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Aging is defined as the functional decline of tissues and organisms, leading to
many human conditions, such as cancer, neurodegenerative diseases, and hair
loss. Although stem cell exhaustion is widely recognized as a hallmark of aging, our
understanding of cell state changes–specifically, the dynamics of the
transcriptome and open chromatin landscape, and their relationship with
aging–remains incomplete. Here we present a longitudinal, single-cell atlas of
the transcriptome and open chromatin landscape for epithelia cells of the skin
across various hair cycle stages and ages in mice. Our findings reveal fluctuating
hair follicle stem cell (HF-SC) states, some of which are associated with the
progression of the hair cycle during aging. Conversely, inner bulge niche cells
display amore linear progression, seemingly less affected by the hair cycle. Further
analysis of the open chromatin landscape, determined by single-cell Assay for
Transposase-Accessible Chromatin (ATAC) sequencing, demonstrates that
reduced open chromatin regions in HF-SCs are associated with differentiation,
whereas gained open chromatin regions in HF-SCs are linked to the
transcriptional control of quiescence. These findings enhance our
understanding of the transcriptional dynamics in HF-SC aging and lay the
molecular groundwork for investigating and potentially reversing the aging
process in future experimental studies.
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Introduction

Aging is an inevitable process characterized by the gradual accumulation of damages in
cells and tissues, leading to declines in tissue functions and increased vulnerability to chronic
diseases and mortality (Holliday, 1995; Campisi et al., 2019; López-Otín et al., 2023).
Although significant progress has been made in understanding the mechanisms of aging
(Van Deursen, 2014; Revuelta and Matheu, 2017), many questions regarding molecular and
cellular changes and cell-to-cell variation during aging remain unanswered (Martinez-
Jimenez et al., 2017; Todhunter et al., 2018).

As the largest organ in mammals including human, the skin and its appendages provide
an excellent experimental system for aging research (Fuchs, 2016). Skin wrinkling, hair
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greying, and hair loss are some of the most visible signs of aging,
making them ideal subjects for investigation (Matsumura et al.,
2016; Ge et al., 2020; Zhang et al., 2021). As an experimental system,
hair follicle offers a particular advantage for experimental
manipulation because functional decline of hair follicles is
generally well-tolerated and does not cause detrimental damage
to survival. Furthermore, hair follicle lineages are spatiotemporally
well-defined (Blanpain and Fuchs, 2014), and these features facilitate
the analysis of linking high-dimensional data, such as transcriptome
and open chromatin data, to physiological changes of the tissue.
Epigenetic and transcriptional regulation play important roles in
governing cell fate and functions of hair follicles. For example,
FOXC1 and NFATC1 transcription factors (TFs) have been
implicated in the regulation of HF-SC aging, through the control
of quiescence, cell adhesion and extracellular matrix (ECM) (Keyes
et al., 2013; Lay et al., 2016; Zhang et al., 2021). Genetic deletion of
DNA methyltransferase 1 (DNMT1), on the other hand, decreases
HF-SC activation and leads to progressive alopecia (Li et al., 2012).
Furthermore, aged HF-SCs showed increased niche stiffness (Wang
et al., 2023), decreased open chromatin landscape and reduced
ability to activate genes associated with self-renewal and
differentiation (Koester et al., 2021).

With the advent of genomic tools, recent studies have begun to
probe dynamic changes in the transcriptome and open chromatin
dynamics in the hair follicles (Matsumura et al., 2016; Ge et al., 2020;
Koester et al., 2021; Zhang et al., 2021). In particular, single-cell
genomic tools have significantly advanced our understanding of cell
state, cellular heterogeneity and aging-associated changes in hair
follicle lineages. However, the atlas of hair follicle lineages during
aging is incomplete. Previous studies have used single-cell RNA
sequencing (scRNAseq) to profile skin from young (~2 months old)
and old (~24 months old) mice, providing an initial comparison
between the transcriptomes of young and old hair follicles (Ge et al.,
2020; Zhang et al., 2021). However, aging, typically characterized by
a gradual decline in physiological functions and regenerative
capacity, does not necessarily proceed linearly. In hair follicles,
the self-renewal of HF-SCs, which usually takes place during the
anagen growth phase (Hsu et al., 2014), generates new HF-SCs. This
process could effectively “reset” the aging process with each new
round of cell division. It is important to note that the frequency of
the anagen phase decreases with aging (Chen et al., 2014).
Consequently, HF-SCs tend to remain in an extended quiescent
state as aging progresses. Thus, to gain new insights into the hair
follicle aging process, it is important to address several key
questions: How does the hair cycle influence the aging trajectory?
Do different cell types exhibit diverse trajectories and progressions
during aging? What is the relationship between the transcriptome
and the open chromatin landscape during aging?

In this study, we present a comprehensive single-cell analysis of
the dynamics of the transcriptome and open chromatin landscape in
distinct hair follicle lineages with a higher temporal resolution
during aging. To facilitate the analysis of cell states at distinct
hair cycle stages, we incorporated recently published scRNAseq
datasets from postnatal day P38 (P38, catagen) (Zhang et al., 2021),
and P53 (telogen) (Wang et al., 2023). Furthermore, we generated
new scRNAseq datasets from mice aged 6 months (6 months),
12 months and 24 months. In addition, we also generated new
scATACseq datasets from mice aged P28, 12 months and

24 months. Collectively, we have established a longitudinal single-
cell atlas of both the transcriptome and open chromatin to probe
physiological aging. The findings from this study provide an in-

