
Revolutionizing bone
regeneration: advanced
biomaterials for healing
compromised bone defects

Kamal Awad1,2*, Neelam Ahuja1, Ahmed S. Yacoub1,3,
Leticia Brotto1, Simon Young4, Antonios Mikos5, Pranesh Aswath2

and Venu Varanasi1,2*
1Bone Muscle Research Center, College of Nursing and Health Innovations, University of Texas at
Arlington, Arlington, TX, United States, 2Department of Materials Science and Engineering, College of
Engineering, The University of Texas at Arlington, Arlington, TX, United States, 3Department of
Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt, Cairo,
Egypt, 4Katz Department of Oral and Maxillofacial Surgery, School of Dentistry, The University of Texas
Health Science Center at Houston, Houston, TX, United States, 5Center for Engineering Complex Tissues,
Center for Excellence in Tissue Engineering, J.W. Cox Laboratory for Biomedical Engineering, Rice
University, Houston, TX, United States

In this review, we explore the application of novel biomaterial-based therapies
specifically targeted towards craniofacial bone defects. The repair and regeneration
of critical sized bone defects in the craniofacial region requires the use of bioactive
materials to stabilize and expedite the healing process. However, the existing clinical
approaches face challenges in effectively treating complex craniofacial bone defects,
including issues such as oxidative stress, inflammation, and soft tissue loss. Given that a
significant portion of individuals affected by traumatic bone defects in the craniofacial
area belong to the aging population, there is an urgent need for innovative biomaterials
to address the declining rate of new bone formation associated with age-related
changes in the skeletal system. This article emphasizes the importance of
semiconductor industry-derived materials as a potential solution to combat oxidative
stress and address the challenges associated with aging bone. Furthermore, we discuss
various material and autologous treatment approaches, as well as in vitro and in vivo
models used to investigate new therapeutic strategies in thecontext of craniofacial bone
repair. By focusing on these aspects, we aim to shed light on the potential of advanced
biomaterials to overcome the limitations of current treatments and pave the way for
more effective and efficient therapeutic interventions for craniofacial bone defects.
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Introduction

In this review, we will discuss the current issues facing researchers in developing strategies
to heal critical-sized and compromised bone defects. This includes understanding the role that
large defects have on bone regeneration, complications associated with compromised healing,
and aspects of aging and other related conditions that further confound this situation. We will
also illustrate the role those new biomaterials must play as they are interventions to stabilize
and promote bone defect healing. Further, we will discuss how these materials must play active
roles in the healing process.
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Burden of care

Large bone defects affecting the craniomaxillofacial region
(Figure 1) (Koller et al., 2020) can arise from high energy impact,
trauma, blast injuries, congenital bone defects, and the resection of
locally aggressive tumors (Keating et al., 2005). A considerable number
of these defects are sufficiently large and cannot spontaneously heal on
their own. These defects are “critical-sized”, as they require surgical
intervention and planned reconstruction to heal successfully. In all,
more than 400,000 patients present to the emergency room with facial
fractures or large craniofacial defects and require treatment each year,
which costs over $1 billion in healthcare costs (Erdmann et al., 2008;
Allareddy et al., 2011; American Society of Plastic Surgeons, 2017).
Recent reports show that the incidence of craniomaxillofacial defects
continues to rise by nearly 15% per year (Roden et al., 2012).
Craniomaxillofacial defects, regardless of the cause, can affect
function and esthetics which can be debilitating and socially
incapacitating. Large-sized bone defects are also biomedically and
economically burdensome (Szpalski et al., 2010). These defects
require three-dimensional structural support, including permanent
protection of the underlying brain tissue, mechanical integrity,
allowance for the full range of jaw movement, and excellent facial
esthetics along with faster healing rates.

Complexity in craniomaxillofacial healing

The thickness and stiffness of cranial and maxillofacial bone
varies according to different sites in the skull, and is covered with a
multi-layered soft tissue envelope, making the craniomaxillofacial
region a morphologically complex structure to heal (McElhaney
et al., 1970; Dewey and Harley, 2021). As the skeleton ages,

morphological changes occur. For example, in a study on skulls
analyzed by dimensional changes in bone structure over time, the
aged skulls exhibited resorbed bone in all areas (e.g., orbit, maxilla,
mandible, skull) and likely led to soft tissue (e.g., muscle, fascia)
laxity (Toledo Avelar et al., 2017). Another factor that affects the
bone microenvironment is the various cell types. The vascular
tubule-forming endothelial cells, bone-forming mesenchymal
stem cells (MSCs), and osteoblasts and osteoclasts maintain bone
homeostasis. The osteoblasts and osteoclasts work together for bone
formation and bone resorption (bone remodeling) which maintains
bone density and strength. The osteoblasts when mature, become
incorporated in the bone matrix and become osteocytes. Osteocytes
remain in the bone matrix and are responsible for bone turnover and
adaptation (Aarden et al., 1994; Teitelbaum, 2007; Dewey and
Harley, 2021). The endothelial cells also play an important role
in homeostasis as they build and maintain vascular networks within
the bone tissue. As we age, these homeostatic events become
unbalanced, causing resorption of the existing bone structure
coupled with soft tissue laxity or recession. This can cause bone
to be more prone to defect formation or increase the potential of
these defects to form upon injury, thereby increasing the burden of
care. These bone defects may also be associated with compromised
wound healing resulting from deficient vascularization, hypoxia,
wound contamination, chemo/radiotherapy, or scarring from
multiple surgical treatments. Studies have noted that
compromised defects and injuries induced a delay in bone
turnover rate (Sandukji et al., 2011; Hannemann et al., 2013) and
re-vascularization in adults (Prasad and Bao, 2019) that imposed
extended periods of hospital stay and significantly delayed healing
time (Hwang and You, 2010). This delayed healing can be attributed
to a marked increase in reactive oxygen species (ROS) (Sandukji
et al., 2011), and prolonged inflammation (Wang et al., 2014).

