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Since its initial discovery almost three decades ago, the transcription factor
nuclear factor erythroid 2-related factor 2 (NRF2) has been shown to regulate
a host of downstream transcriptional responses and play a critical role in
preventing or promoting disease progression depending on the context.
Critically, while the importance of proper nuclear factor erythroid 2-related
factor 2 function has been demonstrated across a variety of pathological
settings, the ability to progress NRF2-targeted therapeutics to clinic has
remained frustratingly elusive. This is particularly true in the case of age-
related pathologies, where nuclear factor erythroid 2-related factor 2 is a well-
established mitigator of many of the observed pathogenic effects, yet options to
target this pathway remain limited. Along these lines, loss of nuclear factor
erythroid 2-related factor 2 function has clearly been shown to enhance
neuropathological outcomes, with enhancing nuclear factor erythroid 2-
related factor 2 pathway activation to prevent neurodegenerative/neurological
disease progression continuing to be an active area of interest. One critical
obstacle in generating successful therapeutics for brain-related pathologies is
the ability of the compound to cross the blood brain barrier (BBB), which has also
hampered the implementation of several promising nuclear factor erythroid 2-
related factor 2 inducers. Another limitation is that many nuclear factor erythroid
2-related factor 2 activators have undesirable off-target effects due to their
electrophilic nature. Despite these constraints, the field has continued to
evolve, and several viable means of targeting nuclear factor erythroid 2-related
factor 2 in a neuropathological context have emerged. In this perspective, we will
briefly discuss the key findings and promising therapeutic options that have been
discovered to date, as well as highlight emerging areas of NRF2-
neurodegeneration research that provide hope for successfully targeting this
pathway in the future.
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Introduction

The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is a critical
regulator of cell survival, mediating vital aspects of redox, protein, and metabolic
homeostasis. In fact, NRF2 target genes are involved in glutathione synthesis, peroxide
reduction, xenobiotic detoxification, proteasome assembly, autophagy, transport and storage
of iron, lipid catabolism, and carbohydrate metabolism (Dodson et al., 2019). Accordingly,
dysregulation of NRF2 signaling has been linked to promoting disease progression, with
restoration of proper NRF2 function restoring homeostasis (Cuadrado et al., 2019). Perhaps
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one of the greatest ongoing frustrations in the field is that despite an
ever-increasing number of compounds that beneficially activate or
inhibit NRF2 in an experimental setting, very few have progressed
through clinical trials to become viable therapeutics. This shortfall
also holds true for neurodegenerative diseases, where loss of NRF2 is
a well-established driver of neurodegenerative phenotypes, yet
restoration of NRF2 signaling remains an unharnessed
therapeutic possibility.

Critically, NRF2 has been shown to play an important role in
mitigating the onset and progression of several neurodegenerative
diseases, including Parkinson’s disease (PD), Alzheimer’s disease
(AD), Huntington’s disease (HD), and Multiple sclerosis (MS)
(Cuadrado, 2022). Loss of NRF2 function significantly
exacerbates neurodegenerative phenotypes, often resulting in
increased inflammation, oxidative stress, or proteotoxicity that
enhance pathogenesis of the chosen model (Brandes and Gray,
2020). Importantly, NRF2 activity has been shown to decline
with age (Suh et al., 2004; Zhou et al., 2018), inferring that the
greatest risk factor for developing neurodegenerative disease is
associated with progressive loss of NRF2. This indicates that
restoring proper NRF2 function, either by direct activation of
NRF2 or blocking the mechanisms that leads to its decline,
represents a feasible strategy to prevent onset and progression of
these debilitating diseases. Below, we will give a brief overview of the
NRF2 signaling pathway and discuss the experimental evidence
supporting a role for NRF2 across different neurodegenerative
contexts. Next, we will highlight the compounds identified to
date that have shown the most therapeutic promise, as well as
the feasibility of utilizing gene therapy-based approaches and drug
delivery systems to achieve a more potent and targeted effect.
Finally, we will discuss the future of the NRF2-aging field,
including the key barriers that need to be overcome to progress
the science from experimental evidence to actual translational
applications.