FIGURE 1
Single-Cell transcriptome of aging hair follicles. (A) Integration of
scRNAseq samples from P38, P53, 6 months, 12 months, and 24 months.
(B) UMAP visualization of all epidermal cell lineages. Color-coded by cell
types. IFE, interfollicular epidermal basal cells; Supra, suprabasal cells;
UpHF1/2, differentiated hair follicle cells in the upper portion; SG,
sebaceous gland; UpHFSC, Lgr6+ HF-SCs; HF-SC, hair follicle stem cells;
Niche, inner layer niche cells; HG, hair germ; MigNiche, migratory niche
cells; DP, dermal papillae; Prolif, proliferating cells; Fibroblast, Fibroblast
cells; Langer, Langerhans cells; Tcells1/2, T cells; APM, arrector pili muscle;
Melano, melanocytes; Endo, endothelial cells. (C,D) Marker gene
expression of different epithelial cell populations, interfollicular epidermal
cells, upper hair follicles (C) and hair follicle stem cell compartment (D).
(E,F) Feature plot and violin plot of young (E) and old (F) feature genes sets.
The young and old feature genes were genes enriched in young and old
HF-SCs. The module scores were the average expression of aggregated
feature genes on single cell level compared with control gene sets. The
p-value of feature genes between UpHF1 and HF-SC population were
calculated using wilcoxon rank sum test. ****: p-value <0.0001.
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depth understanding of the cellular changes that occur in hair
follicles during aging and contribute significantly to our overall
understanding of the aging process.

Results

Longitudinal analysis of single-cell
transcriptome during hair follicle aging

To capture the dynamic changes among the full spectrum of hair
follicle cells during aging, we employed flow cytometry to sort
epithelial cells, marked by H2B-GFP from Krt14-H2B-GFP mice,
at postnatal day 38 (P38 male, synchronized catagen) (Zhang et al.,
2021), P53 (female, synchronized telogen) (Wang et al., 2023),
6 months (female, mostly anagen HFs), 12 months (male, mixed
telogen and anagen), and 24 months (female, mostly telogen).
Single-cell RNA sequencing (scRNAseq) libraries were generated
using the 10X Genomics Chromium platform (see Supplementary
Table S1). The mixed use of male and female mice during aging was
designed to reduce the possibility to capture sex-biased gene
expression changes. After quality control and filtering, we
obtained 14,091 single-cell transcriptomes, with an average of
2,797 genes (interquartile range 1,253) and 12,854 transcripts
(interquartile range 9,402) detected in a single cell
(Supplementary Figure S1A).

To integrate all the cells from different ages and reduce batch
effects, we used unsupervised methods (Stuart et al., 2019) for
integration and comparison (Figure 1A; Supplementary Figure
S1A). We next applied unsupervised Louvain clustering based on
the shared nearest neighbor graph (Hao et al., 2021) to batch-
corrected samples (Figure 1B). Based on the differential expression
analysis and known markers for well-characterized lineage markers
for epithelial cells of the skin, we annotated the cell populations by
using the top marker genes from each cluster (Figure 1B;
Supplementary Figure S1B). Among the epidermal lineages, we
successfully identified basal cells of the interfollicular epidermal
lineages (IFE) (marked by Krt14 and Krt5), suprabasal cells of the
IFE (supra, marked by Krt1 and Krt10), sebaceous gland lineages
(SG, marked by Scd1andMgst1), and hair follicle (HF) lineages in all
samples (Figure 1C), as shown in the uniform manifold
approximation and projection space (UMAP). However, because
of our intention to enrich epithelial cells, the cell populations in the
dermis, including fibroblast (marked by Dcn and Col1a1), arrector
pili muscle (APM) (marked by Rgs5 and Acta2), dermal papillae
(marked by Crabp1 and Lef1), immune cells (marked by Cd2 and
Cd28), and endothelial cells (marked by Cdh5 and Pecam1) were
captured in the datasets from P53, 6 months, 12 months, and
24 months samples but not the P38 sample (Supplementary
Figures S1B, C). The P38 sample contained mostly epithelial cells
with a minimal fraction of dermal cells and other non-epithelial cells
because it was obtained by sorting Krt14-H2bGFP + epithelial cells
(Supplementary Figure S1B). In epithelial cells derived from the
bulge stem cell region (marked by high Sox9 expression), we
successfully resolved the HF-SCs (marked by Krt24 and Cd34),
inner bulge niche (Niche) (marked by Fgf18), upper HF-SCs
(marked by Lgr6), and hair germ (HG) progenitors (marked by
Lgr5) (Figure 1D). Interestingly, we also discovered a cell population

related to the Krt6+ population (Hsu et al., 2011), which displayed a
unique transcriptome with enriched gap junction gene expression,
among others (Figure 1D). We named this population as migratory
Niche (migNiche), which is distinct from the inner bulge niche.
Gene ontology (GO) analysis indicated enriched programmed cell
death, cell projection, supramolecular fiber organization, cell
junction and actin cytoskeleton organization in the migNiche
compared to inner bulge niche cells (Supplementary Figure S1D;
Supplementary Table S2).

In previous aging studies of HFs, quantification of the SC
population has typically relied on using cell surface markers
specific to HF-SCs to quantify their numbers (Matsumura et al.,
2016; Koester et al., 2021). However, several issues could interfere
with the quantification. For example, it remains unclear whether
these individual markers can accurately capture and quantify all HF-
SCs during aging. In particular, aged HF-SCs may fail to express one
or a few markers while still maintaining their SC functions.
Therefore, a more unbiased analysis of cell population dynamics
in HF lineages during aging is needed. In this study, we leveraged
high-dimensional, scRNAseq datasets to annotate HF lineages,
including HF-SCs, based on unsupervised clustering and curated
annotation of a large set of genes. One challenge to quantify
individual epithelial cell populations based on scRNAseq results
was the variation in cell dissociation during sample preparation. For
example, dermal cells were scraped before enzymatic digestion,
resulting in less robust recovery of dermal cells in scRNAseq
datasets (Supplementary Figure S1E). Because the 10X scRNAseq
platform randomly samples up to 10,000 cells per assay, the
percentage of cells from different populations could be affected
by the different efficiency in cell dissociation and recovery. To
minimize this effect, we restricted our compositional analysis to
anatomically close lineages. We made the assumption that these
closely situated epithelial cells are more likely to be exposed to the
same dissociation conditions and thus maintain their relative
proportions. Therefore, comparison of these local populations
should more accurately reflect their composition during aging. In
support of this view, our analysis revealed that the composition of
IFE cells remained largely constant during aging (Supplementary
Figure S1F). In contrast, the relative percentage of inner bulge niche
cells in the bulge region decreased during aging (Supplementary
Figure S1F). This observation was consistent with intravital live
imaging data, which showed the reduced inner bulge niche in
miniaturized HFs in aged mice (Zhang et al., 2021).