FIGURE 1
Digital image of a large cranial defect (A) with mesh implant (B).
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Prolonged oxidative stress causes damage to nucleic acids and
proteins causing irreparable cellular injury and restricting cell
viability, growth, and proliferation (Kubo et al., 2019).
Furthermore, as we age, our bodies become less efficient at
managing ROS and this can lead to oxidative stress. Oxidative
stress occurs when there is an imbalance between the production
of ROS and the body’s ability to eliminate them. Aging is also
characterized by both impaired wound healing and chronic low-
grade inflammation, also known as “Inflamm-Aging” (Ferrucci and
Fabbri, 2018). Impaired wound healing can lead to a slower bone
turnover rate, reduced re-vascularization, and prolonged
inflammatory response, caused by an elevated level of ROS.
Inflamm-Aging is caused by an increase in pro-inflammatory
cytokines and a decrease in anti-inflammatory molecules due to
factors like cellular damage, metabolic dysfunction, and the
accumulation of senescent cells (Shafiq et al., 2021). Controlling
inflammation could potentially delay the onset and progression of
age-related diseases and improve overall health outcomes in older
adults (Chung et al., 2019). To promote healing, it is necessary to
increase tissue-level antioxidant activity to mitigate ROS and
promote angiogenesis and osteogenesis.

Overall, intrinsic oxidative stress due to an underlying systemic
disease can also impair bone regenerating capacity by the
production of oxidants and elimination of protective antioxidant
mechanisms (Sies, 1997; Hamada et al., 2009; Patel et al., 2013;
Duryee et al., 2018; Li et al., 2020). Elevating tissue-level antioxidant
activity can reduce ROS and promote angiogenesis and osteogenesis
needed for healing (Wang et al., 2014). A controlled ROS level has a
key role in the regulation of many fundamental cellular processes in
the body such as proliferation, differentiation, and repair (Chavan
et al., 2007; Mottaghi and Nasri, 2021). However, increased ROS
production causes structural damage to the genomic DNA of
osteoblasts and osteoclasts disrupting their normal function and
can lead to apoptosis (Mlakar et al., 2010). ROS-activated lipid
peroxidation-dependent lipoxygenase is associated with decreased
osteoblastic activity and increased osteoclastic activity (Gullberg
et al., 1997). ROS is a major determinant of oxidative stress and
controls the remodeling capacity of bone (Jahanian et al., 2016).

Role of antioxidant mechanisms in bone
healing

Antioxidants play a key role in regulating a myriad of life
processes within the body, including the musculoskeletal system.
We often encounter antioxidants in our daily lives through the
consumption of food, beverages, and taking supplements in our
diets. These are dietary antioxidants which interface with our bodies
by stimulating various cellular and extracellular matrix mechanisms
that then couple to other mechanisms within cells. For example, a
well-known antioxidant, Vitamin C or ascorbic acid, has been well
documented to prevent many bone diseases and promote bone
health (Rondanelli et al., 2021). Many of our food products contain
several key vitamins and minerals to boost our antioxidant defenses.
These defenses are mechanistic antioxidant enzymes expressed and
secreted by tissues to reduce the accumulation of ROS or free
radicals involved in the aging process. Mitochondrial ROS are
highly reactive molecules produced as natural byproducts of

cellular respiration within the mitochondria (Kageyama et al.,
2021). While mitochondria are essential for generating energy in
the form of ATP, they can also generate ROS during this process.
Mitochondrial ROS includes molecules such as superoxide anions
(O2•−), hydrogen peroxide (H2O2), and hydroxyl radicals (•OH).
Although ROS are typically associated with cellular damage and
oxidative stress, they also play important roles as signaling molecules
in various cellular processes (Hernansanz-Agustín and Enríquez,
2021). In low levels, ROS can regulate cellular functions such as cell
proliferation, apoptosis, and immune response. However, excessive
accumulation of mitochondrial ROS can lead to oxidative damage of
cellular components, including DNA, proteins, and lipids,
contributing to the development of various diseases and aging
processes (Hernansanz-Agustín and Enríquez, 2021; Kageyama
et al., 2021). Therefore, maintaining a delicate balance of
mitochondrial ROS is crucial for cellular health and overall
wellbeing. Below we discuss how these mechanisms play a key
role in bone signaling.