Nrf2 and neurodegeneration

The Nrf2 signaling pathway
NRF2 is regulated primarily at the protein level by the Kelch-like

ECH-associated protein 1-Cullin-3-RING box protein-1 (KEAP1-
CUL3-RBX1) E3 ubiquitin ligase complex. Under basal, non-
stressed conditions, NRF2 is targeted by this complex for
proteasomal degradation (Itoh et al., 1999; Kobayashi et al., 2004;
Zhang et al., 2004); however, upon the introduction of electrophilic/
oxidative stress (Dinkova-Kostova et al., 2002; Zhang and Hannink,
2003), mutations in NRF2 or its degradation machinery (Singh et al.,
2006; Shibata et al., 2008; Martinez et al., 2013; Ooi et al., 2013), or
autophagy dysfunction (Komatsu et al., 2010; Lau et al., 2010),
NRF2 accumulates in the nucleus and binds small
musculoaponeurotic fibrosarcoma F/G/K (sMaf F/G/K) proteins
to activate transcription of antioxidant response element (ARE)-
containing target genes (Itoh et al., 1997). Along with KEAP1-
dependent degradation, glycogen synthase kinase β (GSK3-β)-
dependent phosphorylation of NRF2 can result in recruitment of
the S-phase kinase-associated protein 1-Cullin-1-Rbx1/β-
transducin repeat-containing protein (SCF/β-TrCP) E3 complex
and degradation of NRF2 (Rada et al., 2011). Additionally,

synoviolin-1 (also known as Hrd1) is an E3 ligase that has been
shown to degrade NRF2 in the endoplasmic reticulum, particularly
during liver cirrhosis (Wu et al., 2014). Along with ubiquitination,
other posttranslational modifications, including acetylation (Sun
et al., 2009), phosphorylation (Huang et al., 2002), methylation
(Liu et al., 2016), and SUMOylation (Malloy et al., 2013) of NRF2, as
well as OGlcNAcylation of KEAP1 (Chen et al., 2017), have been
shown to dictate NRF2 localization and stability. It is also worth
noting that NRF2 expression can be regulated at the DNA and
mRNA levels. For example, methylation of the KEAP1 or NFE2L2/
NRF2 promoters (Wang et al., 2008; Muscarella et al., 2011; Khor
et al., 2014), as well as transcriptional up or downregulation of
NRF2 expression by other transcription factors (i.e., nuclear factor
kappa B [NF-κB] and aryl hydrocarbon receptor [AhR])
(microRNA) (Miao et al., 2005; Liu et al., 2008), have all been
shown to dictate the NRF2 response. Finally, several microRNAs
(i.e., miR-27a, miR144, miR153, and miR142-5p) have been
reported to suppress expression of NRF2 (Narasimhan et al.,
2012; Zhao et al., 2018; Chu et al., 2019). Overall, it is clear why
NRF2 dysregulation leads to disease, as the complex and
interconnected nature of the NRF2 signaling cascade presents a
multitude of possible points of dysfunction. Below, we will highlight
evidence of NRF2 importance in the context of different age-related
neurodegenerative disorders.

Parkinson’s disease
Several experimental studies have demonstrated the importance

of NRF2 in preventing the development of PD phenotypes. For
example, on the chemical induction front, numerous studies utilized
administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP), a well-established chemical inducer of dopaminergic
neuron death and the onset of parkinsonian phenotypes, with
Nrf2−/− mice exhibiting a more pronounced loss of dopaminergic
function and onset of PD-related phenotypes (Burton et al., 2006;
Chen et al., 2009; Innamorato et al., 2010; Rojo et al., 2010; Kaidery
et al., 2013). Importantly, similar results were obtained with
rotenone, 6-hydroxydopamine, and paraquat, three other notable
chemical inducers of PD-relevant outcomes (Jakel et al., 2007; Wang
et al., 2017; Wei et al., 2020). Supporting this notion, a series of
recent studies from us and a collaborator’s group showed that loss of
NRF2 significantly enhanced dopaminergic neuron loss, autophagy
dysfunction, inflammation, and cell death in the Thy1 mouse model
of human α-synuclein overexpression (Corenblum et al., 2016; Ray
et al., 2018; Anandhan et al., 2021; Anandhan et al., 2022). A similar
study indicated that Nrf2−/− mice were more susceptible to PD
phenotypes when stereotactically injected with adenoviral α-
synuclein (Lastres-Becker et al., 2012). This infers that both
genetic and chemical models of PD are enhanced by genetic
ablation of NRF2, clearly indicating its importance in preventing
disease progression (summarized in Figure 1, right panel).