To investigate the patterns of gene expression changes in HF-
SCs during aging, we extracted differentially expressed genes in HF-
SCs from published bulk RNAseq data obtained from young
(6 months) and old (24 months) mice (Ge et al., 2020)
(Supplementary Table S3). When we mapped the genes enriched
in young HF-SCs onto our integrated scRNAseq datasets, we found
that HF-SCs had the highest expression of these genes associated
with young HF-SCs (Figure 1E). Surprisingly, when we mapped the
genes enriched in old HF-SCs onto the same integrated scRNAseq
datasets, we found that Upper HF lineages, including epithelial cells
from sebaceous gland and infundibular regions, showed the highest
expression of these genes associated with old HF-SCs (Figure 1F).
Further considering only the HF-SC populations, we validated that
the old and young HF-SC gene signatures were indeed enriched in
the corresponding conditions (Supplementary Figure S1G). These

Frontiers in Aging frontiersin.org03

Zhang et al. 10.3389/fragi.2023.1192149

https://www.frontiersin.org/journals/aging
https://www.frontiersin.org
https://doi.org/10.3389/fragi.2023.1192149


findings suggest a tantalizing possibility that aging HF-SCs acquire
additional HF lineage features, in this case Upper HFs, while still
maintaining their general HF-SC features. This observation is also

consistent with spatial features of upward migration of HF-SCs
during aging (Matsumura et al., 2016; Zhang et al., 2021).
Collectively, these data provide molecular evidence that HF-SCs

FIGURE 2
Transcriptomic analysis of HF-SCs aging. (A) UMAP visualization of HF-SCs, color coded by samples. (B) UMAP visualization of HF-SCs color-coded
by pseudo-time. (C,D) Highly enriched gene ontology (GO) terms of 6 months (C) and 24 months (D) branch cells. (E,F) Selected gene expression plot
along the pseudotime trajectory of 6 months (E) and 24 months (F) branch cells.
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are gradually acquiring gene signatures associated with the upper
hair follicle lineages during aging.

Trajectory of hair follicle stem cell states
during aging

We next leverage our scRNAseq datasets across multiple time
points to examine the trajectory of HF-SCs during aging. Because
the P38 sample was derived from catagen, which is a transient stage
between the growing anagen phase and the quiescent telogen phase,
we only used this sample as a reference for catagen signatures. We
extracted HF-SCs from the integrated scRNAseq datasets that were
derived from P53, 6 months, 12 months, and 24 months samples.
Upon re-clustering these HF-SCs, we observed a bifurcating
trajectory with 6 months and 24 months cells residing at each
branch (Figure 2A). This distinct pattern was notably different
from those of upper HF lineages, which largely overlapped with
each other (Supplementary Figure S2A). To minimize the possibility
of algorithm-dependent artifacts, we used an independent,
partition-based graph abstraction (PAGA) algorithm (Wolf et al.,
2019) that preserves global topology of scRNAseq dataset to
generate the cell trajectory. We still observed a similar pattern of
bifurcation between 6 months and 24 months datasets when we
obtained the single cell embedding results (Supplementary Figure
S2B). In addition, since these clusters were derived from the same
sample set, it is likely that the observed differences were caused by
cluster-specific aging trajectories rather than systemic differences,
such as sex bias. Given that both 6 months and 24 months samples
were female, this further argued against the idea that the bifurcating
pattern could be due to sex biases within the samples.

To better understand the transcriptomic dynamics along these
two trajectories, we usedMonocle3 (Cao et al., 2019) to order the HF-
SCs in pseudo-time with P53 cells as the root (Figure 2B). We
separated the cells into two groups based on their branches in the
trajectory (Supplementary Figures S2C, D) and compared the
transcriptome of 6 months and 24 months samples on each
branch. GO analysis for genes associated with the 6 months
sample uncovered enriched signaling pathways, including Wnt/
hedgehog signaling, which are associated with anagen HF-SC
activation and proliferation (Hsu and Fuchs, 2012; Hsu et al.,
2014), metabolic pathways, including oxidative phosphorylation
and ATP synthesis coupled electron transport, and cell cycle G1/S
checkpoints (Figure 2C; Supplementary Table S4). These signatures
were consistent with the notion that the 6 months sample was isolated
frommostly anagen skin. On the other hand, the GO signatures of the
24 months HF-SCs were enriched for positive regulation of
programmed cell death, altered extracellular matrix and cell
adhesion and wound healing (Figure 2D; Supplementary Table S4).
Furthermore, these aged HF-SCs were enriched for pro-inflammatory
signals such as TNFα and IL2-Stat5 signaling (Supplementary Figure
S2E, F). These data reveal an elevated state of inflammation in aged
skin. It is plausible that this activated immune program could
be responsible for clearing out escaped HF cells in aged skin
(Zhang et al., 2021). Additionally, these data also indicate that the
stages of the hair cycle, particularly the anagen phase during which
HF-SCs self-renew, could influence the cell state and transcriptome of
HF-SCs.