Antioxidant transcription factors such as nuclear factor
erythroid 2-related factor 2 (NRF2) play a vital role in promoting
bone and vascular healing (Figure 2) (Jakob et al., 2002; Lean et al.,
2003; Mathy-Hartert et al., 2008; Yin et al., 2009; Sun Y.-X. et al.,
2015; Kubo et al., 2019). NRF2 induces cell viability, migration,
endothelial cell angiogenesis, and mesenchymal stem cell (MSC)
osteogenesis (Sun Y.-X. et al., 2015) while acting as a master
antioxidant promoter that reduces ROS to promote healing
(Narimiya et al., 2019). NRF2 deficiency downregulates
endothelial cell vascular endothelial growth factor (VEGF)
expression, reduces bone strength by 30% and prevents bony
union (Lippross et al., 2014). NRF2 is activated by two key
mechanisms: 1) phosphorylation of cell surface glycogen synthase
kinase- (p-GSK3-beta) that activates promoter regions on NRF2,
and 2) the presence of electrophilic compounds such as
sulforaphane can indirectly affect the Kelch-like ECH-associated
protein (Keap1)-NRF2 nuclear binding through the modification of
cysteine residues on the Keap1 surface which subsequently affect
NRF2 (Dinkova-Kostova et al., 2005; Tebay et al., 2015; McMahon
et al., 2018). This activation promotes downstream antioxidants
(e.g., superoxide dismutase (SOD1) and glutathione peroxidase
(GPX1)) (Mohammadzadeh et al., 2012; Ma, 2013; Sultan et al.,
2018; Dai et al., 2020). SOD1 plays a vital role in osteogenesis (via
collagen cross linking and osteocalcin expression (Badr, 2008; Nojiri
et al., 2011; Sandukji et al., 2011; Yamada et al., 2013; Duryee et al.,
2018)) while GPX1 promotes angiogenesis (via VEGF expression
and vascular tissue repair (Galasso et al., 2006)). Thus, these key
antioxidants signaling pathways are integral to the regeneration of
new bone.

Several authors noted differences in NRF2-linked bone
response for males and females as it relates to aging (Pellegrini
et al., 2017). The bone phenotype of NRF2 moderate activation
suggested sexual dimorphism. In male Keap1+/−mice, bone
formation significantly increased, while bone resorption
significantly reduced compared to their littermate controls.
However, there were no notable effects observed in females
(Han et al., 2022). Researchers noted sex differences in
craniofacial healing, even considering the type of fracture or
defect in bone (Merten et al., 2022). This was found in mouse
models which showed that NRF2 activation through the disruption
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of Keap1 ubiquitination has some effects on bone mass (Yin et al.,
2020). These differential effects indicate age and sex are factors
affecting NRF2-linked bone response. This could help to explain
key differences in bone morphology as we age. These appear in
humans as morphological and mechanical changes which occur
with changes in the frontal and peripheral craniofacial skeleton
(Urban et al., 2016). However, since this field is still very new,
extensive developmental or epigenetic studies in animals would
need to be conducted to prove this hypothesis.

Aging, oxidative stress, and compromised
bone defects

As discussed above, aging offsets the balance in regenerating
new bone and allows resorption of existing bone (Demontiero
et al., 2012; Deng et al., 2022). This can cause small bone defects to
heal improperly when under normal conditions they would heal on
their own. For larger defects and fractures, this problem is
exacerbated and can lead to permanent disability. For example,
implant osteointegration is challenged due to alveolar and
mandibular bone loss limiting their ability to replace missing
dentition (Deng et al., 2022). During aging, alterations in local
signaling result in a diminished ability of skeletal cell lineages to
withstand stress. This leads to the promotion of a more fibroblastic
phenotype, increased osteoclastogenesis, and pro-inflammatory
cytokine production, along with decreased bone regeneration.
These changes reflect the balance between skeletal homeostasis
and regeneration (Tevlin et al., 2020). Aging affects bone
differently from normal trauma-induced inflammation in that
inflammation processes become less organized under aging

conditions in which the NF-kB signaling pathway plays a key
role (de Gonzalo-Calvo et al., 2010). Further, aged skeletal stromal
cells showed decreased Wnt signaling, increased senescence,
impaired cell function, and reduced osteogenic capacity that
was partially rescued with administration of a dietary
antioxidant resveratrol (Ambrosi et al., 2020; Clarke, 2021;
Butler et al., 2022). For example, Wnt10b deficiency resulted in
age-dependent loss of bone mass and progressive reduction in
MSCs (Stevens et al., 2010). Also previous studies indicated that
Wnt10b is significantly reduced with osteoporotic derived stem
cells (Huang et al., 2023).

