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Aging is a complex process characterized by the gradual decline of physiological
functions, leading to increased vulnerability to age-related diseases and reduced
quality of life. Alterations in DNA methylation (DNAm) patterns have emerged as a
fundamental characteristic of aged human skin, closely linked to the development
of the well-known skin aging phenotype. These changes have been correlated
with dysregulated gene expression and impaired tissue functionality. In particular,
the skin, with its visible manifestations of aging, provides a unique model to study
the aging process. Despite the importance of epigenetic age clocks in estimating
biological age based on the correlation between methylation patterns and
chronological age, a second-generation epigenetic age clock, which correlates
DNAm patterns with a particular phenotype, specifically tailored to skin tissue is
still lacking. In light of this gap, we aimed to develop a novel second-generation
epigenetic age clock explicitly designed for skin tissue to facilitate a deeper
understanding of the factors contributing to individual variations in age
progression. To achieve this, we used methylation patterns from more than
370 female volunteers and developed the first skin-specific second-generation
epigenetic age clock that accurately predicts the skin aging phenotype
represented by wrinkle grade, visual facial age, and visual age progression,
respectively. We then validated the performance of our clocks on independent
datasets and demonstrated their broad applicability. In addition, we integrated
gene expression and methylation data from independent studies to identify
potential pathways contributing to skin age progression. Our results
demonstrate that our epigenetic age clock, VisAgeX, specifically predicting
visual age progression, not only captures known biological pathways
associated with skin aging, but also adds novel pathways associated with skin
aging.
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Introduction

Aging is a complex process that involves the gradual decline of
physiological functions over time, leading to increased susceptibility
to age-related diseases and reduced quality of life. The
understanding of aging and its underlying mechanisms has been
a major focus of scientific research. However, the complexity and
heterogeneity of the aging process present significant challenges in
unraveling its intricacies (Flament et al., 2013; Ferrucci et al., 2020).
A major challenge in understanding the aging process and
developing interventions to promote healthy aging is the lack of
reliable biomarkers that can accurately reflect individual differences
in the rate of aging and provide insights into the underlying
biological processes. (Borras, 2021; Guo et al., 2022; Lopez-Otin
et al., 2023).

DNAmethylation (DNAm) is an epigenetic modification crucial
for regulating gene expression and diverse biological processes, like
development and cell function, X-chromosome inactivation or
disease pathogenesis. Through the addition of a methyl group to
cytosine residues in CpG dinucleotides, DNAm affects gene
expression without altering the DNA sequence. DNAm patterns
are dynamically regulated during development, cellular
differentiation, and in response to environmental cues,
contributing to the establishment and maintenance of cell-
specific gene expression programs (Jones, 2012; Moore et al.,
2013). In addition to global DNAm changes, specific regions
known as low methylated regions (LMRs) have emerged as
significant regulatory elements. LMRs are characterized by
relatively low levels of DNAm and frequently coincide with gene
regulatory regions like enhancers and promoters. These
evolutionarily conserved LMRs play a role in precise gene
expression control and fine-tuning cellular functions (Hu and
Dai, 2014; Raddatz et al., 2021). Notably, DNAm patterns
undergo alterations during aging, with a common observation of
global hypomethylation and site-specific hypermethylation. These
age-associated DNAm changes have been implicated in age-related
diseases and the decline of various cellular processes (Bollati et al.,
2009; Jones et al., 2015; Zampieri et al., 2015). Elucidating the
dynamics of DNAm and its modifications during aging holds
substantial potential for unraveling the molecular mechanisms
underlying aging and developing interventions to promote
healthy aging (Marttila et al., 2015).

In response to the need for robust biomarkers of aging,
researchers have increasingly focused on the development of
epigenetic age clocks. These clocks are molecular instruments
designed to estimate an individual’s biological age by examining
DNAm patterns. The first generation of epigenetic age clocks,
exemplified by the Horvath clock and Hannum clock, were
constructed using statistical techniques to identify a collection of
DNAm markers that exhibit a correlation with chronological age.
These clocks rely on DNAm data obtained from specific genomic
regions, which are then utilized to construct a predictive model for
age estimation (Hannum et al., 2013; Horvath, 2013). Subsequently,
epigenetic age clocks have emerged as invaluable tools within the
field of aging research (Armstrong et al., 2017; Horvath and Raj,
2018).

However, first-generation epigenetic age clocks have inherent
limitations that hinder their ability to fully capture the intricate

nature of the aging process. These clocks primarily rely on a
predetermined set of DNAm markers, which may not encompass
the entire complexity of aging-related changes. Furthermore, first-
generation age clocks often focus solely on estimating chronological
age without considering additional influential factors, such as
smoking or age-related plasma protein levels (Bell et al., 2019;
Levine, 2020). To overcome some of these shortcomings and
improve the predictive capacity of age-related phenotype, second-
generation epigenetic age clocks have been developed. These clocks
integrate DNAm data with supplementary variables such as
cognitive or physical performance measures, enabling a more
comprehensive evaluation of aging and functional decline (Li
et al., 2022). Notably, second-generation age clocks, exemplified
by PhenoAge and GrimAge, have shown improved predictive ability
for mortality and age-related diseases (Levine et al., 2018; Lu et al.,
2019; McCrory et al., 2021). Nevertheless, it is crucial to
acknowledge that aging is a multifaceted phenomenon, and
although second-generation age clocks outperform their
predecessors, they may not fully unravel the underlying
mechanisms contributing to the differential rates of aging among
individuals (Oblak et al., 2021).