To probe more deeply into the transcriptomic changes along the
bifurcating trajectory, we examined the 6 months branch, which
represent the telogen (P53) to anagen (6 months) transition, and the
24 months branch, which represent the aging trajectory of typical
telogen HF-SCs, by using Monocle3 (Cao et al., 2019)
(Supplementary Figures S2C, D). Along the 6 months trajectory,
cyclin genes responsible for the G1/S transition (Ccnd2) was
upregulated, while cell cycle inhibitor (Cdkn1a) showed reduced
expression, further corroborating the status of activated HF-SCs in
the 6 months sample (Figure 2E). In addition, Wnt signaling
components (β-catenin, Fzd2, Tcf7l2) gradually increased
expression (Supplementary Figure S2G) while Bmp2 levels were
reduced as expected for anagen HF-SCs (Plikus et al., 2008)
(Figure 2E). In both trajectories, Krt14 expression level was
relatively stable and used as internal control. To gain insights
into global gene expression patterns, we employed Monocle3 to
categorize the genes into distinct clusters using Louvain community
analysis. This analysis identified two clusters demonstrating
different patterns along the temporal trajectory (Supplementary
Figures S3A, B) on the 6 months branch (Supplementary Table
S5). Cluster1, containing 2,614 genes, showed a consistent increase
in expression levels along the trajectory, whereas Cluster2, with
1,520 genes, exhibited a diminishing expression pattern. From these
clusters, we discerned that gene signatures associated with metabolic
stress (Cluster 1, Supplementary Figure S3C) and decreased cell
adhesion and tight junction (Cluster 2, Supplementary Figure S3D)
emerge as early as the 6 months mark in HF-SCs.

In the 24 months aging trajectory, expression of genes associated
with quiescence, such as Bmp2 and Cdkn1a, was elevated toward the
end point of 24 months (Figure 2F), consistent with the notion that
aged HF-SCs mostly rest in the prolonged quiescent state (Keyes
et al., 2013; Ge et al., 2020; Zhang et al., 2021). The co-expression
analysis revealed two distinct and oscillating patterns along the
trajectory from P53 to 12 months–24 months. Cluster1, containing
2,515 genes, displayed a gradual increase in expression followed by a
decrease (Supplementary Figure S3E), whereas Cluster2, with
1,743 genes, showed a pattern with an initially high expression
level followed by downregulation and subsequent recovery
(Supplementary Figure S3F; Supplementary Table S6).
Interestingly, the cluster1 genes were enriched for GO terms
similar to those of the 6 months branch, including oxidative
phosphorylation, Wnt signaling and cell cycle checkpoints
(Supplementary Figure S3G). Furthermore, Runx1 transcriptional
regulation was increased in Cluster1 genes, which has been
previously reported to promote activation of HF-SCs (Hoi et al.,
2010; Lee et al., 2013). This analysis also revealed a strong
enrichment for reactive oxygen species (ROS) in Cluster1 genes,
which was not evident in direct comparisons (Supplementary Figure
S3G). Given the similarity between the genes of Cluster1 and those
of the 6 months (anagen) branch, this analysis suggests that anagen-
associated gene signatures gradually diminish during the prolonged
telogen phase associated with aging. The cluster2 genes, which
demonstrated a pattern of reduced expression followed by
recovery, were enriched for the regulation of cell adhesion and
migration (Supplementary Figure S3H). Prior comparisons between
P53 and 24 months samples have also revealed a downregulation of
cell adhesion and the extracellular matrix (ECM) (Ge et al., 2020;
Zhang et al., 2021). These dynamic patterns, as detected by our
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analysis with higher temporal resolution, likely indicate an active yet
insufficient effort by HF-SCs to restore cell adhesion and the ECM
microenvironment during aging. Taken together, these results
underscore the existence of a dynamic, rather than linear, pattern
in the gene expression program of HF-SCs during aging.

Trajectory of inner bulge niche cell states
during aging

The analysis of inner bulge niche cell composition revealed a
reduction in their population during aging (Supplementary
Figure S1E). To investigate the cellular state dynamics of the
Niche cells, we subsected the Niche population from all samples
and re-clustered them. Interestingly, unlike the bifurcating
patterns observed in HF-SCs, the Niche cells exhibited a
linear progression from P53 cells to 24 months cells
(Figure 3A). In support to these results, the force-directed

graph also displayed a similar linear progression
(Supplementary Figure S4A). This linear trajectory, in
contrast to the bifurcating pattern observed in HF-SCs,
suggests that the aging trajectory of the Niche cells is
different from those of HF-SCs.

To further determine transcriptomic dynamics of Niche cells, we
employedMonocle3 to generate the pseudo-time trajectory and calculate
the pseudo-time value for individual Niche cells. Consistent with the
linear progression pattern, the 24 months cells had the highest pseudo-
time values, followed by the 6 months/12 months cells that had
intermediate values, whereas P53 cells had the lowest pseudo-time
value as the root (Figure 3B). Because the pseudo-time analysis
recapitulated the physiological age of the Niche cells, this enabled us
to infer the changes along the aging process. The analysis of covaried
gene expression changes identified three distinct patterns. Among them,
Cluster1, containing 1,699 genes, and Cluster2, containing 1,581 genes,
turned on or off later in the trajectory, respectively (Figures 3C, D). In
contrast, Cluster3, containing 158 genes, largely maintained gene

FIGURE 3
Aging trajectory of the Niche cells. (A) UMAP visualization of Niche cells during aging, color-coded by samples. (B)Monocle3 pseudo-time plots of
aging Niche cells color-coded by pseudo-time values. (C,D) Aggregated expression of genes modules in different co-expression modules along the
aging Niche cells. (E,F) Enriched GO terms of gene modules corresponding to (C) and (D).
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expression across all stages (Supplementary Figure S4B). The
Cluster1 genes, which were elevated during aging, showed an
increase in oxidative phosphorylation, reactive oxygen species (ROS),

stress response, antigen presentation and hypoxia (Figure 3E). This
trajectory suggests that the Niche cells may accumulate gene expression
associated with stress response. The Cluster2 genes, which diminished

FIGURE 4
Integration of scRNAseq and scATACseq data. (A,B) UMAP visualization of integrated scRNAseq and scATACseq data, color-coded by cell
populations. (C) Dotplot of marker genes expression in scRNAseq (left) and inferred gene activities in scATACseq (right). Gene expression levels were
indicated by color intensity. Dot size represents the percentage of cells with the inferred activities. (D) Gene expression, inferred gene activities, motif
activities and motif plots of lineage specific transcription factors.
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during aging, were enriched for genes associated with cell death, cell
migration, cell adhesion and epidermal differentiation pathways
(Figure 3F).