Conversely, several studies have shown that genetic ablation/
suppression of KEAP1, which results in constitutive upregulation of
the NRF2 signaling cascade, improves neuronal survival and
decreases PD phenotypes both in vitro and in vivo (Satoh et al.,
2009; Williamson et al., 2012). Interestingly, specific overexpression
of NFE2L2/NRF2 in astrocytes was shown to prevent MPTP-
induced PD pathogenesis (Chen et al., 2009). Thus, an ongoing
area of interest in the field is determining the cell type-specific
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relevance of NRF2 in glia (i.e., astrocytes, oligodendrocytes, and
microglia) versus neurons in dictating PD progression (Liddell,
2017), with much work still to be done. Much like genetic
modification of KEAP1 or NFE2L2/NRF2 itself, several
NRF2 inducers have been shown to ameliorate pathogenic
features of PD. This includes covalent (i.e., sulforaphane [SF],
di-/mono-methyl fumarate [DMF/MMF], bardoxolone analogs
[CDDO], and curcumin), and non-covalent (i.e., KKPA4026 and
pinostrobine) inducers (Figure 1, left panel), that exert their
protective effects via disrupting KEAP1-dependent degradation of
NRF2, allowing it to translocate to the nucleus and activate
transcription of its downstream antioxidant and anti-
inflammatory target genes (Jazwa et al., 2011; Morroni et al.,
2013; Johnson and Johnson, 2015; Ahuja et al., 2016; Cui et al.,
2016; Zhou et al., 2016; Li et al., 2018; Kim et al., 2020). However, an
important limitation to the current state of the field is that many of
the anti-neurodegenerative effects that have been associated with
NRF2 activation were observed in a cell culture setting, or in mouse
models where a less severe phenotype is obtained, but the actual
levels and form of the compound that pass the BBB and reach
affected tissues is unknown. Another caveat is that many covalent
inducers are electrophilic, and as such can target reactive cysteines
on proteins other than KEAP1, leading to undesirable off-target
toxicity that limits their applicability. However, despite this
limitation, SF is currently being tested in a phase II clinical trial
to determine if it improves cognition in PD patients (Clinicaltrials.
gov; NCT05084365), and DMF is approved by the FDA to treat
relapsing forms of MS. Along these lines, repurposing DMF to treat
PD has garnered some interest (Lastres-Becker et al., 2016), as it is

already FDA approved, and it was shown to prevent oxidative stress
and cytotoxicity in several in vitro and in vivo models of PD
(Majkutewicz, 2022). Overall, administration of DMF and its
other electrophilic counterparts has shown enough benefit to
warrant continued development and consideration as alternative
approaches are developed and eventually implemented.

Importantly, several alternative strategies have emerged to
obtain beneficial induction of NRF2 without using potentially
toxic electrophilic compounds. One example is the protein-
protein interaction inhibitor (PPI) KKPA4026, which was shown
to prevent dopaminergic neuron cell death and ameliorate
parkinsonian behavioral deficits in an MPTP model of PD (Kim
et al., 2020). Liposomal delivery of resveratrol suppressed oxidative
stress and enhanced circulatory function in cerebral vascular cells
from aged rats in an NRF2-dependent manner (Csiszar et al., 2015),
inferring that improved delivery through the BBB could also
enhance the efficacy of other NRF2 inducers. Thus, while
electrophilic inducers continue to represent the gold standard,
efforts towards improved delivery systems, non-covalent
modifiers, and gene-therapy based approaches continue to
emerge as more targeted and possibly potent solutions, which
will be discussed in more detail below.

Alzheimer’s disease
Like PD, several studies have indicated that loss of

NRF2 enhances AD phenotypes. For example, amyloid precursor
protein/presenilin 1 (APP/PS1) mice lacking NRF2 exhibited
autophagy dysfunction-dependent accumulation of insoluble Aβ
aggregates, resulting in an increased pro-inflammatory phenotype

