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Neurodegenerative disorders, particularly Alzheimer’s disease (AD), remain a great
challenge regarding the finding of effective treatment, one main reason being the
incomplete understanding of their etiology. With many intensely debated
hypotheses, a newer approach based on the impact of iron imbalance in
sustaining neurodegeneration in the central nervous system becomes
increasingly popular. Altered iron homeostasis leads to increased iron
accumulation in specific brain areas, explaining the clinical picture of AD
patients. Moreover, growing evidence sustains the significant impact of iron
metabolism in relationship to other pathological processes encountered in the
AD-affected brain, such as the amyloidogenic pathway, chronic inflammation, or
oxidative stress. In this context, this mini-review aims to summarize the novel data
from the continuously expanding literature on this topic in a didactic manner.
Thus, in the first part, the authors briefly highlight themost relevant aspects related
to iron absorption, transport, regulation, and elimination at the cerebral level,
focusing on the role of the blood-brain barrier and the newer concept of
ferroptosis. Subsequently, currently available iron chelation therapies are
discussed, including an overview of the most relevant clinical trials on this
topic. In the final part, based on the latest results from in vitro and in vivo
studies, new research directions are suggested to enhance the development of
effective antidementia therapies.
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1 Introduction

Neurodegenerative disorders (NDDs) include a heterogenous group of pathologies, with
Alzheimer’s disease (AD) being the most frequent, according to present epidemiological data
(Cui et al., 2020; Gustavsson et al., 2023). NDDs have some common features that
differentiate them from other non-communicable diseases in humans, despite having
heterogeneous clinical manifestations, such as predominant motor symptomatology in
Parkinson’s disease (Moustafa et al., 2016) or, more important cognitive and behavioral
deficits in frontotemporal dementia (Johnen and Bertoux, 2019). NDDs, particularly AD, are
a challenge for the clinician because of several reasons: the increasing prevalence in the aging
population (Logroscino et al., 2022), the incomplete understanding of the underlining
pathophysiology (Wilson et al., 2023), and the absence of an effective or curative treatment
despite the immense number of clinical trials conducted in recent years (Mortberg et al.,
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2022). Because of the lack of effective treatment, one promising first
step for ensuring antidementia therapeutic advancements remains
the return to basic pathophysiological processes that could explain
the onset and evolution of AD (Vaz and Silvestre, 2020;Mehkri et al.,
2022). Currently, many debated hypotheses incompletely describe
the occurrence of AD; the most acknowledged ones focus on the
pathological accumulation of misfolded proteins such as amyloid
beta (Aβ) (Karran and De Strooper, 2022), the negative influence of
Tau protein hyperphosphorylation (Rawat et al., 2022), the role of
ApoE4 and its related protein (Raulin et al., 2022), the negative
impact of reactive oxygen species (Bhatt et al., 2021), chronic
inflammation involving neurons and glial cells in the central
nervous system (CNS) (Xie et al., 2022), and the role of the
blood-brain barrier (BBB) disruption in the evolution of the
disease (Hussain et al., 2021). A recent approach is based on the
role of iron in the healthy brain and the consequences of
dysregulated iron metabolism concerning the cellular and
molecular dysfunction encountered in AD (Peng et al., 2021).
Although the research on this topic is still in its infancy, with
many unknowns and incompletely explained mechanisms, this
concept could become a linking point for the other accepted
theories on neurodegeneration (Spotorno et al., 2020; Ward et al.,
2022). Moreover, the “ferroptosis hypothesis of AD” is a valuable
source for developing new drugs that might be at least effective
adjuvant treatment, if not promising principal therapies (Nikseresht
et al., 2019). With growing data on iron pathophysiology in the AD-
affected brain and the emergence of novel iron chelation-based
therapies, there is a great need to summarize the current knowledge
of expanding literature in the field. In this context, this mini-review
aims to offer a succinct and practically-oriented overview of the
presently available iron chelators used in the clinical areas, with
potential interest for AD treatment, and a summary of the
theoretical data on iron metabolism. Discussed topics include
iron absorption, transport, regulation, and elimination at the
CNS level; the relationship between iron metabolism and other
pathological processes encountered in AD, such as protein
misfolding, inflammation, oxidative stress, and the alteration of
the blood-brain barrier; the newer concept of ferroptosis is also
covered.