Unlike HF-SCs, whose gene expression patterns seem to
fluctuate during aging, the Niche cells appear to accumulate gene
expression associated with cellular stress. These signatures could
indicate a relatively fragile state of the Niche cells that continuously
declines during aging. These observations position the Niche cells as
promising targets for future functional investigation into HF aging.

Integrative analysis of single-cell RNA
sequencing and single-cell ATAC
sequencing

scRNAseq has a limitation of poor detection rate for lowly
expression genes, including transcription factors (TFs), which are
critical for cell fate specification and cell state maintenance. In
contrast, single-cell ATAC sequencing (scATACseq) can infer
transcription factor activity based on patterns of chromatin
accessibility (Buenrostro et al., 2013; Wang et al., 2016; Fan
et al., 2018; Zhang et al., 2021). To understand the multi-
modality of HF aging, we performed scATACseq on P28 (young,
male), 12 months (middle age, male), and 24 months (old, female)
samples. After initial processing (Supplementary Figures S5A, B;
Supplementary Table S1), we selected cells with a number of
fragments overlapping peaks between 3,000 and 100,000, with
more than 40% reads in peaks, and a blacklist ratio less than
0.025. Furthermore, we calculated the transcriptional start sites
(TSS) enrichment signal and nucleosome signal per cell by using
signac (Stuart et al., 2021) to filter out cells with low TSS and high
nucleosome signal. We sequenced approximately 20,492 cells from
all samples (Figures 4A, B) with a similar sequencing saturation rate
(63.6%–64.1%). Interestingly, P28 samples had approximately 20 K
fragments in peak regions per cell after filtering, while 12 months
and 24 months samples each had around 10 K fragments with the
similar sequencing depth. This finding unveils the widespread
closure of chromatin accessible region as early as 12 months in
epithelial cells of the skin. This corroborates similar observations
detected by bulk ATAC-seq in a recent study (Koester et al., 2021).

To capture high-confidence peaks in all samples for analysis, we
pooled all cells from each sample and assembled them into a
collective bulk ATAC dataset for peak calling. In total, we
detected 178,454 peaks in P28, 111,246 peaks in 12 months, and
145,689 peaks in 24 months samples, confirming the reduction of
open chromatin regions in middle-aged and old samples. To
facilitate the integration of all scATACseq data, we combined
peaks across all samples. To find integration anchors from all
samples, we applied signac (Stuart et al., 2021) to project all
samples into a shared low-dimensional space using reciprocal
latent semantic indexing (LSI). In this processing, we excluded
the first component because it was highly correlated with
sequencing depth (Supplementary Figures S5C, D).

As scRNAseq datasets have been successfully employed to
annotate all epithelial cell populations of adult skin (Joost et al.,
2016; 2020), we used scRNAseq as a reference and mapped the
scATACseq data onto it to aid cell type identification (Figures 4A, B;
Supplementary Figures S5E–G). The comprehensive collection of

samples obtained from comparable stages allowed us to perform an
integrative analysis of gene expression using scRNAseq data, gene
activities by counting open chromatin fragments from scATACseq
data overlapping with the gene body and located in the upstream
region of the TSS, and motif enrichment by conducting TF motif
analysis in scATACseq datasets. Remarkably, a strong Pearson
correlation was observed between marker gene expression
obtained from scRNAseq and predicted gene activity derived
from scATACseq for each cluster (Supplementary Figure S5H),
validating our integrative analysis. Interestingly, while open
chromatin signatures (dot size) showed similar signals across the
epithelial cells, predicted gene activities (color) showed a stronger
correlation with unique gene expression levels in each cell
population (Figure 4C, right panel). These data suggest that open
chromatin signatures per se do not predict transcriptional output,
but predicted gene activities serve as a more reliable indicator of
transcription. We note that proliferating cells in scRNAseq data
failed to map onto the scATACseq space, a finding that has been
reported previously (Trevino et al., 2021). This result further
illuminates the disparity between open chromatin signatures,
transcriptional activity, and gene expression levels.

Next, we calculated lineage-specific TF motif activity using
Chromvar (Schep et al., 2017). As expected, gene expression
levels, predicted gene activity, and motif activity all demonstrated
enrichment for lineage-specific TFs. For IFE and UpHF populations,
Gata3, Gata6, Jun, and Grhl1 all exhibited high expression levels
along with high motif activities (Figure 4D; Supplementary Figures
S6A, B), which is consistent with their biological functions in these
skin lineages. For the bulge HF-SCs, Sox9, Nfatc1, and Lhx2 signals
were significantly enriched (Figure 4D; Supplementary Figure S6C).
We also noted that motif activities and gene expression levels
showed higher lineage specificity than the predicted gene
activities, underscoring the importance of functional
measurement of gene expression. Interestingly, even TFs that
were lowly expressed and not robustly detected in scRNAseq,
such as Rbpj, displayed strong signals in motif activities, as
shown in Supplementary Figure S6D.

