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Air pollution (AirPoll) accelerates human aging, as assessed by increased adult
mortality and earlier onset of cardiovascular diseases, and dementia. Socio-
economic strata (SES) of wealth and education have parallel differences of
mortality and these diseases. Children from impoverished homes differ in brain
development at birth and in risk of early fat excess and hypertension. To further
enhance the healthspan, biogerontologists may consider a wider range of
environmental exposures from gestation through later life morbidity that
comprise the Gero-Exposome. Experimental studies with rodents and
nematodes document shared transcriptional responses to AirPoll. In rodents,
AirPoll exposure activates gene systems for body-wide detoxification through
Nrf2 and NFkB transcription factors that mediate multiple aging processes.
Gestational environmental factors include maternal diet and exposure to
AirPoll and cigarette smoke. Correspondingly, gestational exposure of mice to
AirPoll increased adult body fat, impaired glucose clearance, and decreased adult
neurogenesis in the hippocampus, a brain region damaged in dementia.
Nematode larvae also respond to AirPoll with Alzheimer relevant responses.
These experimental approaches could identify to interventions for expanded
human health and longevity across SES gradients.
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1 Introduction

This Perspective considers air pollution (AirPoll) as a global factor in excess
mortality and risk of AD in framework of socio-economic strata (SES) Boing et al.,
2022. The poor die younger with earlier onset of cardiovascular disease and AD. I
propose that both AirPoll and SES accelerate human aging. Analyzing interactions of
AirPoll and SES for convergent processes of aging could identify targets that expand the
healthy lifespan for all of us.

Longevity has long been known for its low heritability (Finch and Tanzi, 1997; Finch and
Loehlin, 1998). Twin studies consistently show heritability of lifespan of 20%–30% that may
be even lower at later ages. The Swedish OCTO Twin Study had 12% heritability of age at
death after 80 years (Johansson and Thorvaldsson, 2021). Decades of effort to identify
longevity individual genes has identified few candidates, such as the alleles of ApoE and
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FOXO3A that are shared across human populations. This gap
suggests the importance of population-specific genes (Caruso
et al., 2022). Gene-environment (GxE) interactions for ApoE and
FOXO3A have not been examined in depth. The wide variations of
lifespan and later life health within human populations are mediated
by myriad environmental factors and socio-economic strata (SES).
Both are addressed by recent NIH programs (NIA, 2020, Health
disparities; NIA, 2023, Exposome).

AirPoll is a major contributor to preventable (premature) deaths of
19 million, world-wide (Landrigan et al., 2018; Landrigan et al., 2022).
Ambient PM2.5 represents inhalable particulate matter (PM) of
2.5 micron diameter or smaller, as measured daily by the
Environmental Protection Agency across the United States.
PM2.5 composition may vary widely at any place depending, for
example, on traffic density, industrial activity, and seasonal fires.
Despite this heterogeneity, the global associations of PM2.5 with
many diseases and mortality show the same linearity and scale: no
level of PM2.5 is safe, like cigarette smoke. The impact of PM2.5 extends
to gestational exposures, as described below for the brain (Dickerson
et al., 2023). Prenatal exposures by SES may differ widely between and
within countries for maternal diet, drugs, and smoking exposure.

2 Air pollution and SES are global
environmental factors in aging

The 1993 benchmark ‘Six Cities Study’ (Dockery et al., 1993)
showed strong associations of adult mortality over 3-fold levels of
urban PM2.5 (Figure 1A). Six Cities pioneered in longitudinal
exposures and in considering SES and smoking. Nonsmokers had
lower mortality in cities across the low to high extremes of PM2.5
(OR, 1.19) than current smokers (OR 1.32). Body mass index was
associated with smaller risk (OR 1.08). After ‘controlling for’
education and for cigarette smoking as mortality risks,
associations of PM2.5 with mortality remained strongly
significant. We now know that smoking synergizes with
PM2.5 for super-additive increased risk of lung cancer and
cardiovascular disease (Turner et al., 2014; Forman and Finch,
2018). These finding have been replicated in multiple populations.