2 Systemic and cerebral iron
metabolism in physiological conditions
in humans

Iron, an essential trace metal in the human body, plays
important roles in many physiological processes, such as redox
reactions (Koppenol and Hider, 2019), metabolic pathways
modulation (Phelan et al., 2018), DNA synthesis and repair
(Carter et al., 2022), and mitochondrial energy generation
(Onukwufor et al., 2022). These biological processes are possible
because of iron’s unique chemical characteristics, especially its ease
of maintaining a dynamic balance between the bivalent and the
trivalent forms (Yiannikourides and Latunde-Dada, 2019). Further,
a clear differentiation between iron homeostasis in the CNS versus
the periphery was made to highlight the importance of the BBB as
the main boundary between the two distinct compartments. In
physiological conditions, there are 3–5 g of iron in the human

body (Abbaspour et al., 2014); this constant quantity is provided
by two sources, absorption via intestinal cells from food (Fuqua
et al., 2012) and release from macrophages (Sukhbaatar and
Weichhart, 2018). The complex molecular mechanisms involved
in enteral iron absorption are reviewed elsewhere (Gulec et al.,
2014). A good understanding of the roles played by the duodenal
cytochrome-b-like protein (DCYTB) (Lane et al., 2015) located at
the apical side of the intestinal cell or by ferroportin (Nemeth and
Ganz, 2021), located at the basal side of the enteric cell, is mandatory
to develop therapeutic means which could enhance or limit iron
absorption according to individual needs. Once in plasma, iron can
bind to transferrin (Gkouvatsos et al., 2012), subsequently fixes to
specific membrane receptors, and enters intracellularly via clathrin-
mediated endocytosis (Gammella et al., 2021). Two main iron
storage compartments exist in the periphery, hepatocytes and
macrophages, storing iron mainly in the form of ferritin
(Recalcati and Cairo, 2021). Additionally, iron can also be found
in the formation of myoglobin (Elkholi et al., 2022), cytochrome
(Misslinger et al., 2017), and other iron-regulated enzymes (Poulos,
2014).

An interesting aspect is related to the regulatory mechanisms,
with iron regulatory proteins (IRP) as the main players in
maintaining intracellular iron homeostasis (Zhang et al., 2014).
IRP1 and IRP2 act like iron sensors (Zhang et al., 2014). Still,
their activity is also modulated by other molecules, such as oxygen
and nitrous oxide (Luo et al., 2011), explaining the tight correlation
between iron metabolism and oxidative stress (Cairo and Recalcati,
2007). On the other hand, the liver is a fine regulator of the systemic
concentration of iron via the secretion of hepcidin (Vela, 2018),
while macrophages are capable of increasing the iron level in the
systemic circulation through the phagocytosing of aging red blood
cells (Recalcati and Cairo, 2021). Finally, recent studies showed the
impact of gut microbiota in modulating iron absorption (Malesza
et al., 2022). Besides the direct, local mechanisms of the microbiome,
a key role is thought to be also played by the gut-brain axis, with
indirect evidence resulting from clinical trials conducted in
psychiatric patients (Fernández Real et al., 2019). Knowing in
detail the mechanisms that ensure iron homeostasis in humans is
of interest from a clinical point of view: genetic diseases remain an
important chapter in pathology, with numerous genetic mutations
currently known to lead to iron overload syndromes (such as
hereditary hemochromatosis) with significant systemic impact
(Piperno et al., 2020).

When studying iron absorption at the CNS level, mechanisms
are similar to the gastrointestinal endothelial tissue. However, the
endothelial layer forming the wall of the cerebral blood vessels
has some particularities. The BBB, a unique and highly selective
structure in the human brain (Alahmari, 2021), is responsible for
ensuring the protection of the sensitive cerebral tissue against
external toxic factors (Pandit et al., 2020), meaning that free
circulating and transferrin-bound iron must pass via the brain
microvascular endothelial cell (BMEC) by specific mechanisms.
Several explanations can be found in the literature, The roles of
ferroportin 1 (Mezzanotte et al., 2022), ceruloplasmin (Ryan
et al., 2019), hephaestin (Zacchi et al., 2021), and holo-
transferrin (Baringer et al., 2022) have been proposed to
explain iron-transferrin complex internalization, while free,
unbound iron is suspected to enter the neuron via
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transcytosis, after binding to heavy-chain ferritin (H-ferritin)
(Mesquita et al., 2020) or lactoferrin (Kell et al., 2020).