The dynamics of chromatin accessibility
during hair follicle aging

To investigate the epigenetic changes that occur during HF
aging, we analyzed published young and old bulk ATACseq datasets
to identify differentially accessible regions (Koester et al., 2021)
(Supplementary Figure S7). This analysis led to an unexpected
discovery when we mapped these differentially accessible regions
onto our scATACseq data. The open chromatin regions that were
more accessible in young HF-SCs were enriched across all epithelial
populations, including both stem cells (SCs) and differentiated cells,
as shown in Figure 5A; Supplementary Figure S6E. However, the
open chromatin regions that were more accessible in old HF-SCs
were primarily open in HF-SCs, particularly in HF-SCs from old
mice, as shown in Figure 5B; Supplementary Figure S6F. This
finding suggests that HF-SCs gradually close some chromatin
regions that are universally open in epithelial lineages during
aging (Figure 5C), possibly indicating the limited differentiation
potential in old HF-SCs. Conversely, the chromatin regions that
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became open in old HF-SCs were specific to these cells, likely
reflecting their unique epigenetic changes during aging (Figure 5D).

To better understand the transcriptional regulation underlying
these chromatin changes, we investigated the motif enrichment of

the differentially accessible regions (Figure 5E). Interestingly, the
regions in old HF-SCs were enriched for the motif of Lhx2
(Figure 5F), which is required for quiescence control and cell fate
maintenance of HF-SCs (Folgueras et al., 2013), whereas the regions

FIGURE 5
Open chromatin dynamics during HF-SC aging. (A) Feature plot and violin plot of open chromatin regions enriched in young HF-SCs. (B) Feature
plot and violin plot of open chromatin regions enriched in old HF-SCs. (C,D) Violin plot of young and old open chromatin features in HF-SCs of different
samples. (E) Example tileplot of chromatin regions gradually open during aging. (F,G) Enriched motifs in young and old HF-SC open chromatin regions.
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enriched in young HF-SCs harbor Jun and Fosl2 motifs (Figure 5G).
Overall, these findings shed light on the chromatin accessibility
dynamics during HF aging and provide a genomic reference to study
the maintenance of HF-SC functions during aging.

Discussion

Cell type specific changes of transcriptome
during hair follicle aging

In this study, we have profiled single-cell transcriptome of
the skin from young, middle-age and old mice. This strategy has
allowed us to gain new insights into transcriptome dynamics of
HF-SCs through the hair cycle as well as during aging. Previous
studies have examined the aging process of HF-SCs by profiling
FACS purified HF-SCs with bulk RNAseq (Matsumura et al.,
2016) or the total skin populations by using scRNAseq of young
and old skin (Ge et al., 2020; Zhang et al., 2021). By introducing
intermediate samples to reflect the hair cycle differences and the
progression of aging, our results have revealed unexpected
results that different cell populations, such as HF-SCs and the
inner bulge niche cells, have different changes in their
transcriptome during aging. The aging-associated alterations
in the transcriptome of HF-SCs and their inner bulge niche
cells are found to be more pronounced than in the Upper HF
lineages. This observation could be attributed to the more
dynamic changes experienced by HF cells during the hair
cycle, compared to the relative stability of the Upper HF cells.
HF-SCs, located in the bulge area of the hair follicles, are known
for their ability to undergo cyclic phases of quiescence and
activation in response to various signals but also experience
prolonged quiescence during aging (Yi, 2017). As such, the
transcriptomic profile of these cells is expected to show
considerable variations over time, in particularly the
association of the hair cycle. Indeed, we detected bifurcating
trajectories of HF-SC cell state, likely caused by the hair cycle
stages in addition to the bona fide aging process (Figures 2A, B).
Interestingly, between HF-SCs and the niche cells, the niche cells
showed a more linear progression of transcriptomic changes
whereas HF-SCs show more dynamics in their transcriptome,
some of which may be explained by the hair cycle stages. These
findings suggest that different cell lineages respond to the aging
process differently. The concept of differential aging process, the
underlying mechanism and their implication in aging should be
examined carefully in functional studies in the future.

Rethinking hair follicle aging

The paradigm of SC senescence and exhaustion has been
central to our understanding of aging (López-Otín et al., 2023).
However, HF-SCs maintain their proliferative capacity and even
showing signs of rejuvenation when exposed to a youthful
dermis during aging (Ge et al., 2020). These intriguing
observations suggest that the microenvironment plays an
important role in determining the state and function of HF-
SCs. Indeed, our recent study revealed that cell adhesion and

ECM deposition by HF-SCs, controlled by FOXC1 and
NFATC1 TFs, are critical for the integrity of the bulge HF-SC
compartment (Zhang et al., 2021). Consistent with this view, our
comprehensive longitudinal analysis uncovers that HF-SCs
largely maintain their identity over time, while the inner
bulge niche cells, which are known to regulate HF-SC
function (Kimura-Ueki et al., 2012; Lay et al., 2016), undergo
more profound and irreversible changes in their transcriptome.
These changes in the inner bulge niche cells could potentially
disrupt the microenvironment necessary for the maintenance
and function of HF-SCs, signifying a form of “indirect aging”
where the SCs performance is compromised not by their
intrinsic aging but by the aging of their niche. Furthermore,
our scRNAseq analysis has revealed an intriguing trend: aging
HF-SCs begin to adopt transcriptomic signatures reminiscent of
the upper HF lineages. This finding provides new insights into
the shift in the identity of aging HF-SCs, potentially representing
a form of “lineage infidelity” or “lineage drift” that may affect
their functional integrity.

Complementing these transcriptomic changes, our scATACseq
analysis has revealed alterations in the open chromatin landscape of
aging HF-SCs. We observe reduced open chromatin regions in aging
HF-SCs, which may reflect a compromise in their differentiation
potential. Concurrently, we see an increase in open chromatin
regions, which are likely associated with prolonged quiescence.
These new insights thus provide a molecular basis to further
examine and potentially reverse the aging process in
experimental studies.