Oxidative stress is another condition limiting angiogenic and
osteogenic activity. Oxidative stress induces loss of bone mass
and strength and increased risk of fractures and impaired healing.
Factors involved in elevated oxidative stress include estrogen
deficiency, elevated endogenous glucocorticoid levels, age-related
diseases, and prolonged exposure to ROS (Ardura et al., 2020).
The exact mechanism perpetuating oxidative stress has not yet
been elucidated, but the likely chemical induction mechanism
could be related to increased ROS levels leading to cellular
senescence (Liguori et al., 2018). Moreover, the loss of
estrogens or androgens in the body weakens bone defense
against oxidative stress and is responsible for an increase in
bone resorption (Manolagas, 2010). Exacerbating this problem is
the fact that inflammation and oxidative stress are inextricably
linked to aging (Leyane et al., 2022), which can perpetuate the
resorption of bone and throw off the homeostatic balance and
regenerative capacity of bone to heal. Nature has developed
various antioxidant mechanisms as defense against oxidative
stress, but their efficacy decreases with aging (Portal-Núñez
and Esbrit, 2013).

FIGURE 2
Proposed mechanism of healing CSDs over time: (A) Critical sized defect; (B) Endothelial Cells and Mesenchymal Stem Cells arrive in bone defect;
(C) Antioxidant activity (NRF2, SOD1, GPX, CAT); (D) Angiogenic transcription markers expressed (HIF, ANG1, VEGF); (E) Vascular tubule formation; (F)
Osteogenic transcription (RUNX2, OSX); (G)Collagenmatrix formation; (H) Bonematrix protein synthesis (ALP, COL, OCN); (I)Bone formation; (J)Healed
CSDs.
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Several cell types occupying the skeletal framework are affected
in diverse ways in aging or related conditions in bone. Oxidative
stress induces negative effects on osteocytes (Kitase et al., 2018). ROS
causes osteocyte apoptosis and cell death. L-Beta Amino Iso-Butyric
Acid (L-BAIBA) reduces the impact of ROS on osteocytes (Wang
et al., 2020). The protective effects of L-BAIBA are lost with age
despite its production not being lost with age. The ability to activate
oxidative stress protection in osteocytes is the main issue causing
this phenomenon. The protective receptor involved in L-BAIBA
protection involves activation of Mas-related G-protein-coupled
receptor type D (MRGPRD, Figure 3) (Wang et al., 2020),
MRGPRDs are regulators of bone homeostasis and reduced in
expression as osteocytes and osteoblasts age (Hsiao et al., 2010;
He et al., 2020). Thus, targeting these receptors could be used to
mitigate the issues related to aging and promote bone homeostasis
and regeneration.

Despite the benefits of antioxidants to fight aging or related
conditions, dietary antioxidants do not have the capacity to heal
large bone defects or fractures on their own. They are nutrients for
every system in the body and to have these molecules locally
delivered has become the subject of recent studies. Because of the
large size of critical-size bone defects, they require the use of fixative
or resorbable implants to stabilize the defect while facilitating bone
regeneration. We will discuss the use of various biomaterials used to

treat these defects and illustrate how these materials can target
antioxidants to promote bone healing.

Current biomaterial and tissue engineering
treatment strategies

As mentioned above, large-sized craniofacial bone defects
require three-dimensional structural support, including
permanent protection to the underlying tissues, mechanical
integrity, the support of full-range jaw movement, and facial
esthetics along with faster healing rates, which makes them
difficult to restore. Current treatment strategies for repair and
reconstruction require a consideration of appropriate biomaterial
scaffolds, bioactive factors, and appropriate delivery kinetics of those
factors to the wound healing environment (Figure 4). Some of these
are explained below.

Autografts

Bone grafts from an autogenous source are the gold standard for
treating craniomaxillofacial bone defects (Elsalanty and Genecov,
2009; Brown Baer et al., 2012; Kruijt Spanjer et al., 2017; Dewey and

FIGURE 3
MRGPRD (MAS-related GPR family member D), FFAR3 (a G-protein-coupled receptor), GABAaR (gamma-aminobutyric acid type A receptor),
GABBR1-2 (gamma-aminobutyric acid type B receptor subunit 1–2), GLRA1-4 (glycine receptor alpha 1–4), and GAD (glutamate decarboxylase) are all
involved in the control of muscle tonicity. GABA is a major neurotransmitter that is generated in the central nervous system (CNS) and spinal cord, and its
action controls muscle tonicity both centrally and peripherally. BAIBA is a myokine secreted from skeletal muscles that has direct effects on bone/
osteocytes inmice. Exercise promotes the secretion of bothmyokines and osteokines, which can have autocrine and paracrine effects. It is hypothesized
that muscle tonicity could potentially influence the release of myokines, which could in turn affect the levels of BAIBA, and vice versa. The receptors for
GABA and BAIBAmediate their functions, and certain SNPsmay act as modifiers of these effects. Thus, muscle tonicity may represent a novel mechanism
for the regulation of myokine release and its effects on bone and muscle.
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Harley, 2021). Autograft is bone tissue taken from a secondary site in
the patient’s own body for replacing bone at the primary defect site.
Iliac crest is one of the most common sites used for large autogenous
bone grafts, with mandibular bone donor sites are commonly used
when smaller volumes are needed. Smaller craniomaxillofacial
defects show a very high success rate with autografts as it retains
osteogenic and angiogenic cells and shows a favorable immunogenic
response (Pogrel et al., 1997; Dewey and Harley, 2021). Despite the
high success rate, there is limited bone availability for attaining
autogenous bone grafts. Additionally, removing bone from a
secondary area in the patient’s body can lead to an additional
surgery site, pain, vascular and nerve injury, secondary bone
fracture, high chances of bone morbidity and longer healing
times (Elsalanty and Genecov, 2009; Dewey and Harley, 2021).