The intraneuronal metabolism of iron is not significantly
different from the metabolism of other cells found in the
periphery; however, there should be noted an overexpression of
transferrin 1 receptors on the surface of the neurons (Menon et al.,
2019) and an increased age-dependent cerebral level of ferritin
(Ficiarà et al., 2022). Moreover, besides neurons, glial cells and
microglia are also involved in regulating iron cerebral levels (Xu
et al., 2018), ensuring neural protection against iron toxicity (Nnah
and Wessling-Resnick, 2018). Iron is involved in the myelination of
oligodendrocytes, the most iron-rich cells in the brain (Khattar et al.,
2021), this finding being additional proof of the multitude of
physiological roles iron exerts at the CNS level.

3 Iron dyshomeostasis in Alzheimer’s
disease

Although the pathological accumulation of misfolded proteins is
thought to be the central feature of AD pathogenesis, alterations in
iron homeostasis with subsequent iron accumulation should also be
considered as the driver of AD pathology (Liu et al., 2018). Proof for
this new research direction is the multitude of studies that have
demonstrated abnormally high levels of iron in key brain regions,
such as the hippocampus or the frontal cortex, beginning with the
preclinical stages of AD (Tran et al., 2022; Lin et al., 2023).
Additionally, the cerebral iron load was correlated with the
severity of the symptoms (especially cognitive deficit) (Spence
et al., 2020); it was also considered a reliable predictor of the
evolution of the disease (Ayton et al., 2020a).

Several hypotheses try to explain iron dyshomeostasis in AD.
Firstly, the close interaction with amyloid plaques and
neurofibrillary tangles should be noted (Liu et al., 2018; Wang
et al., 2022). On the one hand, the anatomopathological (Tran
et al., 2022) and imaging studies (Gong L. et al., 2019) showed
an increased concentration of iron in the areas rich in Aβ
accumulations and also in cortical areas rich in Tau protein
accumulations. On the other hand, the disruption of the normal
iron metabolism at the cerebral level, with the alteration of IRP,
supports the amyloid cascade by upregulating amyloid precursor
protein (APP) and by modulating alpha and beta-secretases, two key
enzymes involved in APP degradation (Gong N. J. et al., 2019).
However, there is no proof up to the present of a direct impact of
iron accumulation on senile plaque formation. It seems that iron
accumulation occurs concomitantly with amyloid accumulation in
the brain as two synergic processes that lead to neurodegeneration
(Peters et al., 2015). It remains to be determined if iron imbalance
precedes and could trigger senile plaque formation. Regarding the
effect of iron dyshomeostasis on Tau hyperphosphorylation, a direct
correlation was observed between increased iron intake, cognitive
deficit, and abnormal accumulation of Tau protein, with insulin
signaling as the main molecular mechanism (Wan et al., 2019).

However, the impact of iron at the brain level is much more
closely related to oxidative stress, as iron is an essential factor in
numerous redox reactions resulting in the generation of reactive
oxygen species (ROS) (Zhang et al., 2022). At the same time, excess
iron reduces antioxidant mechanisms, ultimately leading to

ferroptosis and neuronal loss (Mancardi et al., 2021). Ferroptosis,
a type of programmed cell death first described in 2012 (Dixon et al.,
2012), involves lipid peroxidation generated by the iron overload,
leading to cell swelling, mitochondrial dysfunction, nuclear
chromatin condensation, and, finally, cellular membrane rupture
(Han et al., 2020). Various studies have shown a correlation between
the accumulation of iron in the brain which means increased
ferroptosis and aging (Coradduzza et al., 2023), cerebrovascular
diseases (Liu et al., 2022), and neurodegenerative diseases (including
AD) (Ma et al., 2022). However, the exact molecular mechanisms of
iron-induced neurodegeneration remain incompletely known.
Recent research focused mainly on the roles of glutathione
peroxidase 4 (GPX4) (Cardoso et al., 2017) and glutamate/cystine
antiporter (xCT) (Lane and Lin, 2023) in the pathogenesis of AD in
both animal models and humans, an overview of the currently
accepted mechanism being schematized in the work of Wang
et al., 2022.