Limitation of the study

One of the persistent challenges in longitudinal, single-cell
studies is the batch effect. These variations can lead to spurious
results, making it challenging to distinguish between true biological
differences and technical artifacts. Although we have made
considerable efforts to minimize these effects in our study, the
limited number of samples for each time point may have
inevitably introduced some batch-related variability. Another
challenge is the potential confounding effects related to sex. Male
and female mice may exhibit distinct cellular and physiological
processes during aging. In our current study, we used a mixed cohort
of male and female mice. While this approach has the advantage of
capturing a broader spectrum of biological phenomena, it also
introduces additional complexity. Differences observed might be
due to sex-specific effects rather than, or in addition to, aging per se.
Our study, therefore, underlines the importance of addressing these
issues in future research.

Methods

Mice

All experiments were carried out following IACUC-approved
protocols and guidelines at CU Boulder and Northwestern
University. Mice were housed according to guidelines of the
IACUC at a pathogen-free facility at University of Colorado at
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Boulder and at Northwestern University Feinberg School of
Medicine. The K14-H2BGFP (E.Fuchs, Rockefeller University)
mouse line was used for sorting epidermal cells. The samples
used for scRNA sequencing include both male and females, P38,
male; P53, female; 6 months, female; 12 months, male; 24 months,
female. For scATAC samples, P28 and 12 months samples were
male and 24 months sample was female.

Tissue processing and fluorescence-activate
cell sorting

Mice were euthanized and collected for dissection. We first shaved
the hair coat and applied Nair hair removal lotion (Amazon, 22,339) for
around 3 min. After wiping off the lotion andwashing away leftover hair
shafts, back skin was dissected, and subcutaneous fat was removed using
a blade. As small part of the skin sample was embedded in OCT, and the
remaining skin sample was minced and incubated with 0.25%
collagenase (Worthington, LS004188) in 4–6 mL 1X HBSS buffer at
37°C for 2 h with rotation. A 5-mL serological pipet was used to further
separate the epidermis from the dermis at the 1 h incubation time. After
collagenase treatment, we added 10 mL cold PBS and centrifuged the
sample at 400 g for 10 min at 4°C. The pellet was resuspended with pre-
warmed 0.25% trypsin-EDTA (Gibco) for 8 min at 37°C, and the
digestion was immediately blocked by adding 10mL cold 1XPBS
with 3% chelated PBS. Cells were incubated with appropriate
antibodies for 1 h on ice. DAPI was used to exclude dead cells. Cells
from K14-Cre-based experiments were isolated by enriching for DAPI-
K14-H2BGFP + epidermal cells and DAPI-K14-H2BGFP- dermal cells.

Bulk RNAseq analysis

Bulk RNAseq data from Fuchs group (Ge et al., 2020) (accession
number GSE124901) were downloaded using SRA-toolkit (version
2.8.0) fastq-dump. The fastq files were then mapped to mouse
genome (mm10) using Hisat2 (version 2.1.0) with options -p
32 --rna-strandness RF to generate sam files. The samtools
(version 1.3.1) were used to convert samfile to bamfile. The final
counts files were generated by htseq (version 0.9.1) with options -t
exon -i gene_id --stranded = reverse -f.

scRNAseq library preparation

Single cells from different age groups were collected from a flow
cytometry-sorting machine with cell surface proteins and H2BGFP
signals such that epidermal cells and hair follicle cells were at a 1:
3 ratio. For each sample, around 2,000–5,000 cells were used for
scRNAseq libraries. Libraries were prepared using the 10X
Chromium Single Cell 3ʹ GEM, Library & Gel Bead Kit version
3 chemistry (PN-1000110). In brief, FACS-sorted cells were diluted
to suggested concentration. The single cell suspension, single cell 3′gel
beads and the reverse transcription mix were then incubated to generate
gel beads emulsion and barcode. The resulting cDNA were pooled and
amplified followed by library construction. The libraries were quality
checked on an Agilent Bioanalyser 2,100 using the high sensitivity DNA
kit (5067–4626).

Upstream analysis of scRNAseq data

The Cell Ranger Single-Cell Software Suite was used to perform
barcode processing and single-cell gene counting on demultiplexed
raw sequencing data. The scRNAseq reads were mapped to the
mouse (mm10) reference genome and quantified using cellranger
count (version 3.0.1). The resulting barcodes, features and matrix
files were used for downstream analysis. The scRNAseq output files
from Fuchs group (Ge et al., 2020) was downloaded directly through
GEO (accession number GSE124901).

Downstream analysis of scRNAseq data

The barcodes, features and matrix files were loaded into Seurat
(version 4.0.5) R (version 4.1.0) package for further analysis. The
following criteria were used to filter out low quality cells:

200< nFeature_RNA<5,000 and percentage of
mitochondrial <15%. After filtering, we have 2,109 cells for
P38 sample, 3,827 cells for P53, 1847 cells for 6 months,
3,236 cells for 12 months and 3,072 cells for 24 months.

The count data was log-normalized and scaled to 10,000. The
PCA analysis was based on top 2,000 variable genes. The nearest
neighbors were computed based on the Euclidean distance in PCA
space. To cluster the cells, the Louvain algorithm was
implemented. Uniform manifold approximation and projection
n (UMAP) was used for non-linear dimension reduction. To
integrate all scRNAseq samples, the FindIntegrationAnchors
function from Seurat takes all the Seurat object and identify
anchor by utilize canonical correlation analysis (CCA) as initial
dimension reduction. The integrated datasets were then scaled and
clustered. To annotate each cluster, the FindAllMarkers function
were used to identify cluster specific marker genes. The integrated
datasets were then subsected based on cell types.

For scanpy (Wolf et al., 2018) (version 1.7.0) analysis, the
Seurat object were converted to h5ad file using R packages
(SeuratDisk, SeuratData). For PAGA analysis, sc.tl.paga was
first used to compute the connectivity of clusters followed by
sc.pl.draw_graph to get single-cell embeddings that are faithful to
global topology.

For module score analysis, the differential expression gene lists
from young and old HF-SC bulk RNAseq were imported in R. The
young and old features include gene with basemean value greater than
600 and padj value less than 0.05. The module score was then
computed using AddModuleScore function. The Wilcoxon rank
sum test were used to compute significance between cell
populations and samples.