Skin, because of its unique characteristics and the visible
manifestations of aging, serves as an exceptional model for
studying the aging process. The rate of skin aging exhibits
significant variability among individuals, rendering it a valuable
tool for capturing diverse age progressions (Lowry, 2020). Notably,
the skin is directly exposed to various environmental stressors,
including ultraviolet (UV) radiation and pollutants, which
contribute to the observable signs of aging, such as wrinkles, age
spots, and loss of elasticity (Ansary et al., 2021; Wong and Chew,
2021). These visible and quantifiable aging effects make the skin an
ideal model for investigating the pace of aging and assessing the
efficacy of interventions. During the aging process, the skin
undergoes multifaceted cellular and molecular changes,
encompassing epigenetic alterations, that offer valuable insights
into the underlying mechanisms of aging (Farage et al., 2009;
Raddatz et al., 2013; Krutmann et al., 2017). However, despite
the potential advantages of skin as a model system, there is
currently a lack of second-generation epigenetic age clocks
specifically tailored for skin aging, emphasizing the necessity for
further research in this domain.

The recognition of age clocks, which directly capture relevant
aging characteristics linked to functional aspects of aging, is
increasingly being acknowledged (Field et al., 2018; Salameh
et al., 2020). By directing attention towards specific aging
markers that closely correlate with age-related deterioration, such
as facial visual age progression, the utilization of a skin-specific
epigenetic age clock could yield more precise insights into the
fundamental molecular processes that underlie interindividual
variations in the aging process. This refined approach holds great
potential in unraveling the biological mechanisms contributing to
age-related decline, thus fostering the development of targeted
interventions and personalized strategies aimed at promoting
healthy aging.

To follow this notion, we used the methylation patterns of
378 female volunteers as a foundation for developing three
second-generation epigenetic age clocks, each targeting the
prediction of distinct aging phenotypes including wrinkle grade,
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visual facial age, and visual age progression. We employed a
comprehensive approach that involved testing various training
strategies and evaluating the performance of each clock on
independent datasets, validating their wide-ranging applicability.
Moreover, we specifically tailored our clock, VisAgeX, to effectively
predict the visual age progression of skin tissue. Using this newly
developed age clock, we integrated gene expression and methylation
data from independent studies to identify pathways that may
contribute to the rate of skin aging. The results demonstrate that
our clock not only captures well-established biological pathways
associated with skin aging, but also uncovers novel pathways in the
context of skin aging.

Results

DNAm-based prediction of the degree of
wrinkling

To test the feasibility of creating a second-generation epigenetic
age clock, we first tried to predict the rate of wrinkles as a single skin-
aging trait based on DNAm profiles of epidermal samples. We
selected wrinkle grade as the primary skin aging trait based on its

widespread recognition as a visible sign of aging and the ease of its
identification and quantification. Specifically, the degree of facial
wrinkle severity was assessed in 378 female volunteers from the
Study of Health in Pomerania (SHIP) (Volzke et al., 2022) through
the use of a panel of 30 experts who rated the degree of wrinkles on a
scale of 1–100 based on portrait photographs of the participants. The
wrinkle grade was then determined as the average of the 30 ratings,
providing a quantitative measure of skin aging for each participant.
This variable was used as outcome variable to train our Wrinkle
Predictor based on DNAm data. Initially, the cohort group was
divided into two subsets, with 80% allocated for training purposes
and 20% reserved for validation. The division ensured that the
outcome variable was equally distributed between the training and
validation sets. Subsequently, a generalized linear model was trained
with 10-fold cross-validation based on the training set (80% of the
cohort group, see Materials and Methods and Supplementary Table
S1 for details, Figure 1A) leading to a model with a stable mean
absolute prediction error among the cross-validations (MAE =
12.66 ± 0.94 wrinkle grade). To validate our model, we applied
the remaining 20% of the volunteers which were not used for model
training and observed a significant high correlation between
predicted and observed wrinkle grade (R = 0.86, p = 1.03E-21,
Pearson correlation), resulting in a low mean absolute error of

FIGURE 1
Training of theWrinkle Predictor. (A) Schematic representation of the trainedWrinkle Predictor. For each volunteer, an expert panel judged the grade
of wrinkling within a range from 0 to 100. The corresponding DNAm profile of the skin extracted from suction blisters were then used to train a model
predicting thewrinkle grade. Validation of the newly trainedWrinkle Predictor on (B) the test set and (C) the independent dataset (Holzscheck et al., 2020).
Each panel reports the Pearson correlation and the mean absolute error.
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8.81 on the wrinkle grade scale (Figure 1B), which was even lower
than the median standard deviation of the expert panel (median =
11.85, Supplementary Figure S1). Moreover, we used an
independent study (Holzscheck et al., 2020) including 51 healthy
females within a similar age range to the SHIP cohort to further
validate our Wrinkle Predictor. Again, the predicted wrinkle grade
correlated strongly with the wrinkle grade assessed by the experts
(MAE = 9.66 wrinkle grade, R = 0.89, and p = 1.27E-18, Pearson
correlation, Figure 1C and Supplementary Table S2). Taken
together, we established a DNAm-based Wrinkle Predictor which
is applicable for data from multiple sources.