FIGURE 1
NRF2 levels mediate neurodegenerative disease progression. NRF2 activation via covalent and non-covalent pharmacological modifiers or genetic
modulation of KEAP1 has been linked to decreased behavioral deficits, increased motor function, decreased learning and memory impairment, and
decreased weight loss and disease relapse in animal models of PD, AD, HD, and MS/ALS. Contrastingly, loss of NRF2 enhances neurodegenerative
phenotypes, including increased ROS-, inflammation-, and proteotoxicity-dependent inhibition of neuronal and glial function and viability. PD =
Parkinson’s disease, AD = Alzheimer’s disease, HD = Huntington’s disease, MS = Multiple sclerosis, ALS = Amyotrophic lateral sclerosis, ROS = Reactive
oxygen species. Created with Biorender.
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(Joshi et al., 2015). A similar study testing NRF2 loss in a combined
model of amyloidopathy and tauopathy (AT mice) demonstrated
that AT-Nrf2−/− mice exhibited increased levels of phosphorylated
tau, higher levels of Aβ aggregates, and more severe learning and
memory deficits than their AT-Nrf2+/+ counterparts (Rojo et al.,
2017). Perhaps one of the more interesting findings from this study
was that Nrf2−/− mice, even in the absence of excess amyloid or tau,
exhibited dysregulation of 7 of the 10 pathways associated with aging
and AD progression. This important finding clearly indicates that an
age-related decline in NRF2 function is a key driver of
neurodegenerative disorders such as AD. Supporting the notion
that NRF2 is needed to prevent Aβ-driven AD pathogenesis, mice
genetically engineered to overexpress NRF2 in an AD context
(Keap1FA/FA;APPNLGF) exhibited increased glutathione, decreased
oxidative stress and inflammation, and improved cognition
compared to wildtype, with similar benefits being obtained via
administration of the isothiocyanate 6-(Methylsulfinyl)hexyl
isothiocyanate (6-MSITC) (Uruno et al., 2020).

Also on the pharmacological front, several electrophilic and
non-electrophilic compounds have been shown to exert anti-AD
effects via activation of NRF2. DMF, SF, and curcumin, much like in
a PD setting, have been shown to prevent oxidative stress,
inflammation, and pathogenic protein accumulation in in vitro
and in vivo models of AD (Campolo et al., 2018; Paraiso et al.,
2018; Xu et al., 2019; Sun et al., 2022). Of note, protection by DMF
was observed in male, but not female mice, indicating the possibility
of sex-dependent effects on efficacy (Mohle et al., 2021), although
further studies to clarify this effect are needed. A pair of non-
electrophilic NRF2-KEAP1 PPIs, NXPZ-2 and POZL, discovered by
the same group, have both been shown to ameliorate AD phenotypes
in Aβ-injected or APP/PS1 mice, respectively (Sun et al., 2020; Sun
et al., 2023). One interesting recent alternative to a pharmacological
approach is the utilization of antisense oligonucleotides (ASOs) that
target the NRF2 machinery. Along these lines, an ASO targeting
GSK3-β, which can initiate β-TRCP-dependent degradation of
NRF2, was shown to increase NRF2 levels, resulting in decreased
oxidative stress and less severe learning and memory impairment in
a SAMP8−/− AD mouse model (Farr et al., 2014). Thus, much like
PD, several pharmacological and non-pharmacological means of
targeting the NRF2 pathway have shown therapeutic promise in
mitigating AD phenotypes.

Huntington’s disease
Unlike AD and PD, where NRF2 localization is altered or its

levels are low, no studies, at least to our knowledge, have shown if
NRF2 levels are altered in HD patient brains. However, it has been
shown that NRF2 is activated in a cell model of huntingtin
overexpression, inferring that NRF2 is responsible for mitigating
some of the harmful effects brought on by HD progression (van
Roon-Mom et al., 2008). Pharmacologically, CDDO-ethyl amide
and CDDO-trifluoroethyl amide were shown to decrease oxidative
stress and improve motor performance in an N171-82Q transgenic
mouse model of HD (Stack et al., 2010). Similarly, naringin, a dietary
flavonoid obtained from grapefruit was also shown to activate
NRF2-dependent amelioration of HD phenotypes in 3-
nitropropionic acid (3-NP)-induced HD (Gopinath and
Sudhandiran, 2012). SF, curcumin, and tert-butylhydroquinone
(tBHQ) were also shown to protect against 3-NP-induced HD in

an NRF2-dependent manner (Sandhir et al., 2014; Jang and Cho,
2016; Silva-Palacios et al., 2017), and a novel covalent modifier
MIND4, and its derivative 4–17, activated NRF2 and suppressed
oxidative stress in HD cell and animal models, as well as patient
monocytes (Quinti et al., 2016; Quinti et al., 2017). Finally,
compound 2, a non-covalent chalcone-derived NRF2 inducer,
was shown to reduce oxidative stress and improve the survival of
H2O2-treated primary astrocytes isolated from a zQ175 mouse
model of HD (Moretti et al., 2021). Overall, NRF2 clearly plays a
protective role in preventing HD onset and progression, and efforts
continue to determine the relevance of targeting this pathway to
treat patients with HD.