AD risk also varies inversely with SES in the United States
(Figure 1B), England (Arakapis et al., 2021), Finland (Korhonen
et al., 2023), among other economically developed countries.
Moreover, longevity parallels this pattern: United States survival
curves for ‘poor vs. non-poor’ are shifted more than 10 years

FIGURE 1
Air pollution enhancement for risk of mortality and AD are modified by SES. (A) AirPoll and mortality rates from the ‘Six Cities Study’ of air pollution
and mortality. White subjects, age 25–74, were enrolled in 1974 and followed to 1991. City names: P, Portage WI; T, Topeka KA; H, Harriman TN; Q,
Watertown MA; L, St. Louis MO; S, Steubenville OH. Redrawn from Dockery et al. (1993). (B) AD prevalence by education decile in the United States ;
standardized for age and gender, ±95% CI. Redrawn from Arakapis et al. (2021). (C) Survival based on data from the US-wide National Health and
Nutrition Examination Survey (NHANES). Redrawn from Crimmins et al. (2009). (D) The Gero-Exposome with exogenous and endogenous components.
Abbreviations: GxExT, Interactions of gene by environment over age and time; SES, socioeconomic status; TBI, traumatic brain injury. Redrawn from
Finch and Haghani 2021, Finch and Kulminski 2019.
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(Crimmins et al., 2009; Chetty et al., 2016) (Figure 1C). DNA me
also varies by SES (Faul et al., 2023). In effect, the poor age faster,
with earlier onset of obesity, cardiovascular diseases, and AD, all
following SES gradients.

AirPoll PM2.5 elevations are associated with accelerated cognitive
decline and AD in multiple cohorts from different populations
(Cacciottolo et al., 2017; Chen et al., 2020; De Looze et al., 2023;
Franz et al., 2023; Petkus et al., 2021; Wang et al., 2023; Yuan et al.,
2023). However, these cohorts were not designed for SES
representation. This gap was recently addressed with the US-wide
MESA Air pollution Study of 4,392 adults (Wang et al., 2023).
Followed longitudinally for a decade since age 62, lower SES had
stronger cognitive associations with specific chemical components of
PM2.5: elementary carbon (EC, tailpipe) and silicon (Si, non-tailpipe
dust) were each associated with decrease of particular cognitive
processes. Some low SES populations also incur higher exposure to
cigarette smoke and PM2.5. Gene-environment (GxE) interactionsmay
be anticipated. ApoE4, the AD risk allele, increased the risk of AD for
high PM2.5 in some populations (Cacciottolo et al., 2017; Franz et al.,
2023; Kulick et al., 2021; Christensen et al., 2023). ApoE4 and
neighboring genes on chromosome 19q13.3 elevate blood cholesterol
and increases risk of heart attack (Nazarian et al., 2022), ApoE4 did not
further increase in smokers (Holmes et al., 2014).

The multitude of environmental factors in AD can be
conceptually organized in the ‘Gero Exposome’ (Figure 1D),
comprised of exogenous vs. endogenous factors (Finch and
Kulminski, 2019; Finch and Haghani, 2021). Gene-environment
factors must operate across the lifespan, including early
development (GxExT). In this schema, SES and PM2.5l are
general exogenous factors not controlled by individual life-style
choices. Diet and smoking are individual exogenous factors, while
body fat is an individual endogenous factor. Links of PM2.5 to
cardiovascular disease for body fat and smoking are better defined
than for AD. In the Los Angeles Children’s Health Study, prenatal
exposure to elevated PM2.5 increased carotid stiffness and systolic
blood pressure at age 11 (Breton et al., 2016).

Brain development is also vulnerable in lower SES households,
shown by MRI studies (Spann et al., 2020; McKinnon et al., 2023;
Morgan et al., 2023; Thomas and Coecke, 2023). For example, lower
SES neonates had larger volumes of several frontal cortex subregions
in association with poorer language skill by age 2 years (Spann et al.,
2020). A meta-analysis expanded these findings of brain region
specificity to SES, with enlarged superior temporal gyri and
hippocampus in lower SES children (Vannucci et al., 2023).
Conversely, lower SES showed smaller right-side fronto-parietal
cortex (Spann et al., 2020). These early findings are hard to
compare between studies because of small sample size, different
imaging measures, and undefined heterogeneity of SES
environments (Thomas and Coecke, 2023). Caveats accepted:
because these forebrain regions are also affected by AD at later
ages, their SES sensitivity may contribute to the earlier onset of AD.