Allografts and xenografts

Allografts are bone grafts taken from a donor of the same species
and xenografts are bone grafts taken from a different species. These
grafts overcome drawbacks of autografts such as the need for secondary
donor-site surgery, and increased chances of bone morbidity. Allografts
and xenografts are required to undergo a series of processing such as
decellularization and demineralization to minimize the immunologic
response and disease transmission (Elsalanty and Genecov, 2009;
Dewey and Harley, 2021). The vigorous pre-processing of these
grafts can lead to a less osteogenic biomaterial, as it affects the
extracellular matrix and collagen in the donor bone (Bae et al.,
2006; Ghanaati et al., 2014; Dewey and Harley, 2021). There can
also be significant variability between the different bone tissues that

are being processed. Allograft and xenograft, even after sterilization, can
lead to post-operative infections and unfavorable immunologic
reactions. The bone grafts also have low mechanical strength for
long-term stability in cases of large bone defects.

Fixative metals and coatings

Large and complex craniofacial bone defects often require
reduction of mobile segments, fixation using metal devices, and
volume-filling bone substitutes to stabilize and regenerate the lost
bone. Titanium (Ti) fixative devices or mesh provide strength to
support cranial defects. Yet, they are unable to speed healing rates
due to a lack of bioactivity (Iwai-Yoshida et al., 2012) or aseptic
loosening (Jokstad, 2004; Katz et al., 2007; Gita and Ravi, 2011;
MacInnes et al., 2012). Attempts to coat these fixation plates with
bioactive hydroxyapatite (HA) or silica based Bioglass™ (45S5) did
not improve bone regeneration rates. Coating structural quality
suffered from high temperature processing (enameling, plasma-
spraying) that induced metal-coating thermal expansion
mismatch and interfacial cracking (Thomas et al., 1987; Hayashi
et al., 1989; Soballe et al., 1990; Dhert et al., 1991; Klein et al., 1991;
Wang et al., 1993; Yang et al., 1996; Bloyer et al., 1999; Foppiano
et al., 2007), reduced quality and bioactivity owed to glass
crystallization and mixing of soluble and insoluble phases
(Koeneman et al., 1990; Ji et al., 1992; Weinlaender et al., 1992;
Filiaggi et al., 1993; Frayssinet et al., 1993; Zyman et al., 1994;
Mcpherson et al., 1995; Gross et al., 1997; Gomez-Vega et al., 2000;
Gomez-Vega et al., 2001; Oku et al., 2001). As a result of these
factors, immature bone healing and fibrous tissue attachment were

FIGURE 4
Tissue Engineering in Craniofacial Bone Regeneration. Many strategies have been used to induce bone regeneration in craniofacial defects and have
employed various biomaterial formats (e.g., nanoparticles, scaffolds, implants) and/or bioactive factor release (e.g., small molecule, drug) to induce
angiogenesis and osteogenesis for bone formation using clinically relevant animal models.
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observed in canines after 12 weeks (Oirschot et al., 2014) with poor
long-term healing (Roy et al., 2011). As defect filler, mesoporous
45S5 fully resorbed, but only had 32%–38% of defect healing in
3 months (Liu et al., 2013; Zhao et al., 2015; Zhang et al., 2016).

Ceramics

Clinicians use ceramics and hydroxyapatite-based materials in
dental clinics. Bioglass and tricalcium phosphate are alternatives to
allografts and autografts for bone regeneration (Athanasiou et al.,
2010; Broggini et al., 2015; Tatara et al., 2019; Dewey and Harley,
2021). These calcium- and phosphorus-containing bioceramics have
good biocompatibility and acceptable mechanical properties for
defect stability. However, these materials are not as successful as
bone grafts due to their brittle nature, longer resorption times and
higher infection rates (Dewey and Harley, 2021). Other ceramic
materials such as nanosilicates and silicate nanoparticles have also
been studied and show promising results in combination with
metals and other biomaterials (Dewey and Harley, 2021). Many
clinicians use silica (SiO2) based biomaterials for their antibacterial
properties (Ferraris and Spriano, 2016; Ferraris et al., 2021). Yet,
silica-/bioactive glass-based nanoparticles and surface modifications
(Gomez-Vega et al., 2000; Sanchez et al., 2005; Chen et al., 2011;
Catauro et al., 2015) have not adequately shown any antioxidant
effects.