Other neurological diseases
Two other critical central nervous system disorders,

amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS),
have also been shown to involve NRF2 signaling. In the case of ALS,
there are contradictory reports indicating that the spinal cord and
motor cortex of ALS patients have both lower and higher mRNA
and protein levels of NRF2 (Sarlette et al., 2008; Lastres-Becker et al.,
2022). However, the study by Lastres-Becker et al. also tested
downstream target genes, showing elevated expression of the key
detoxifying target gene NADPH-quinone oxidoreductase 1 (NQO1),
as well as the iron metabolism protein heme-oxygenase 1 (HMOX1).
Thus, while this study infers target gene activation does occur in ALS
tissues, further clarification of NRF2 levels in ALS patients is needed.
Much like the MPTP-induced model of PD, the cell type-relevance
of NRF2 may also be important to consider, as astrocyte-specific
overexpression of NRF2 increased survival of mice overexpressing
mutant superoxide dismutase 1 (SOD1G39A), an established model of
ALS (Vargas et al., 2008). Conversely, neither whole body knockout,
nor targeted overexpression of NRF2 in neurons or skeletal muscle
had a pronounced effect on SOD1G39A mouse survival (Guo et al.,
2013; Vargas et al., 2013). This was further supported by a later
study, which investigated a possible gene therapy-based approach
via adeno-associated viral delivery ofNFE2L2/NRF2,which was able
to activate NRF2 and its downstream genes NQO1 and HMOX1 in
NSC-24 motor neuron cells and SOD1G39A mice; however, overall
mouse survival was unaffected (Nanou et al., 2013). These studies
further highlight the cell type-relevance of NRF2 in different
neurodegenerative contexts, and that additional experimental
models of ALS may need to be considered to better correlate
patient observations with lab-based studies.

Finally, NRF2 has also shown importance in MS models and
patient contexts. Like ALS, NRF2 was shown to be upregulated in
MS patient lesions (Licht-Mayer et al., 2015), and transgenic
activation of NRF2 specifically in astrocytes prevented, whereas
whole body knockout exacerbated, the oligodendrocyte loss and
enhanced inflammation observed in a cuprizone-induced model of
MS (Draheim et al., 2016; Nellessen et al., 2020). Mentioned briefly
above, the gold standard treatment for MS, DMF (Tecfidera), has
also been shown to activate NRF2 in MS patient blood and immune
cells (Gopal et al., 2017; Hammer et al., 2018; Carlstrom et al., 2019).
Furthermore, DMF-dependent activation of NRF2 in neurons and
glia was associated with decreased oxidative stress and increased
overall survival in a myelin oligodendrocyte glycoprotein-driven
mouse model of MS. The protective effect of DMF was not observed
in Nrf2−/− mice, although a later study using this same model
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produced contradictory results, which could be due to discrepancies
in DMF dose and time of treatment (Linker et al., 2011; Schulze-
Topphoff et al., 2016). In general, these studies indicate that
activation of NRF2 represents a feasible strategy to treat MS
progression, with DMF and its derivatives representing the best
current approach.

Caveats and future considerations
Activation of NRF2 continues to represent a therapeutic strategy

with promising, yet untapped potential. As loss of NRF2 clearly
exacerbates the progression of experimental models of
neurodegenerative disorders, it remains clear that preserving or
re-establishing proper NRF2 function should mitigate disease
progression and improve patient prognosis across a wide range
of neuropathological contexts. While the most promising options
identified to date are electrophilic (i.e., SF, DMF, and CDDO),
alternative approaches, including protein-protein interaction
inhibitors, adeno-associated viral (AAV)-mediated delivery,
antisense oligonucleotides, and enhanced delivery systems
continue to emerge as viable possibilities (Figure 2). Another
interesting approach currently being tested is hybrid molecules,
whereby activators of NRF2 (i.e., DMF) are coupled to molecules
that inhibit its upstream repressors or co-activate its downstream

