMD age-related macular degeneration

AML acute myeloid leukemia

AMPKs AMP-activated protein kinases

COX-1 cyclooxygenase 1

COX-2 cyclooxygenase 2

CR Caloric restriction

CVDs cardiovascular diseases

FOX forkhead box

HFD high-fat diet

HUVEC Human Umbilical Vein Endothelial Cells

IGF-1 insulin/insulin-like growth factor-1

IIS Insulin/IGF-1 signaling

MAPKs mitogen-activated protein kinases

miRNAs MicroRNAs

mRNA messenger RNA

NAMPT nicotinamide phosphoribosyltransferase

ncRNAs non-coding RNAs

NMN Nicotinamide mononucleotide

PDK phosphatidylinositol (PtdIns)-dependent kinase

PGE2 prostaglandin E2

pri-miRNA primary miRNA

PTEN protein phosphatase and tensin homolog deleted in chromosome 10

PUFA polyunsaturated fatty acids

RTKs receptor tyrosine kinases

RYK receptor-Like Tyrosine Kinase

SASP senescence-associated secretory phenotype

SCs senescent cells

SIR1 silent information regulator 1

snoRNAs Small nucleolar RNAs

TMAO Trimethylamine-N-oxide

TSC tuberous sclerosis complex

VCAM-1 vascular cell adhesion molecule-1

VDR vitaminD receptor
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