3 Experimental models

Experimental models for AirPoll neurotoxicity are well
developed, based on pioneering studies of Calderón-Garcidueñas
(2002) and Block (Block et al., 2004; Levesque et al., 2011) that

showed rodent brain inflammation and increased amyloid peptides
from exposure to ambient urban air and diesel exhaust, respectively.
Many labs study how PM2.5 and subfractions can accelerate diseases
of the brain and cerebral arteries in rodent models. Nematodes also
respond toPM2.5 subfractions, as noted below.

Our rodent exposure studies have used several subfractions of
PM2.5 in the ultrafine size class, PM0.2, which may penetrate more
deeply into airways than the PM2.5 (Finch, 2018, p.51). With
technology designed by Costas Sioutas at USC, we exposed
rodents to a re-aerosolized nano-sized subfraction of PM2.5 from
ambient Los Angeles roadway air (nPM), or from diesel exhaust
particles (DEP) at controlled density for 8 weeks (5 h/d, 5 days/wk).
The nPM are an aqueous solubilized subfraction that lacks
polyaromatic hydrocarbons (PAH). Exposure to nPM caused
activated glial, and induced inflammation in cerebral cortex, nPM
caused 50% increase of microglial CD14 and CD68 and astrocytic
GFAP, with 50% higher inflammatory cytokines IL-1α and TNFα.
Transcriptional responses include induction of genes for
detoxification and oxidative repair via transcription factors
Nrf2 and NfkB (Morgan et al., 2011; Zhang et al., 2012; Chepelev
et al., 2013; Haghani et al., 2020b; Haghani et al., 2021). These
AirPoll pathways are also shared with systemic oxidative aging
processes recognized as a ‘Hallmark of Aging’ (Schmidlin et al.,
2019; Maldonaldo et al., 2023). Moreover, in the hippocampus, nPM
caused selective loss, paralleling AD (Woodward et al., 2017a).
Neurites were shortened in the CA1 neuronal layer (Figure 2A),
which is damaged in AD; in contrast, neurite length was not altered
in the adjacent dentate gyrus, which is resistant to AD. The GluA1
glutamate receptor subunit was decreased (Woodward et al. 2017a).
White matter myelin was also damaged (Huuskonen et al., 2021;
Lamorie-Foote et al., 2023).

Unexpectedly the neurotoxicity of locally obtained nPM
decreased after 2018 (Zhang et al., 2021). To obtain reliable
responses of neurotoxicity, we have switched to DEP for rodent
exposures which replicate most of our prior findings with nPM
(Shkirkova et al., 2022). Standardized DEP are availability from the
National Institute of Science and Technology (NIST SRM 2975),
collected from a single diesel engine. These DEP have some PAHs,
unlike nPM, and fewer redox-active metals are also much lower than
ambient Pm2.5 (Farahani et al., 2021; Zhang et al., 2021). The NIST-
DEP may stimulate other labs to join this growing field with
expectation of expanded verifiability of studies which is required
for mechanistic studies. A historical precedent may be the
introduction of “Kentucky reference cigarettes” developed
decades ago, which enhanced cancer research replicability (Jacard
et al., 2019).

Because exposure to AirPoll andcigarette smoke can begin
prenatally with maternal exposure, we must analyze the impact of
air pollution across the entire human life course. This concept was
stimulated by the elegant Los Angeles Children Study, which
examined the body mass index (BMI) of adolescents in households
that differed by distance from major roadways and adult smoking
(McConnell et al., 2015) (Figure 2B). Roadway closeness and adult
smoking each increased childrens’ BMI; again, the combination was
super-additive.We do not know themolecular basis for these multiple
synergies of AirPoll neurotoxicity, noted above for lung cancer. Lower
SES populations also have earlier and higher BMI, more
cardiometabolic diseases, and more exposure to cigarette smoke.
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We developed models for gestational exposure of rodents to
nPM which altered adult metabolism. The first study began
exposure 7 weeks before mating, which exposed the maturing
primary oocyte before fertilization (Davis et al., 2013).
Subsequent studies exposed mice only during gestation with
similar results (Woodward et al., 2018; Woodward et al.,
2019). We tentatively conclude that the major developmental
vulnerability to AirPoll arises post fertilization. Further studies
could define if the preimplantation zygote is vulnerable to
AirPoll. Gestational exposure to nPM of wild-type mice
caused multiple adult impairments. The hippocampus had