DNAm-based prediction of visual facial age

The process of aging exhibits individual variations, leading to
diverse manifestation in facial visual appearance. Thus, facial
visual age is a reliable measure of age progression as it
encompasses the cumulative effects of several factors, such as
Sun exposure, lifestyle, and genetic predisposition, that
contribute to the aging process (Flament et al., 2013). In

comparison, measures such as wrinkle grade provide a limited
view of aging by capturing only a single aspect. Facial visual age
assessment offers a more holistic perspective on age progression,
as it considers various visual aspects of skin aging, including not
only wrinkles, but also skin texture, tone, age-related
depigmentation, and sagging. To create a tool measuring skin
aging more holistically, we trained another DNAm-based model
to predict visual facial age (Figure 2A). Similar to the Wrinkle
Predictor, we considered the same female participants of which
the facial visual age was determined likewise to the wrinkle grade
(see Materials and Methods and Supplementary Table S1 for
details). The model was trained using 10-fold cross validation on
80% of the dataset again ensuring an equal distribution of the
outcome variable, facial visual age.

Again, the mean absolute prediction error of the obtained model
was stable among the cross-validations (MAE = 8.20 ± 0.83 years).
We then used 20% of the remaining data partition, which was not
used to train the model, to validate our Visual Facial Skin Age Clock.
We observed a significant correlation (R = 0.84, p = 2.10E-20,
Pearson correlation) between the predicted visual facial age and
the assessed age (Figure 2B). In fact, the mean absolute prediction

FIGURE 2
Training of the Visual Facial Skin Age Clock. (A) Diagram schematically illustrating the training process for the Visual Facial Skin Age Clock. Expert
panels assessed the age of volunteers based on their portrait pictures (observed visual facial age), and the DNAm profiles of skin samples obtained from
suction blisters were utilized to train a predictivemodel for visual facial age (predicted visual facial age). The performance of the newly trained Visual Facial
Skin Age Clock was evaluated through validation on (B) the test set and (C) the independent dataset (Holzscheck et al., 2020). The Pearson
correlation and mean absolute error are provided for each panel, indicating the accuracy and precision of the clock’s predictions.
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error in the test set (MAE = 6.54 years, Figure 2B) was comparable to
the median standard deviation assessed by the expert panel
(median = 6.55, Supplementary Figure S2). Furthermore, we
validated our Visual Facial Skin Age Clock with the same
independent study (Holzscheck et al., 2020) as applied to our
Wrinkle Predictor. The predictions from the independent study
showed not only a slightly decreased mean absolute prediction error
(MAE = 5.76 years), but also an even stronger significant positive
correlation (R = 0.91, p = 2.70E-20, Pearson correlation) compared
to the test set (Figure 2C and Supplementary Table S2). In summary,
our findings demonstrate that our trained model can predict the
visual facial age based on DNAm from different sources.

Challenges in capturing the rate of skin
aging using the visual facial skin aging clock
in female volunteers

Two individuals of the same chronological age may differ in
visual facial age, indicating that individuals’ skin age varies in rates.

To investigate these variations in aging rates and to gain insights in
its potential implications for anti-aging interventions we
hypothesized that the newly trained Visual Facial Skin Age Clock
can be used as tool, as it should capture the difference between visual
facial age and chronological age, which we termed skin age
progression. For this purpose, we compared the relationship of
the observed age progression (the difference between visual facial
age assessed by the expert panel and chronological age) and the
predicted skin age progression (obtained by calculating the
difference between the prediction of the Visual Facial Skin Age
Clock and the actual chronological age) (Figure 3A). Here, the
observed age progression was defined as the deviation of visual facial
age assessed by an expert panel by the chronological age while the
predicted skin age progression was calculated by using the Visual
Facial Skin Age Clock prediction. Even though the calculated
predicted skin age progression obtained by using prediction from
the Visual Facial Skin Age Clock resulted in a comparably low mean
absolute error of 6.54 years (Figure 2B), the correlation with the
observed age progression was not significant and even negative
(R = −0.02, p = 8.90E-01, Pearson correlation, Figure 3A). Moreover,

FIGURE 3
Relationship between observed age progression, predicted skin age progression, chronological age, and observed visual facial age. (A) Comparison
of the observed age progression, defined as the deviation of visual facial age from chronological age, with the predicted skin age progression obtained
computing the difference between the Visual Facial Skin Age Clock’s prediction and actual chronological age. The panel reports the mean absolute error
and the Person correlation. (B) Relationship between chronological age and observed visual facial age. (C) Correlation between chronological age
and observed age progression. Each panel includes Pearson correlation.

Frontiers in Aging frontiersin.org05

Bienkowska et al. 10.3389/fragi.2023.1258183

https://www.frontiersin.org/journals/aging
https://www.frontiersin.org
https://doi.org/10.3389/fragi.2023.1258183


the predicted skin age progression could only explain less than 5% of
the variance (|R| < 0.05) in the observed age progression. As the
Visual Facial Skin Age Clock is not able to capture the association
with skin age progression, we conducted separate analyses to
understand the general relationship between chronological age
and both observed visual facial age (Figure 3B) and observed
progression (Figure 3C), respectively.