For trajectory analysis, the pre-clustered cells from Seurat object
were the converted to monocle object maintaining the UMAP
information. The single-cell trajectory was then constructed by
setting P53 samples as root and pseudo-time value was calculated
by ordering cells along the trajectory. The specific branch of interest
was chosen by setting the root cells as P53 and ending nodes as cells on
the end of the branch. To find co-regulated genes modules along
specific trajectory, the find_module_df function was used with
resolution as 0.0001. Aggregated gene expression from different
modules were then plotted. Note, the individual genes find in
different modules might not reflect the aggregated pattern.
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scATACseq library preparation

The single cells solution of skin cells was generated the same as
scRNAseq. In total, 10,000 cells from each sample were used for
scATAC-seq preparation. Libraries were prepared using the 10X
Chromium Single Cell ATAC Library & Gel Bead kit (PN-1000110).

In brief, cell nuclei were isolated, and nuclear suspension were
incubated in a transposition mix to fragment DNA and add adaptor
sequence to the end of DNA fragments. Single-nucleus resolution was
achieved using 10X barcoded gel beads, partitioning oil and amastermix
on a Chromium Chip E. Libraries were constructed using a 10X sample
index plate and double size selected from 150 bp to 1000 bp. The final
libraries were quality-checked with bio-analyzer before sequencing.

Upstream analysis of scATACseq data

FASTQ files were collected from the sequencing facility and
concatenated together. We used cellranger-atac (version 3.0.1) counts
with the reference genome downloaded from the 10XGenomics website.
The P28 sample was re-sequenced from the same library previously
published and concatenated for this study. The 24months sample was
re-analyzed using cellranger-atac reanalyze to filter out low quality cells.

Downstream analysis of scATACseq data

The fragment file, peak file and single-cell metadata were loaded
into signac (Stuart et al., 2021) for downstream analysis. The peak
file generated from cell-ranger was first used for quality control. The
following criteria were used to filter out low quality cells:

3,000 < peak region fragments <100,000
percentage of reads in peaks >40%
blasklist ratio <0.025
nucleosome signal <4
TSS enrichment >2

After filtering, we have 6,784 cells for P28 sample, 5,263 cells for
12 months sample and 8,445 cells for 24 months sample.

The gene activity matrix was then calculated and added to the
seurat object.

For integration, we first generate combined peaks containing
peaks from all samples. To do this, the R1 and R3 reads file from
the single cell sequencing were treated as bulk samples and then
mapped to mouse reference genome and called peaks. The peaks
files were then merged using bedtools (Quinlan and Hall, 2010).
The combined peaks file was then used on all samples to
regenerate the matrix counts file overlapping the genomic
regions. The same filtering criteria were used followed by
normalization, dimension reduction and clustering. For the
UMAP dimension reduction, we excluded dimension
1 suggested by signac (Stuart et al., 2021). The samples were
then first merged followed by standard processing. The
integration anchors were then found followed by integration.

For the integration of scRNAseq and scATACseq, the
processed scRNAseq and scATACseq data were loaded in
Seurat. The gene activity matrix calculated from scATACseq

and the variable genes from scRNAseq were used to find
anchors. The cell annotation label from the scRNAseq were
then transferred to scATACseq. The scRNAseq and
scATACseq were then co-embedded for visualization. For
Pearson correlation analysis, the predicted gene activity from
scATACseq and gene expression from scRNAseq were averaged
by each cell population. The top 200 variable genes from
scRNAseq data were used to calculate the Pearson correlation
score.

For the differential peaks, the annotated scATACseq data were
used to find all markers based on cell types. For motif analysis, the
JASPAR 2020 (Fornes et al., 2020) and TFBSTools (Tan and
Lenhard, 2016) were loaded. The motif activities were calculated
by chromvar (Schep et al., 2017). The differential activities were then
computed by FindAllMarkers function.

ATAC-seq and motif analysis

ATAC-seq reads (paired end) were aligned to themouse genome
(NCBI37/mm10) using Bowtie 2 (version 2.2.3) (Langmead and
Salzberg, 2012). Duplicate reads were removed with Picard tools
(http://broadinstitute.github.io/picard/).

Mitochondrial reads were removed, and peaks were called on each
individual sample by MACS (version 2.0.9) (Zhang et al., 2008). Peaks
from different ATAC-seq samples were merged for downstream
analysis. De novo motif discovery was performed using HOMER
(Heinz et al., 2010). Motif scanning was performed with MEME
(5.0.3) (Bailey et al., 2015). BED files were converted to FASTA files
by bedtools getfasta (Quinlan and Hall, 2010), and motifs discovered by
HOMER were used to scan for instances in open-chromatin regions.
HOMER motifs were also converted to MEME format with the R
package from GitHub\\ (href{https://gist.github.com/rtraborn/
e395776b965398c54c4d}). For IGV visualization (Robinson et al.,
2011), we first concatenated all peaks from samples of interest and
converted them into a GTF file, counted the number of reads mapped in
peaks and then normalized all samples using “bedtools genomecov
-scale” to obtain bedGraph files. Igvtools toTDF was used to obtain TDF
files for final visualization.

Differential expression analysis

The counts files were calculated from the BAM alignment file by
HTSeq (Anders et al., 2015).Differentially expressed genesweredetermined
usingDEseq2 (Love et al., 2014)with an adjusted p-value cutoff of 0.05.GO
analysis was performed using Metascape (Zhou et al., 2019). Selected GO
terms were from Metascape results along with the gene list.

For gene set enrichment analysis (Subramanian et al., 2005), the
differential expressed genes were ranked by expression value and fold
change.
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Datasets can also be found in the NCBI GEO database (https://www.
ncbi.nlm.nih.gov/geo/) under accession number GSE227784.
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