impaired adult neuronal stem cell proliferation (Figure 2C)
(Woodward et al., 2018). Adult mice were also fatter with
impaired glucose clearance (Figure 2D). The hypothalamic
metabolic axis was also damaged with >50% decreases of the
neuropeptides AGRP, NPY, and POMC (Figure 2D). These
findings suggest that the elevated BMI of adolescents
(Figure 2B) may include gestational exposure to inhaled
toxins of AirPoll and cigarette smoke.

The nematode C. elegans is also sensitive to AirPoll, using nPM
(Haghani et al., 2019). Exposure of Stage 1 larvae to non-lethal
concentrations decreased adult size and modified AD-related

FIGURE 2
Toxicity of air pollution particles. (A) Adult mouse brain responses to AirPoll by 3 month old wild-type mice (C57/BL6) with 8 weeks exposure to
AirPoll-nPM. In the hippocampus, neurons of the CA1 stratum oriens had neurites shortened by 30% by nPM. However, in the neighboring dentate gyrus,
neurite length was unchanged. Redrawn from Woodward et al. (2017b). (B) Adolescent body fat (body mass index, BMI) was increased by exposure to
AirPoll, measured as near roadway (NRP) and second-hand cigarette smoke (SHS) from adult smokers. Los Angeles Children Study. Redrawn from
McConnell et al. (2015). (C) Gestational exposure of mice to nPM impaired adult dentate gyrus neurogenesis, assayed by incorporation uracil nucleotide
EdU. Neuronal generation was decreased >50%, whereas astrocyte generation was not altered. Redrawn from Woodward et al. (2018). (D) Gestational
exposure also increased adult body fat and impaired glucose clearance, redrawn from Woodward et al. (2019), and altered hypothalamic peptides,
redrawn from Haghani et al. (2020a).
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expression of sel-12, an amyloid-processing gene (Haghani et al.,
2019) and increased amyloid protein aggregates (Garcia Manriquez
et al., 2023). Again, these responses involve the Nrf2 anti-oxidant
gene system (skn-1 in nematodes).

4 Discussion

Four decades ago, the pioneering Six Cities Study associated
AirPoll and mortality with SES differences. We now know AirPoll
accelerates many aging processes with mechanisms that are shared
with cardiovascular disease and AD. Prenatal exposure to maternal
inhalation may the first critical phase for AirPoll impact on the brain
and arteries.

A further prenatal phase merits consideration, that the egg we
came from was formed in our mothers’ ovary before her birth, as
known to embryologists for a century. While most oocytes are as old
as our mother, some de novo oogenesis may occur (Porras-Gómez
and Moreno-Mendoza, 2017; Nagamatsu, 2023). Finch and Loehlin.
(1998) proposed the ‘pre-zygotic hypothesis’ for potential for
multigenerational environmental effects on brain function
mediated by environmental impact on the oocyte before
fertilization. Multigenerational persistence of gestational toxicity
is documented in mice for maternal lead, where the third
generation after gestational exposure of mice had altered
locomotion and blood corticosterone (Sobolewski et al., 2018;
Sobolewski et al., 2020). The decrease of ovarian follicles by
prenatal exposure to diesel exhaust (Ogliari et al., 2013) warrants
analysis for potential multigenerational impact of AirPoll.

Major issues remain open. We do not know how maternal
inhalation of PM0.2 can so profoundly impact systemic metabolism.
Some particles may pass lung into blood,but would then encounter
the robust placental barrier (Finch, 2018, p.66). Future studies may
define the maternal and fetal proteome and lipidome response to
AirPoll. The findings ofWang et al (2023) discussed above anticipate
more chemical specification of AirPoll components on artery and
brain development. Shared factors in the Cardiovascular and AD
Exposomes are likely to differ with SES. We may anticipate new
interventions to expand the health span for all SES as mechanistic
pathways becomeresolved for GxExT interactions.
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