While chronological age strongly correlated with observed visual
facial age (R = 0.91, p = 2.20E-16, Pearson correlation, Figure 3B),
the correlation of chronological age with observed visual skin age
progression was much weaker (R = 0.16, p = 2.00E-02, Pearson
correlation, Figure 3C).

A DNAm clock directly predicting the facial
visual age progression

As the Visual Facial Skin Age Clock could not capture age
progression, we trained a DNAm-basedmodel to directly predict the
facial visual age progression (VisAgeX clock). Therefore, we only
used CpGs located within LMRs for the model input to take
advantage of the regulatory potential of these specific regions as
they are known for their role in precisely controlling gene expression
and fine-tuning cellular functions (see Materials and Methods for
details). Following a similar approach to the aforementioned models
we split again the SHIP dataset into 80% for the model training and
20% for validation controlling for an equal distribution of the
outcome variable, age progression. The obtained model showed a
very stable mean absolute prediction error among the cross-
validations (MAE = 5.99 ± 0.01 years). Similar to the Wrinkle
Predictor and Visual Facial Skin Age Clock, we used the same
datasets to validate the performance of VisAgeX (Supplementary
Table S2). The prediction obtained by applying VisAgeX to the SHIP
test set not only significantly correlated with the observed age
progression (R = 0.3, p = 1.20E-02, Pearson correlation), but also
resulted in a low mean absolute prediction error of 6.17 years
(Figure 4A). In the case of the independent study (Holzscheck
et al., 2020), the mean absolute prediction error decreased even
further (MAE = 4.67 years) and displayed a significant correlation
(R = 0.48, p = 3.30E-04, Pearson correlation) of the obtained
predictions with the observed age progression values as well
(Figure 4B). Additionally, we examined the correlation of
VisAgeX predictions with chronological age, which was found to
be not significant (R = 0.26, p = 6.20E-02, Pearson correlation,
Supplementary Figure S3). This suggests that the VisAgeX
prediction is not primarily focused on DNAm changes associated
with chronological age. To further test the performance of VisAgeX
in capturing the age progression, we conducted a study, called
Youngster-Oldie (Y-O), which was designed for this purpose by
recruiting two groups of individuals within a similar chronological
age range who exhibited contrasting visual appearances. The first
group, referred to as Youngsters, comprised 10 subjects who visually
appeared approximately 5 years younger than their chronological
age (expert panel assessment), while the second group, referred to as
Oldies, consisted of 15 individuals with a similar age to the
Youngster group but who appeared approximately 5 years older
(expert panel assessment, see Materials and Methods for study
details). As this study has been carried out considering two
groups of female volunteers with different age progression but
within a similar age range, we investigated if the VisAgeX can
distinguish both groups. Indeed, a statistically significant
differentiation of the youngsters and oldies by the predicted
values of VisAgeX was observed (Figure 4C, p = 1.6E-02,
Wilcoxon test).

FIGURE 4
Validation and performance of VisAgeX - the clock trained to
predict age progression based on LMRs. Illustration of the comparison
between the observed age progression, which represents the
deviation of visual facial age from chronological age, and the
predicted skin age progression obtained by applying VisAgeX to (A) the
test set and to (B) the independent dataset (Holzscheck et al., 2020).
The accuracy and precision of the clock’s predictions are reported in
both panels as Pearson correlation and the mean absolute error. (C)
Discrimination of the age groups Youngsters (age
progression <= −5 years) and Oldies (age progression >= +5 years)
based on the predicted values of VisAgeX in the Y-O Study. The
statistical significance of differentiation was evaluated using the
Wilcoxon test. The images and corresponding values below the
images on the left serve as demonstrative examples. Chron. age =
chronological age.
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Additionally, we also compared the performance of VisAgeX
trained based on LMRs compared to VisAgeX trained based on all
CpGs of the Infinium MethylationEPIC v1.0 BeadChip
(Supplementary Figure S4 and Supplementary Table S2). In
contrast to the LMR-based VisAgeX, the mean absolute
prediction error for the CpG-based clock was slightly increased
in the SHIP test set (MAE = 6.26 years >6.17 years, Supplementary
Table S2) and considerably increased in the independent study
(MAE = 6.23 years >4.67 years, Supplementary Table S2),
accompanied by a decrease in the significance of the
correlations (p = 2.30E-02 > 1.20E-02, Pearson correlation, and
p = 2.90E-03 > 3.30E-04, Pearson correlation, respectively,
Supplementary Table S2). Furthermore, the two distinct groups
of the Y-O study could not be differentiated statistically significant

by the predicted values of the CpG-based VisAgeX clock (p =
3.40E-01, Wilcoxon test, Supplementary Figure S4C and
Supplementary Table S2) in contrast to the values of the LMR-
based clock (p = 1.6E-02, Wilcoxon test, Figure 4C and
Supplementary Table S2). Thus, the CpG-based VisAgeX clock
did not pass validation in all three studies.