Polymers

Many researchers have studied natural polymers derived from
animals and plants (i.e., collagen-based biopolymers) for their
effect on soft and hard tissue healing. These polymers have
tunable porosity and orientation which is beneficial for use in
drug delivery applications. However, due to the poor mechanical
properties, there has been limited applications for these
biomaterials. Synthetic polymers such as polycaprolactone
(PCL) and poly (lactic acid) (PLA) are FDA approved for
tissue engineering applications. They are biodegradable,
biocompatible and have tunable biomechanical properties
(Athanasiou et al., 1996; Gredes et al., 2016; Dewey and
Harley, 2021). However, the synthetic biopolymers have longer
than expected degradation rates and can produce cytotoxic
degradation products.

Nano-composite resorbable materials

For bone substitutes, autogenous grafts are the gold standard
due to limited immune response and endogenous cells, yet, donor
site morbidity and low secondary site volume limit their use
(Chatterjea et al., 2010). Collagen scaffolds produce new bone
(modulus = 10 GPa, close to existing bone) in rat cranial CSDs,
yet even with MSC inclusion, only 39% of the defect healed after
10 weeks (7.02 mm3 new bone volume/18.09 mm3 total defect
volume (%BV/TV) (Al-Hezaimi et al., 2016). Additionally,
extended culture time required for obtaining high cell numbers,
exposure to serum prions and peptides, reduced viability, and

increased senescence can contribute to the rejection of MSCs
(Undale et al., 2009). Gelatin or chitosan hydrogels promote cell
growth, form a glycosaminoglycan-like structure, and degrade
(Angele et al., 2009; Chung and Burdick, 2009; An et al., 2010;
Ragetly et al., 2010; Bian et al., 2013; Kim et al., 2013; Salamon et al.,
2014; Xavier et al., 2015), yet they need modification to structurally
support defects for new bone formation. Biopolymer surfaces
modified with single peptides lack multi-functionality to mimic
extracellular matrix (ECM) (Collier and Segura, 2011) and have a
short half-life (Chow et al., 2008) while mini-proteins limit
angiogenesis via low vascular endothelial growth factor (VEGF)
activity and no antioxidant effect limiting their use (Treggiari et al.,
2015). Recombinant human bone morphogenic protein (rhBMP2)
(1–10 mg dose (Zara et al., 2011; Brierly et al., 2016), released by
collagen scaffold) can have severe side effects including ectopic bone
growth, prolonged inflammation, soft tissue swelling at the surgical
site, cyst-like bone growth in vivo, and only 15% higher healing vs
bare collagen scaffolds after 4 weeks due to rapid rhBMP2 depletion
(Carragee et al., 2011; Zara et al., 2011; Lee et al., 2012; Brierly et al.,
2016; Song et al., 2016; Shi et al., 2017; Ramly et al., 2019).

Limitations of biomaterials and antioxidant
treatments for bone injuries

As discussed above, NRF2 is a key transcriptional factor that is
responsible for activating an antioxidant response reaction against
oxidative stress (Taguchi et al., 2011). NRF2 has also been known
to affecting bone healing rates by maintaining homeostasis in bone
cells, suggesting that NRF2 can promote fracture healing in the
presence and absence of oxidative stress, thereby implicating its
role in bone healing after traumatic injury (Sun Y. X. et al., 2015;
Kubo et al., 2019). When there is no fracture injury or bone defect
present, Keap1 (Kelch-like erythroid cell-derived protein with cap
‘n’ collar homology-associated protein), a cytoplasmic antagonist,
negatively regulates NRF2, resulting in the ubiquitination of
NRF2 and its degradation by the ubiquitin proteasome system
(UPS) (Wruck et al., 2008; Canning et al., 2015). Upon injury,
NRF2 is mobilized by Keap1 cytosol transport into the nucleus,
chelation with cations, and release of NRF2 to activate downstream
antioxidant reactive elements. This then activates a downstream
cascade of osteogenic and angiogenic transcription to stimulate
bone formation.

Patients given exogenous or dietary antioxidants that target
these endogenous antioxidant mechanisms such as Vitamin E,
Vitamin C, carotenoids, and polyphenols improved overall bone
health. Patients given dietary or natural antioxidants after fracture
had higher SOD1 activity, which reduced ROS and increased
osteocalcin activity (Badr, 2008; Sandukji et al., 2011), and
lowered healthcare costs by lowering hospital stays (Fabian et al.,
2011). Antioxidants exert these beneficial effects by
electrochemically reducing ROS via increased antioxidant activity
(e.g., NRF2, SOD1, and glutathione peroxidase (GPX)) (Lean et al.,
2003; Mathy-Hartert et al., 2008) and increasing the cation
concentration thereby increasing the overall cations available for
ROS reduction (Lü et al., 2010). This leads to prompt healing in
compromised defects by limiting inflammation and decreasing
patient recovery time (Simunovic et al., 2011).
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In some cases, though, exogenous factors exhibited limitations
in efficacy for osteogenic and angiogenic activity with associated
side effects (Fabian et al., 2011). Exogenous factors such as drugs
(e.g., nitrates) or gene therapy vehicles (e.g., viral vectors) resulted
in poor endogenous antioxidant activity, impeded endothelial cell
function due to cytotoxicity, immune toxicity, nitrate tolerance,
and altered gene expression (Duvall, 2005; Papageorgiou et al.,
2013; Sun Y.-X. et al., 2015; Daiber et al., 2017). Resveratrol
(<2,000 mg/d) and N-acetyl cysteine (NAC <30 mM) are potent
drugs that promote NRF2 and SOD1 expression (Ungvari et al.,
2010; Ali et al., 2016). However, they can cause nausea or diarrhea
at higher doses (Schmidt and Dalhoff, 2001; Salehi et al., 2018) and
only slightly improved healing rates (25% BV/TV 51) or slightly
reduced defect size (30%, 30 days (Casarin et al., 2014)) in small
defects (<6 mm diameter) in vivo. Thus, for targeted approaches,
local delivery may be the alternative option to maximally affect
large bone defect healing. Further, biomaterial strategies that
incorporate fixation devices and/or biopolymer scaffolds will
play a larger role in stabilizing and healing these large defects
due to the large volume of missing bone. We discuss these
strategies below.

