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Aging associates with an increased susceptibility for disease and decreased quality
of life. To date, processes underlying aging are still not well understood, leading to
limited interventions with unknown mechanisms to promote healthy aging.
Previous research suggests that changes in the blood proteome are reflective
of age-associated phenotypes such as frailty. Moreover, experimentally induced
changes in the blood proteome composition can accelerate or decelerate
underlying aging processes. The aim of this study is to identify a set of proteins
in the human plasma associated with aging by integration of the data of four
independent, large-scaled datasets using the aptamer-based SomaScan platform
on the human aging plasma proteome. Using this approach, we identified a set of
273 plasma proteins significantly associatedwith aging (aging proteins, APs) across
these cohorts consisting of healthy individuals and individuals with comorbidities
and highlight their biological functions. We validated the age-associated effects in
an independent study using a centenarian population, showing highly concordant
effects. Our results suggest that APs are more associated to diseases than other
plasma proteins. Plasma levels of APs can predict chronological age, and a
reduced selection of 15 APs can still predict individuals’ age accurately,
highlighting their potential as biomarkers of aging processes. Furthermore, we
show that individuals presenting accelerated or decelerated aging based on their
plasma proteome, respectively have a more aged or younger systemic
environment. These results provide novel insights in the understanding of the
aging process and its underlying mechanisms and highlight potential modulators
contributing to healthy aging.
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1 Introduction

The world population has rapidly increased in age from an average lifespan of 45 years in
the 1950s to over 70 years nowadays (United Nations, Department of Economic and Social
Affairs, Population Division, 2022). During the last two decades the global lifespan increased
from 66.8 years in 2000 to 73.4 years in 2019, whereas the healthspan in this period increased
at a slower pace from 58.3 to 63.7 years (Organization, 2019). This increasing gap between
the life- and healthspan suggest that we live longer, but with a lower quality at the later stages
of life. Thus, understanding which processes underly aging may provide valuable insights
and possibilities to promote healthy aging, thereby improving quality of life at higher ages.
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FIGURE 1
Identification of plasma proteins associated with aging. (A) Workflow and selection criteria used for the identification of APs. The Venn diagram
depicts the results of the integration across datasets. Highlighted in red are 326 proteins with significant differences (FDR <.01) in ≥3 different studies, of
which 273 APs showed similar age-associated effects across all studies. (B)Overview displaying a wide variety of significant functional enrichments of all
APs, and the subsets of all downregulated APs and all upregulated APs. Dot size represents the number of proteins involved, and dot color represents
significance levels as -log10(FDR). Terms are color coded based on database: Green = Gene Ontology (GO)-Cellular Component, Orange = GO-
Molecular Function, Blue = GO-Biological Process, Pink = REACTOME database. A full overview is presented in Supplementary Table S4. (C) Visual
representation of the protein-protein interaction (PPI) network of a highly interconnected subnetwork within all APs, consisting of 56 APs. Red nodes
indicate decreased expression levels in the plasma during aging and green nodes indicate increased plasma expression levels during aging. Sizes of nodes
reflect the number of connections to other proteins. (D) Overview displaying the various enriched terms of the PPI-subnetwork. Dot sizes and colors
represent similar properties as described in panel (B). Terms are color coded based on database as described in panel (B), with the addition of light green
for the KEGG database.
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Aging is associated with changes in the cardiovascular and
muscular system (Trombetti et al., 2016; Steenman and Lande,
2017) and with decreased cognitive performance (Bettio et al.,
2017). Current evidence also points to an important role of the
immune system in aging (Muller et al., 2019). Molecular signatures
of such age-associated changes have been found in the blood, the
most important transport system connecting the organs in our body.
For example, inflammatory components such as cytokines (Milan-
Mattos et al., 2019), disease-associated molecules or pathogens are
often elevated at later ages (Walker et al., 2022), leading to a chronic
state of low-grade inflammation known as ‘inflammaging’. These
alterations play a role in multiple age-associated diseases, such as
cancer (Huang et al., 2015), cardiovascular diseases (Ferrucci and
Fabbri, 2018) and several neurodegenerative diseases (Costantini
et al., 2018). Together, these results indicate that changes in blood
composition may reflect age-associated changes throughout the
body and can provide valuable insights in ongoing biological and
disease-related processes.