Identification of pathways potentially
contributing to the speed of skin aging

In order to evaluate the potential utility of VisAgeX as a tool for
investigating the biological mechanisms underlying aging, we
performed pathway enrichment analyses using three distinct
approaches (Figure 5A). Generally, we used a ranked gene list as
input for GSEAPreranked to identify enriched pathways out of the
biological Hallmarks, as defined in MSigDB (see Materials and
Methods for details) (Mootha et al., 2003; Subramanian et al.,
2005; Liberzon et al., 2015). First, we used the coefficient values
from the model as importance score to rank the genes associated to
skin-specific LMRs (Figure 5A, blue). In the second approach, the
genes were ranked based on the correlation between methylation
level and predicted skin age progression determined by VisAgeX
(Figure 5A, green). Lastly, the available gene expression data were
correlated to the VisAgeX prediction to rank the genes for the
pathway enrichment analysis (Figure 5A, purple). The latter two
approaches were applied to the three datasets SHIP test set, the
independent study (Holzscheck et al., 2020) and the Y-O study, as
used for the validation of VisAgeX. Thus, the analyses resulted in
7 lists of biological hallmarks, from which the overlapping pathways
were considered to ensure a general validity independent of the
underlying studies. Finally, a list of 10 pathways was obtained,
5 revealed by all 7 analyses and 5 that were revealed by 6 of the
7 analyses (Figure 5B). In our analysis, we identified various
biological pathways that may be potentially involved in the speed
of skin aging. These pathways include established skin aging-related
processes, such as those associated with early and late estrogen
responses and genes downregulated by UV radiation. Additionally,
pathways not commonly linked with skin aging, including hypoxia
response and epithelial-mesenchymal transition (EMT) in wound
healing, fibrosis, and metastasis, were also identified. In summary,
our analysis thus revealed ten potential biological pathways that
could contribute to the speed of skin aging.

Discussion

Aging is a multifaceted process characterized by a gradual
decline in physiological functions, which increases the
susceptibility to age-related diseases (Lopez-Otin et al., 2023).
Consequently, there is an increasing demand for precise and
reliable aging indicators to enable monitoring and prediction of
biological aging rates in individuals. Nonetheless, a comprehensive
understanding of the mechanisms of aging and why people age at
different rates is still lacking (Kennedy et al., 2014; Levine et al.,
2022). Our study demonstrates the successful prediction of the
wrinkle grade, visual facial age, and visual age progression,
respectively, using DNAm profiles of epidermal samples,

FIGURE 5
Assessment of biological pathways and predictive features of
VisAgeX. (A) Schematic representation of the pathway enrichment
analyses which were conducted using three different approaches to
evaluate the potential applicability of VisAgeX for investigating
the biological mechanisms driving the aging process. The first
approach ranked genes based on the coefficient values from the
model (blue), the second approach ranked genes based on the
correlation between CpG methylation level and predicted visual facial
age progression determined by VisAgeX (green), and the third
approach correlated gene expression data with VisAgeX predictions
(purple). These approaches were applied to the test set, the
independent study (Holzscheck et al., 2020), and the Y-O study used
for VisAgeX validation. The resulting lists of pathways were then
analyzed for overlaps to ensure general validity across different
studies. (B) Representation of the top ten overlapping biological
pathways visualized in a dot plot with dot size refereeing to the
pathway size, the color to the number of overlapping sources and
sorted according to their averaged absolute normalized enrichment
score.
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indicating the potential of DNAm as a reliable predictor of skin-
aging traits. Furthermore, our three second-generation skin-specific
epigenetic age clocks were subjected to validation on independent
datasets to ensure their reliability and generalizability. In all cases we
observed a significant and strong correlation between the predicted
and observed values, demonstrating the wide-ranging applicability
of our trained models. Notably, the practical application of our
wrinkle clock also confirmed the rejuvenating effect of the small
compound dihydromyricetin (DHM) on aged human skin (see
accompanying paper by Falckenhayn et al.). The findings
revealed that DHM not only reduced the wrinkle grade
prediction in cultured primary human keratinocytes but also
resulted in a reduction in methylation age as validated by two
independent epigenetic age clocks. The predicted rejuvenating
effects were accompanied by functional anti-aging effects on skin
cells. This highlights that our predictor is indeed capable of
mathematically modulating the skin aging phenotype.

Although our Visual Facial Age Clock accurately predicts the
visual facial age, the model’s ability to capture skin age progression
was weak, as the results showed a non-significant correlation with
the predicted skin age progression explaining less than 5% of the
variance. This discrepancy may be attributed to the weak correlation
between chronological age and observed visual skin age progression.
The visual judgment of age is typically learned and based on
experiences with chronological age, whereas the DNAm changes
with chronological aging may not directly align with the observed
age progression (Ryan, 2021; Simons et al., 2021). Age progression,
being a measure of divergence from chronological age, is influenced
by various factors including environmental influences. Therefore,
while the visual facial age can be predicted based on DNAm, it does
not correlate strongly with the age progression.

We were able to overcome this limitation by training a clock
directly using the speed of aging as a proxy. The prediction of the
newly developed age clock, VisAgeX, showed a significant positive
correlation with observed age progression in all applied datasets,
although the correlation was relatively weak. This can be attributed
to several technical and biological factors. One possible explanation
is that the clock may not capture all the relevant molecular markers
associated with age progression, as aging is a complex process
influenced by various molecular pathways. To support this
hypothesis, studies utilizing multi-omics approaches, such as the
GrimAge approach, have shown improved prediction accuracy by
incorporating additional molecular features beyond DNAm alone
(Lu et al., 2019; Kudryashova et al., 2020; Di Micco et al., 2021). Our
results indicate that the developed clock holds promise in predicting
age progression and highlights the need for continued exploration of
multi-omics approaches and the integration of diverse biological
factors to improve the prediction accuracy of skin age progression
which could be a promising basis for refining our understanding of
aging mechanisms.