Semiconductor materials for bone healing

As we discussed above, fixation devices stabilize bone defects but
cannot directly contribute to rapid bone healing due to their bioinert
nature and subsequent inability to activate antioxidant mechanisms.
Coatings could be used to solve this issue. Such coatings must adhere
well to the underlying Ti while also stimulating antioxidant activity
via electron or covalent structure on the coating surface. Materials
such as dielectric coatings provide semiconductors with rigorous
and reproducible performance by controlling computers in the
nano-electronics industry. The dielectric coating on the surface of
a semiconductor that controls the release of current into an
integrated circuit is fabricated by a process known as plasma-
enhanced chemical vapor deposition (PECVD, Figure 5). This
method deposits thin films on substrates from a gas (vapor) state
to a solid state. The PECVD technique uses plasma, instead of
thermal energy in conventional CVD (Duryee et al., 2018). This
method creates a surface with amides and hydroxyl groups, forms an
amorphous coating, and helps in evenly sputtering of the molecules
which can maintain the surface morphology of the substrate (e.g.,
implant). Further, the coatings are fabricated at relatively low

FIGURE 5
(A) Schematic of PECVD process to form SiONx coatings for Ti implants. (B) Surface formation of hydroxyl, phosphate, and carbonate groups that
make up bone mineral hydroxyapatite when introduced to in vitro environment.
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temperature (<400°C), thus, thermal expansion mismatch between
the implant substrate and coating layers is markedly reduced
(Gredes et al., 2016). The PECVD process is advantageous as the
coating thickness, atom ratio, and interfacial formation onto a
biomedical device are under computer control. Furthermore, the
thin films are formed relatively quickly (within 1 h), and have high
reliability and repeatability in manufacturing (Gredes et al., 2016).

We apply these concepts to bone regeneration via the material
coating’s ability to sustain the release of degradation products which
have a positive antioxidant effect and enhanced in vitro osteogenic
biomarker expression. We fabricated silicon oxynitride (SiONx)
coatings for implant surfaces using PECVD (Ilyas et al., 2015;
Varanasi et al., 2017; do Monte et al., 2021). The PECVD
process led to a stable coating of amorphous silica on the
substrate material and released Si4+ for several weeks (Ilyas et al.,
2016). This was accomplished by optimizing the surface nitrogen-
to-oxygen (N/O) ratio in the coatings. This is an additional
advantage of using PECVD for biomedical devices (Monte et al.,
2019; Awad et al., 2022). For example, the nitrogen-to-oxygen atom
ratio is controlled by controlling the source gases NH3 and N2O
under the reductive ionized gas environment. This leads to varying
levels of tetrahedral and trigonal chemical bond structure depending
on the N/O atom ratio (Figure 5) (Varanasi et al., 2017) within the
films which can change the surface charge, change the Si4+ ion
release rate, and change the subsequent antioxidant response by
cells. In fact, these implant coatings stimulated SOD1 activity and
formed surface hydroxyapatite (HA) leading to osteogenesis in
mouse osteoblast cells (Ilyas et al., 2015; Ilyas et al., 2016;
Varanasi et al., 2017; Ilyas et al., 2019). Further, these coatings
and their release of Si4+ appeared to rescue angiogenic activity in the
presence of ROS in human endothelial cells (Monte et al., 2019).
This shows the benefits of these coatings to play an antioxidant role
during bone healing. Previous studies in our lab show that SiONx
and Si4+ reduce ROS through cationic reduction, endothelial cell
activity (Figure 6) (Monte et al., 2018), and enhanced SOD1 activity
while enhancing proliferation and differentiation of osteoprogenitor
cells (Awad et al., 2019; Ahuja et al., 2021). Furthermore, these
biomaterials have been tested on skeletal muscle cells and showed
antioxidant activity as indicated by attenuating the toxic oxidative