effectors (i.e., GSK3- β and HMOX1) (Di Martino et al., 2020; El Ali
et al., 2020). However, as discussed above, continued reliance on
electrophilic compounds with known off-target effects is still likely
to result in toxicity regardless of the specificity of the conjoined
molecule. Another intriguing class of compounds not discussed in
detail here is natural compounds (Moratilla-Rivera et al., 2023),
which clearly exert beneficial effects, but often lack sufficient clarity
on the mechanism of action and whether the compound itself, or a
metabolite, are responsible for the observed protection. Regardless,
pharmacological intervention continues to warrant further
investigation, particularly in cases where no toxicity is observed.

Along with the methods already being tested in an
NRF2 context, several other possible strategies for therapeutic
intervention also warrant consideration. One popular approach is
improving the ability of small molecules to cross the BBB. This
includes mildly disrupting BBB integrity, modifying/tagging
established compounds to improve their stability/penetrance, as
well as utilizing intranasal administration to bypass the BBB
altogether, among others (Figure 2). Much like the liposomal
delivery approach discussed above, several nanoparticle-,
bioengineering-, and biomimetic-based approaches have also
garnered recent interest (Sun and Roy, 2021), inferring that
testing these systems with NRF2-targeted therapies could also

FIGURE 2
Established and putative means of NRF2 activation to treat neurodegeneration. Several pharmacological and gene therapy-based approaches have
shown therapeutic promise in treating neurodegenerative diseases. Electrophilic activators, including DMF, SF, tBHQ, Curcumin, CDDO, and MIND4-17,
aswell as non-covalent protein-protein interaction inhibitors such as NXPZ-2, POZL, KKPA4026, andCompound 2 have all been shown to ameliorate AD,
PD, HD, and MS progression in an NRF2-dependent manner. Adenovirus-associated NRF2 (AAV6-NRF2), as well as antisense oligonucleotides
(ASOs) against GSK-3β, have been shown to prevent ALS and AD phenotypes, respectively. Possible untested pharmacological, drug delivery, and AAV/
ASO approaches to target NRF2 in neurodegenerative disease include passive transcytosis, intranasal delivery, drug modification, membrane disruption,
liposomal/nanoparticle formulations, and AAV/ASOs targeting NRF2 stabilizers (DJ-1), or its degradation machinery (KEAP1, HRD1) and transcriptional
repressor (BACH1). DMF = Dimethyl fumarate, SF = Sulforaphane, tBHQ = tert-butylhydroquinone, BBB = Blood brain barrier, AAV = Adeno-associated
virus, ASO = Antisense oligonucleotide. Created with Biorender.
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work. Finally, based on the promise of AAV-mediated
NRF2 overexpression, as well as targeted enhancement of
NRF2 transcription in astrocytes in mouse models of
neurodegeneration, gene therapy-based approaches that lead to
brain cell type-dependent increases in NRF2 expression also
appear to have significant merit. This is further supported by the
beneficial, NRF2-dependent, effects observed in the presence of
ASOs targeting GSK3-β, as other ASOs targeting negative
regulators of NRF2 signaling (i.e., KEAP1, synoviolin [HRD1],
and the transcriptional repressor or NRF2-AREs, BACH1, could
all theoretically upregulate NRF2 to provide therapeutic benefit
(Figure 2). AAV-mediated overexpression of DJ-1, which has
been shown to stabilize NRF2 in a PD context (Clements et al.,
2006; Im et al., 2012), could also be effective. Continued testing of
these and other already established NRF2-based strategies promises
to yield better NRF2-targeted therapies that progress to clinical trials
and can eventually be used for intervention in patients suffering
from these debilitating diseases.

Concluding remarks

NRF2 continues to represent a viable therapeutic target with
endless possibilities. While current efforts have shown great
promise, the field has continued to evolve towards more
targeted, efficient, and potent possibilities. Considering the
NRF2 field is still relatively young, at just over two decades
old, the progress made to date regarding our mechanistic
understanding of this pathway in disease, including viable
means to target it even at the patient level, is remarkable.
Clearly the sky is the limit in harnessing the protective
potential of this pathway across the neurodegenerative disease
spectrum, and only time will tell if we can finally progress from
experimental promise to therapeutic reality.
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