Several studies showed that defining blood component changes,
including altered circulating proteins, provides fundamental insights
into numerous diseases (Luczak et al., 2015; Cao et al., 2020;
Harbaum et al., 2022) and helps to identify clinical biomarkers
and potential therapeutic targets (Hoogeveen et al., 2020; Shi et al.,
2021). Using human plasma proteomic data, statistical models
termed ‘clocks’ have been developed which accurately predict

chronological age (Tanaka et al., 2018; Lehallier et al., 2019).
Moreover, plasma proteomic clocks can accurately predict
phenotypes such as frailty (Sathyan et al., 2020a; Tanaka et al.,
2020) and mortality (Sathyan et al., 2020b), suggesting that the
plasma proteome reflects a state of biological functioning.
Interestingly, individuals with a lower estimated biological
proteomic age compared to their chronological age performed
better on several phenotypes such as cognitive and physical tests
(Lehallier et al., 2019).

Together, these studies not only promote the idea that changes
in the plasma proteome harbor predictive information on aging, but
also that modulating it may increase the healthspan. Previous
experiments with mice revealed that a shared blood circulation of
a young and aged mouse decreased the lifespan of the young mice
(Yankova et al., 2022). Moreover, an aged systemic environment was
associated with decreased neurogenesis and impaired cognitive
performance in young mice (Villeda et al., 2011) and induced a
more aged transcriptomic profile across different cell types (Palovics
et al., 2022). Conversely, injections of young mouse plasma or
plasma from the human umbilical cord rejuvenated several
tissues of old mice such as the kidneys, brain and heart and
improved their cognitive performance (Loffredo et al., 2013;
Katsimpardi et al., 2014; Sinha et al., 2014; Villeda et al., 2014;
Baht et al., 2015; Castellano et al., 2017; Huang et al., 2018; Palovics
et al., 2022). Recently, a small safety study in elderly people who were

TABLE 1 Overview of included study cohorts for identification of APs and validation steps. The cohort name, accessibility to raw data or only summary statistics
from their analyses, demographics on age and sex of the cohorts, used coagulant in the studies, sourcematerial, health status and number ofmeasured Somamers
are provided. Used models or a description of the model is provided which is used to estimate age effects for each protein individually across each study.

Arthur et al.,
2021

Robbins et al.,
2021

Sathyan et al.,
2020b

Ferkingstad et al., 2021 Sebastiani
et al., 2021

Sullivan
et al., 2021

Cohort name ABF300 HERITAGE LonGenity deCODE New England
Centenarian Study

COVIDome

Type of Data Raw data Raw data Summary statistics Summary statistics Summary statistics Raw data

Sample
material

Plasma Plasma Plasma Plasma Serum Plasma

Data usage Identification of APs Identification of APs Identification of APs Identification of APs Comparison of age
effects

Validation of
proteomic
clocks

Anticoagulant Heparin EDTA EDTA EDTA Not described EDTA

n (% female) 150 (17%) 745 (55%) 1,025 (56%) 35,559 (57%) 142 (51%) 29 (41%)

mean Age [SD;
range]

49 [16.7; 25—80] 34 [13.4; 16–66] 75.8 [6.7; 65-95] 55 [17; range not provided] Centenarians: 105.7
(SD = 3.6), Controls:

70.6 (SD = 7.8)

45 [16.65;
22–80]

Health Status Healthy participants,
diagnosis established
using a screening
questionnaire

Healthy, but sedentary
over the previous

3 months. Free from
cardiometabolic disease

Several comorbid
conditions, such as
stroke, diabetes and

hypertension are present
among the cohort

Combined cohort from the
Icelandic Cancer Project,

enriched for cancer patients,
and the deCODEHealth Study,
which contained several cancer
cases and a wide variety of

disease phenotypes across the
cohort

Centenarians are
healthy, controls are
not clearly described

Hospitalized,
COVID-
negative

Model Protein ~ Age +
Gender + BMI

Protein ~ Age + Gender
+ Ethnicity + BMI

Protein ~ Age + Gender
+ Cohort

Age effects were estimated
using a random-effects model

ANOVA, adjusted
by sex and year of
sample collection

# Somamers 5,284 4,977 4,265 5,284 4,785 4,843

Frontiers in Aging frontiersin.org03

Coenen et al. 10.3389/fragi.2023.1112109

https://www.frontiersin.org/journals/aging
https://www.frontiersin.org
https://doi.org/10.3389/fragi.2023.1112109