Finally, iron can also lead to neurodegeneration by regulating
glial cells, more precisely by activating microglia (Long et al., 2022)
and astrocytes (Codazzi et al., 2015). Microglia are strongly reactive
to iron exposure, and, when activated, they produce pro-
inflammatory cytokines, thus facilitating the accumulation of Aβ
(Cai et al., 2022). Moreover, activated microglia support the
additional accumulation of iron in the brain through a positive
feedback mechanism (Kenkhuis et al., 2021). On the other hand, in
the first phases of inflammation, astrocytes are less reactive
compared to neurons or microglia; however, in the later stages,
astrocytes also generate inflammatory mediators, subsequently
supporting oxidative stress, the chronic inflammatory status, and
the pathological accumulation of misfolded proteins such as Tau
and Aβ (Monterey et al., 2021). Astrocyte activation by pathological
iron accumulation is an indirect link between iron and the BBB, as
chronic neuroinflammation leads to BBB disruption, which means
increased permeability and sustained neuronal damage. Yet, the
astrocyte-heavy metal link is bidirectional, with astrocytes
demonstrated to control iron and other metal ions concentration
in the brain parenchyma via specific transporters (Li et al., 2021).
This also explains why astrocyte dysfunction is strongly related to
cerebral iron imbalance in neurodegenerative disorders,
including AD.

4 Iron chelators in clinical practice

With increasing evidence related to the role of iron in the
pathogenesis of AD, iron chelation could be a potentially
effective therapeutic approach. This therapy is already
successfully used in iron overload syndromes such as sickle cell
disease, major beta-thalassemia, and rare disorders of iron-
transporting proteins (Bruzzese et al., 2023). In this context,
there are drugs approved for daily clinical use, their relevant
characteristics being summarized in Table 1.

Deferoxamine (DFO) is the most well-known iron chelator, with
more than 3 decades of clinical experience (Parker et al., 2023).
However, the visual and ototoxicity (Derin et al., 2017) and
potentially decreased compliance due to the subcutaneous/
intravenous administration protocol (Yarali et al., 2006) opened
the pathway for developing newer drugs. Deferasirox (DFX) and
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deferiprone (DFP) are two orally administered iron chelators that
are more patient-friendly regarding the potential side effects
(Entezari et al., 2022). However, higher costs for DFX and
weekly blood monitoring in the case of DFP can limit their use
(Ravalli et al., 2022). Finally, there is also the possibility to
administer the abovementioned drugs in combination, however,
despite being safe for patients, the exact benefits of this approach are
incompletely studied (Origa et al., 2022).

5 Experimental research and future
trends

Besides the already approved drugs, increasing research is
conducted on novel therapeutic alternatives. Hydroxybenzyl
ethylenediamine (HBED) has been longly proposed as a potential
iron chelator (Samuni et al., 2001), but apart from a few incipient
studies, the lack of sufficient data prevented its approval for routine
clinical use. Ascorbic acid (vitamin C) is another relevant compound
intensely studied in the last years, both because ascorbic acid is
directly involved in redox reaction modulation and because the
interaction between vitamin C and iron modulates many metabolic
pathways (Kontoghiorghes et al., 2020). The main limitation is
related to the weak capacity of vitamin C in chelating iron,
having a low efficacy in iron elimination, and explaining why
vitamin C is mainly recommended as adjunctive therapy (Elalfy
et al., 2016).

Some compounds/drugs, initially designed to act on different
molecular pathways, demonstrated also an effective iron-chelation
feature. One good example is clioquinol, an antifungal and
antiprotozoal drug, that demonstrated iron chelation
characteristics in several conditions, such as pulmonary fibrosis
(Zhu et al., 2021), Parkinson’s disease and AD (Nuñez and Chana-

Cuevas, 2018). Similarly, antioxidant medications such as vitamin E,
alpha-lipoic acid, and selenium are thought to interact indirectly
with iron metabolism and could be potentially effective in
treating AD.