Interestingly, our results also indicate that the clock achieved by
LMR-based training outperforms the traditional CpG-based
approach in predicting visual age progression, providing a more
accurate reflection of skin aging. We believe that this superior
performance can be attributed to the LMRs’ tissue specificity and
their sensitivity to dynamic changes influenced by environmental
and biological factors. LMRs provide a more comprehensive
representation of the aging process (Hu and Dai, 2014; Raddatz

et al., 2021), yielding more accurate predictions of skin age
progression. Our findings highlight the importance of
considering LMR-based approaches in developing predictive
models for aging and suggest the potential of VisAgeX as a
valuable tool for assessing the rate of aging. This provides a
promising outlook for the application of LMRs in developing
more accurate and reliable aging clocks.

Moreover, our analysis of the VisAgeX clock identified diverse
biological pathways known for their association with skin aging,
including estrogen response, which has been shown to play an
important role in maintaining dermal health and anti-aging
properties by binding to estrogen receptors in the skin, thereby
affecting collagen and elastin profiles during aging and at/post
menopause (Ganceviciene et al., 2012; Thornton, 2013; Lephart
and Naftolin, 2022). It also highlighted the importance of the
response to UV radiation which is known to be a major driver of
photoaging, characterized by the generation of reactive oxygen
species (ROS), upregulation of matrix metalloproteinases
(MMPs), particularly MMP2, and degradation of collagen and
other extracellular matrix components, contributing to wrinkle
formation and skin aging (Gronniger et al., 2010; Rinnerthaler
et al., 2015; Kim et al., 2022). Additionally, our investigation
uncovered the involvement of other pathways that may
contribute to skin aging, such as hypoxia and epithelial-
mesenchymal transition (EMT). In this regard, studies in
Caenorhabditis elegans have demonstrated that the modulation of
hypoxia-inducible factors (HIF) signaling pathways influence the
rate of aging and lifespan. For example, the activation of HIF can
induce a state of cellular senescence, characterized by irreversible
growth arrest and the secretion of pro-inflammatory molecules.
Additionally, it has been demonstrated that manipulating HIF
signaling pathways can extend lifespan and delay age-related
phenotypes in C. elegans (Chen et al., 2009; Leiser et al., 2011;
Hwang et al., 2014). These studies suggest an intricate relationship
between hypoxia and aging, necessitating further research to
elucidate its effects. Furthermore, emerging evidence suggests that
EMT also has implications for aging and lifespan. EMT is a cellular
process characterized by the conversion of epithelial cells into
mesenchymal-like cells and plays a critical role in embryonic
development, tissue repair, and cancer progression. With
advancing age, there is a disruption of EMT, leading to an
accumulation of mesenchymal-like cells in various tissues.
Abnormal EMT has also been associated with age-related tissue
dysfunction, fibrosis, and impaired regenerative capacity.
Additionally, EMT-related factors, such as transforming growth
factor-beta (TGF-β), have been implicated in the regulation of
aging and lifespan in model organisms. Further investigations are
required to unravel the precise molecular mechanisms underlying
the interaction between EMT and aging, which may offer potential
insights into therapeutic strategies for age-related diseases (Santos
et al., 2019; Imran et al., 2021).

Although VisAgeX has shown promising results, our study has
identified several limitations that require attention in future
research. Firstly, the clock was trained exclusively on data from
female participants, which raises concerns about its generalizability
to males. However, our decision to use only female data was
justifiable, as we can observe gender-driven differences in aging
process (Hägg and Jylhävä, 2021). Moreover, the correlation
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between visual facial skin age and inner volar forearm skin age, while
promising, may be influenced by external and systemic factors,
which cautions against further generalization, especially regarding
the effects of Sun exposure. Our choice of forearm samples
prioritized donor compliance and convenience, but the resulting
data may not fully reflect the epigenetic and gene expression patterns
of facial skin, requiring careful consideration when interpreting our
findings. Additionally, it is essential to acknowledge that our study
only tested the clock’s prediction in a group of Caucasian volunteers,
and the generalizability of our findings to other ethnicities is yet to
be explored. Future studies in this area should include diverse ethnic
groups to improve the general applicability of the clock (Garza et al.,
2017). Further investigation of these limitations may lead to a better
understanding of the molecular mechanisms underlying skin aging
and the development of more effective anti-aging interventions.

In conclusion, we successfully developed a skin-specific
epigenetic age clock, VisAgeX, which captured differences in
facial visual age progression. By testing various training
strategies, we were able to optimize the clock’s performance and
establish its correlation with facial visual age progression. Our
findings regarding the biological pathways may provide a deeper
insight into the molecular mechanisms underlying age progression,
and thus, could have implications for future research. Moreover,
VisAgeX can be used to assess the impact of internal and external
factors, such as UV exposure and pollution, on skin aging, but
further analysis will be necessary. The development of VisAgeX
represents a significant advancement towards understanding the
aging process and may serve as a basis for future investigations into
the functional aspects influencing the speed of aging.

Materials and methods

Ethical approval

Ethical approval was obtained in consideration of the
Declaration of Helsinki and the guideline of the International
Conference on Harmonization Good Clinical Practice (ICH
GCP) by the International Medical & Dental Ethics Commission
in Hamburg (Std. no. 67686) and by the Independent Ethics
Committee Freiburg (feki code 08/2610).