stress induced by hydrogen peroxide (Awad et al., 2021). Our
previous study on the effect of Si-ions on C2C12 myoblast cells
showed that Si-ions exhibit significant antioxidant properties and
can mitigate oxidative damage in these cells as shown from the
significant increase of NRF2 and SOD1 gene expressions (Awad
et al., 2021). Furthermore, our recent studies indicated that cells
treated with H2O2 induce a significant increase in ROS production
(Detected by Intracellular ROS fluorescent dye) compared to the
normal control group with a p-value of 0.0006, while treating the
cells with Si-ions significantly decrease the ROS production under
H2O2 conditions (p-value = 0.0003 compared to H2O2 negative
control group, data is not shown). When co-treated with different
Silicon ion concentrations, ROS production significantly decreased
compared to the H2O2 group Thus, the premise of our work is that
oxidative stress, inflammation, and defect instability act as a large
barrier for the rapid healing of severe bone loss. In contrast, SiONx-
based coatings on fixative devices that release Si4+ will overcome this
barrier by providing structural stability while inducing optimal
antioxidant activity to lower ROS, and inflammation, and
increase angiogenic and osteogenic activity to promote rapid
defect healing (Figure 7).

Animals models to test normal and
compromised tissue healing in bone

Many of the models of bone healing and approaches have
examined the use of new treatment modalities in healthy bone.
Several animal models have been utilized to study the bone
regeneration after induced bone defects such as rats (do Monte
et al., 2021; Ilyas et al., 2016), rabbits (Shah et al., 2016; Piotrowski
et al., 2019), pigs (DeMitchell-Rodriguez, 2023), and dogs (Taha
et al., 2023). A prime example of a rabbit model of tissue
regeneration would be a critical sized defect model in which an
8–10 mm diameter trephine defect is administered in the body of the
mandible. A titanium plate is then secured along the inferior side of
the mandible to prevent iatrogenic fracture (Shah et al., 2016). In
such a model, several types of interventions can be studied from
implant coatings to dietary effects to implantable scaffolds.

FIGURE 6
Effect of small molecular delivery of Si4+ that rescues human endothelial cell angiogenesis when exposed to reactive oxygen species and normal
conditions. Primary human endothelial cells showed thick and dense tubules when exposed to 1.0 mM ionic Si (A) vs no Si treatment exhibiting immature
tubule formation (B) in 24 h in vitro. HUVECs under ROS conditions (H2O2) showed increased angiogenic marker expression vs no Si ion treatments (C)
(All experiments were performed with n = 6 per group according to protocols and methods published by Monte et al. (Monte et al., 2018).
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However, few have studied bone regeneration strategies in the
setting of a compromised wound. Preclinical models exhibiting a
compromised wound healing environment are ones in which an
initial insult to the bone is performed with either radiation or
medications (i.e., bisphosphonates), mimicking osteoradionecrosis
or medication-related osteonecrosis of the jaw, respectively.
Preclinical animal models by Young and others (Piotrowski
et al., 2019; Piotrowski et al., 2020) have studied aspects of
compromised tissue environments. The basic premise is that the
degenerating conditions afflicting bone act as a large barrier to
inducing the natural healing processes of bone (Figure 8)
(Piotrowski et al., 2019) and (Figure 9) (Piotrowski et al., 2020).
This is a translational animal model that mimics the morbidities

faced by patients suffering from osteoradionecrosis. Because the
condition involves initial radiation of the animal, the natural
response by these animals is a compromised state in which
many of the normal functions of bone homeostasis and healing
are impaired due to the insult to the bone cell microenvironment.
Thus, these animal models could be potential candidates to study
the conditions placed upon healing.

Summary and future work

As discussed above, severe bone injuries are challenging to heal
and reconstruct. Exacerbating this issue and complicating the

FIGURE 7
In Vitro and In Vivo model of NRF2 effect on (A) angiogenesis and (B) osteogenesis in bone regeneration.

FIGURE 8
Micro-CT of compromised wound healing environment shows decreased bone formation in targeted area (A) Quantification of bone volume (B)
Bone healing in control vs (C) irradiated animal defect and bone healing.
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healing process is the high prevalence of these patients afflicted
with aging conditions. The use of traditional materials that were
normally used to reconstruct the skeleton have low efficacy in
stabilizing the bone layer if the disease or disorder continues to
weaken the bone structure. Thus, treatment strategies and
manufacturing of devices must incorporate new methods and
materials to handle these conditions as well as stabilize the
bone layer. The need for these new treatment strategies for
targeting mechanisms involved in countering the aging
condition while also stimulating faster regeneration of these
bone structures will be the future development direction for
healing these injuries. The use of improved methods of
manufacture and materials with intrinsic properties or release
of small molecules or drugs to target aging mechanisms to
regulate cellular aging will be key to improving the outcome for
patients and meet the burden of care. Still, these studies focusing
on one approach yielded highly differential outcomes such that the
clinical need cannot be met. Further, due to the complementary
nature of the clinical need of fixation devices and bone substitutes
to treat large bone defects, there is a need for new classes of
biomaterials with similar compositional constructs. This will yield
more predictable bone regeneration of biomaterials for sustainable
and beneficial outcomes.
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targeted area.
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