Another group of potential adjuvant agents for iron depletion is
represented by calcium channel blockers. The explanatory
pathophysiologic mechanism is based on the blocking of the
penetration of iron through calcium channels at the level of the
heart, pancreas, and other organs, consequently possible prevention
of visceral iron accumulation (Sun et al., 2020). A systematic review
(Sadaf et al., 2018) highlighted the main reasons calcium channel
blockers are still under scrutiny and not approved for clinical use:
lack of sufficient clinical trials, no significant iron level reduction in
organs and blood, and insufficient proof of safety. Thus, there is a
high demand for new, larger randomized clinical trials to confirm
the benefit of the abovementioned proposed iron chelating
therapies.

Finally, apart from iron, other trace elements, such as copper,
calcium, and zinc, seem to play relevant roles in CNS homeostasis
and the pathophysiology of AD (Wang and Wang, 2017). Despite
contradictory studies and many incompletely elucidated
mechanisms, copper could become a valuable target for anti-
dementia therapies (Ejaz et al., 2020). Moreover, future research
should assess if any relevant link between iron and other trace
elements exists and its impact on neurodegeneration.

6 Discussion

NDDs, particularly AD, represent an important burden
worldwide, and with prevalence expected to sustainably grow in
the next decades, the development of effective therapies is essential.
The incomplete understanding of its etiology remains one of the

TABLE 1 Currently used iron chelators in clinical practice.

Iron
chelator

Administration
protocol

Advantages Disadvantages Crossing the
blood-brain

barrier

Special regulations by
country/region

Deferasirox
(DFX)

Unique dose of 20–30 mg/kg/
day, oral administration

Once daily
administration

Important side effects: potentially
fatal gastrointestinal hemorrhage,

renal and hepatic toxicity

Via nanocarrier FDA and EMA approved.Adults with
chronic iron overload (in Europe also

in children 6 years and older)

High costs

Deferiprone
(DFP)

75 mg/kg/day (divided into
2–3 doses/day), oral

administration

Most effective in
cardiac iron
excretion

Important side effects:
gastrointestinal symptoms, hepatic

toxicity, neutropenia, and
agranulocytosis

Yes Available in the United States,
Canada, and other countries Second-
line therapy in adult patients with

thalassemia major

Frequent (weekly) blood count
monitoring

Important side effects

Deferoxamine
(DFO)

25–50 mg/kg/day,
subcutaneous or intravenous

infusion

More than 30 years
of experience

visual and auditory neurotoxicity,
gastrointestinal symptoms,

increased

Yes FDA and EMA approved.First-line
therapy for hemochromatosis

over 8–12 h risk of infections

5 days/week (mucormycosis) Decreased
compliance because of the

administration route
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main reasons for the slow therapeutic advancements for AD. The
emergence during the last years of new hypotheses, complementary
to the already established knowledge, should be noted, with the
“ferroptosis hypothesis of AD” one good example.

Besides the important theoretical input, new theories related to
AD pathogenesis are also valuable sources for new therapeutic
approaches which might prove effective.

In this regard, iron chelators could be successfully used in AD
treatment, as there are already three compounds approved for
clinical use in patients with iron overload syndromes. Moreover,
the possibility of using adjuvant therapies such as vitamin C or
calcium channel blockers, and antioxidants such as vitamin E or
alpha-lipoic acid, if proven efficient and safe, opens new
perspectives for AD patients. At present, iron chelation in AD
management remains an open topic, with only a few trials
available. Worth to be mentioned is an old trial dating back to
1991, when intramuscularly chronically administered DFO
(24 months, 5 days/week), showed a decrease in AD
progression compared to the control group (Crapper
McLachlan et al., 1991). Up to the present, no other
randomized clinical trial on humans has delivered significant
results, but we mention one notable, still-in-progress trial, that
analyzes the effects of DFP in AD patients (Ayton et al., 2020b).
Regarding DFX, only trials on animal models can be found when
searching the literature (Kwan et al., 2022). With increasing
theoretical background sustaining the impact of iron in AD

pathogenesis, iron chelation should be more intensely studied
as main or adjuvant therapy, in patients in different AD stages.
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