Studies used in this publication

We used portrait images as well as methylation and gene
expression data from epidermal samples of three different studies
(Supplementary Table S1): the population-based Study of Health in
Pomerania (SHIP-TREND-1) (Volzke et al., 2022), the independent
study (Holzscheck et al., 2020) and the Y-O study. The first study
involved 378 female participants aged 29–84 years and served as
data pool for the training of the models. In the second study, we used
samples from 51 women aged 23–84 years (Holzscheck et al., 2020).
The third study, known as the Y-O study, examined samples from
25 women aged 41–51 years who visually appeared at least 5 years
younger (n = 10 females) or older (n = 15 females) than their
chronological age. Both groups of the Y-O study were similar in
chronological age (Youngsters = 45.30 ± 2.11 years, Oldies = 46.40 ±

3.00 years), but different in expert-assessed visual facial age
(Youngsters = 40.24 ± 2.61 years, Oldies = 58.16 ± 5.39 years). A
detailed overview of the inclusion and exclusion criteria for the Y-O
study can be found in Supplementary List S1.

Capturing portrait images and assessment
by an expert panel

Portrait photographs of the participants were taken using the
Visia CR Skin Analysis Imaging System (Canfield Scientific, Inc.).
This system uses visible light imaging technology to capture high-
resolution digital images of the skin surface. Participants were
carefully positioned according to system guidelines to ensure
standardized and consistent positioning across subjects prior to
image acquisition. The Visia CR System uses visible light to help
visualize various skin conditions, including blemishes, wrinkles,
texture variations and pigmentation irregularities.

The wrinkle grade was determined for each volunteer using
portrait photos. The datasets used for this assessment consisted of
volunteers from two previous studies (Holzscheck et al., 2020;
Volzke et al., 2022). In the visual assessment of wrinkles, trained
experts performed a visual analysis of an individual’s face and
graded the wrinkles on a scale of 1–100, with 1 indicating no
wrinkles and 100 indicating a high degree of wrinkles. This
method employs pre-defined grading scales as seen in the “Atlas
du Vieillissement Cutané - Population Européenne” (Skin Aging
Atlas - European Population) (Bazin and Doublet, 2007). To
minimize subjectivity, more than 30 experts evaluated the same
volunteer and the visual wrinkle grade was the average of their
evaluations.

In addition to evaluating the wrinkle grade, the experts also
evaluated the visual facial age of the volunteers based on their
portrait photos. This comprehensive assessment was conducted
not only for volunteers from the previous studies (Holzscheck
et al., 2020; Volzke et al., 2022), but also for participants in the
Y-O study. Each expert individually rated the visual facial age of
every volunteer, and an average visual facial age was derived from
these ratings. The visual facial age serves as an estimation, capturing
the perceived age of an individual based on their appearance in the
portrait photos.

Tissue sample preparation

In all studies suction blister roofs of 7 mm diameter were
collected from the volar forearms by applying a negative pressure
of 180 mbar for 30 min followed by 320 mbar until blister formation
and subsequent preparation with surgery scissors and tweezers. The
suction blister roofs were snap frozen in liquid nitrogen and stored
at −80°C until further use.

Array based methylation profiling and data
pre-processing

Genomic DNA was isolated from the suction blister roofs using
the QIAamp DNA Investigator Kit (Qiagen, Inc.) following the
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manufacturer’s instructions. Subsequently, the isolated genomic
DNA was processed on EPIC Methylation arrays (Illumina, Inc.)
to obtain the DNAm patterns.

We utilized the R Bioconductor minfi package (Aryee et al.,
2014; Fortin et al., 2017) to pre-process the raw.idat files from the
EPIC arrays. A series of filtering steps were applied to ensure data
quality. First, methylation loci (probes) were filtered based on high
detection p-values (p > 0.01). Then, probes were filtered based on
their self-hybridization ability and potential SNP contamination
resulting in a total number of 794,441 CpGs. To normalize the
methylation data, we performed matrix normalization using
quantile normalization with the “preprocessQuantile” function
provided by the minfi package (Aryee et al., 2014; Fortin et al.,
2017). Quality control checks were performed after each pre-
processing step to monitor the integrity and reliability of the data.

Identification of skin specific LMRs

First, we combined whole-genome bisulfite sequencing (WGBS)
methylation data for epidermis of young and old subjects (Raddatz
et al., 2013) leading to an average strand-specific CpG coverage of
14x. To identify LMRs we applied MethylSeekR (Burger et al., 2013)
using standard parameters to this dataset and selected LMRs, which
were overlapping with at least one probe of the EPIC Methylation
array. This led to a set of 40,140 LMRs. For further analysis, we
calculated the average beta value for each LMR by considering the
CpGs located within that specific region.

DNAm-based second-generation
epigenetic age clock training

The dataset, consisting of 378 females (Volzke et al., 2022), was
divided into training and testing subsets, with 80% allocated for
training and 20% for testing. The “createDataPartition” function
from the caret package (Kuhn, 2022) was utilized to control for
equal distribution of the outcome variable between both subsets.
TheWrinkle Predictor was then trained using the beta values of the
training dataset, using a generalised linear model with ridge
regression fit (alpha = 0) to ensure that no features (CpGs)
were excluded as part of our preprocessing for training. This
approach was facilitated by the “cv.glmnet” function (lambda =
1708.46) from the glmnet R package (Friedman et al., 2010) within
a 10-fold cross-validation framework with lambda optimalization.
Basically, the “cv.glmnet” function, divides the provided training
set of 302 females automatically into n-fold training and test sets
within each cross-validation. To determine the optimal lambda
value, the algorithm initially selects a high lambda and performs a
10-fold cross-validation, calculating the prediction error. It then
systematically reduces the lambda value (up to 100 times),
conducting 10-fold cross-validation and calculating the
prediction error for each lambda. The model’s performance was
reported using the mean absolute error with its standard deviation
(SD), considering all examined lambda values during the
algorithm’s execution. Here, the wrinkle grade, as assessed by
the expert panel, served as the outcome variable during training
(Figure 1A).

The Visual Facial Skin Age Clock was trained following a
methodology similar to that of the Wrinkle Predictor with
following parameters: alpha set to 0 and lambda set to 1,402.16,
whereas the expert-assessed visual facial age instead of wrinkle grade
served as the outcome variable (Figure 2A).

To train the clock predicting age progression directly, a similar
approach to that of theWrinkle Predictor and Visual Facial Skin Age
Clock was employed using either methylation levels of 40,140 LMRs
or all CpGs. In both training approaches, an alpha value of 0 was
utilized, along with a lambda of 19.45 for the LMR-based clock
training and a lambda of 295.39 for the traditional CpG-based
approach. Notably, during training, we used the observed age
progression (defined as the deviation of visual facial age from
chronological age) as the outcome variable. The resulting clock
was named VisAgeX (LMR-based) and CpG-based Visual Facial
Age Progression Clock, respectively.

All trained DNAm-based skin-specific second-generation
epigenetic age clocks were subsequently validated using both the
test set and an independent dataset (Holzscheck et al., 2020).
Subsequently, Pearson correlation was used to validate the clock
performance by comparing the observed value with value predicted
by the clock (Supplementary Table S2). In addition to the
aforementioned studies only VisAgeX was further validated by
using the data from the Y-O study. The statistical significance of
the differences in predicted age progression between the two groups
of the Y-O study (see Studies used in this publication for details) was
determined via Wilcoxon test (“wilcoxon.test” function) from the
stats R package (R Core Team, 2021).

RNA-Seq based transcriptome profiling and
data pre-processing

Total RNA was extracted from the suction blister roofs using the
RNAeasy Fibrous Tissue Mini Kit (Qiagen, Inc.) following the
manufacturer’s instructions. Sequencing was performed on
Illumina’s HiSeq system in single end mode with a read length of
50 bp to a final sequencing depth of 100 million reads per sample.

Generated raw reads were processed as follows: i) quality control
using Fastqc 0.11.7 (Andrews, 2007), ii) trimming of read sequences
via Trimmomatic 0.36 (Bolger et al., 2014) and iii) mapping of reads
against the GRCh38 build of the human transcriptome using Salmon
0.8.1 (Patro et al., 2017). Subsequently, mapped reads were
quantified as transcript per million (TPMs) on gene level and
used for downstream analysis.

Pathway-enrichment analysis

To evaluate the potential utility of VisAgeX as a tool for
investigating the biological mechanisms of aging, we conducted
the GSEAPreranked (Mootha et al., 2003; Subramanian et al., 2005)
analysis using ranked gene lists obtained from three distinct
approaches. The first approach involved using coefficient values
from the model as importance scores to rank the genes (Figure 5A,
blue). In this process, CpGs located in the LMR genes were
annotated based on the Infinium MethylationEPIC
v1.0 B5 Manifest File (Supplementary Table S3), and the
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coefficient values were used as ranked genes. To avoid repetition for
repeated genes in the list, the rank values were summed up. The
reason for summing up the rank values is rooted in the linear model
design and aims to prevent duplication of genes in the list.

In the second approach, genes were ranked based on the Pearson
correlation between CpG methylation levels and predicted age
progression determined by VisAgeX (Figure 5A, green). CpGs
with a p-value above 0.05 were discarded, and the remaining
CpGs were annotated to genes using the Infinium
MethylationEPIC v1.0 B5 Manifest File. The correlation values
were then used as weights for these genes. For repeated genes,
their average weight was calculated.

The third approach involved correlating the available gene
expression data with the VisAgeX predictions using Pearson
correlation. Genes with a p-value correlation exceeding 0.05 were
filtered out, and for repeated genes, their average weight was
calculated (Figure 5A, purple). The latter two approaches were
applied to the SHIP test set, the independent study (Holzscheck
et al., 2020), and the Y-O study, which was used for VisAgeX
validation. Consequently, this resulted in seven GSEAPreranked
inputs.

Subsequently, the Hallmark Process gene sets downloaded from the
Molecular Signature Database (MSigDB) (Liberzon et al., 2015) were
utilized for the analysis with GSEAPreranked software (Mootha et al.,
2003; Subramanian et al., 2005). The GSEAPreranked was performed
with default parameters, including 1,000 permutations of gene sets and
weighted enrichment statistics. From the analysis, we selected up to
20 of the most discriminative traits for further study. To provide an
overall validation of the pathways that may be relevant for VisAgeX
prediction, we considered the overlapping results from all seven inputs
(Figure 5A). As a result, we present a list of the top ten pathways
(Figure 5B).
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