FIGURE 2
Clustering the complete plasma proteome on expression trajectories reveals AP enriched clusters involved in various functions. (A) Heatmap of
identified clusters following unsupervised analyses of all plasma proteins based on expression trajectories across age using proteomic data of Arthur, et al.
(Arthur et al., 2021) Color bars next to the dendrogram denote the individual clusters. Cluster numbers are marker red when enriched for APs using a
hypergeometric test (q < .05). In the expression trajectory, blue colors indicate a relative decrease whereas red colors indicate a relative increase
compared to themean expression over time. (B) Zoom in of AP enriched clusters and the number of included proteins within each cluster as indicated by
‘n’. Thick lines represent the average expression trajectory of the cluster, and thin lines denote the trajectory of individual proteins. Above each cluster
trajectory an example term of enriched function, molecular component, or pathway was included (all FDR <.05). For a complete overview of enriched
GO-, KEGG- and Reactome terms within each cluster, see Supplementary Table S5.
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FIGURE 3
APs are more associated to disease-associated phenotypes than the rest of the plasma proteome. (A) APs (red distribution) show on average
(red dashed line) significantly more associations across all included phenotypes than all other measured plasma proteins (blue distribution and
dashed line). (B) Overview of the top 15 most AP enriched disease phenotypes and quantitative traits across 179 enriched phenotypes, ranked by
Bonferroni corrected significance levels. Dot color represents the significance level on a log10(Bonferroni-adjusted p-value) scale. Dot size
represents the number of APs associated to the corresponding phenotype. (C)When dividing all phenotypes based on disease phenotypes or QTs,
we observe on average a significantly higher number of associations between APs and diseases compared to the rest of the plasma proteome (top
distributions), but not between APs and QTs (bottom distributions). (D) Upset plot with an overview of the top 10 proteins associated with the
most diseases, as reflected by the set size in the bar graph on the left side. Bar graph on top reflects the number of shared diseases across a subset
of proteins, as illustrated by the dark dots represented below each graph. Numbers on top represent the number of shared phenotypes for the
given subset of proteins.
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injected with human umbilical cord plasma showed that this
approach is safe and beneficially altered multiple biomarkers
(Clement et al., 2022). These results highlight that factors present
in aged blood promote aging and that modulating the blood
composition can be a therapeutic option to promote healthy
aging in humans.

To date, it remains unknown which proteins contribute to these
protective or deteriorating effects during aging. A conserved plasma
proteomic aging signature between human and mice has been
described (Lehallier et al., 2019), suggesting similar age-associated
pathways across species. While most studies highlight a variety of
unique potential protein candidates, only few integrated the results
across cohorts (Johnson et al., 2020; Lehallier et al., 2020). As many
biological and technical factors may influence the plasma proteome,

it is important to focus on similar effects across studies to provide
stronger evidence for age-associations across proteins in the plasma.
Additionally, another limitation is often a relative low number of
described proteins due to the lack of overlap between measured
proteins across studies resulting of different methods.

To come to a preserved human plasma aging proteome, we here
integrated four large-scaled plasma proteome datasets using
SOMAscan proteomic assays on independent human cohorts
(Sathyan et al., 2020b; Arthur et al., 2021; Ferkingstad et al.,
2021; Robbins et al., 2021). These studies each measured
~5,000 plasma proteins, with a combined age range of 16 to
almost 100 years in cohorts which varied in health status from
disease free to several comorbidities. Unsupervised integration based
on similar aging effects of these datasets resulted in a highly

FIGURE 4
APs are better predictors of chronological age than other plasma proteins. (A) Example of the predicted versus the original age in the dataset of
Arthur (Arthur et al., 2021) with the average correlation across 10,000 models. The blue dashed line depicts the fit after correction for the model bias. (B)
Distributions of the 10,000 correlations between the original and the predicted ages obtained frommodels in Arthur (Arthur et al., 2021) using all 273 APs
(“AP”), 273 random plasma proteins (“Random”) and the correlation of amodel fromone dataset tested in Robbins (Robbins et al., 2021) (“Validation”).
(C) Example of the predicted versus the original age in the dataset of Robbins (Robbins et al., 2021) with the average correlation across 10,000 models.
Dashed line is similar as described in panel (A, D) Similar distributions obtained from models created in the Robbins dataset (Robbins et al., 2021) as
described in panel (B). Here, the validation was the correlation of models created in Robbins (Robbins et al., 2021) and applied to Arthur (Arthur et al.,
2021). (E)Overlap between the most used proteins across all 10,000 models for both datasets (used in >5,000models), highlighting a signature of 15 APs
used in the reducedmodels. (F) Example of the stable proteomic clock performance in the dataset of Arthur (Arthur et al., 2021) consisting of the 15 most
used proteins as illustrated in panel (E). Distributions below the correlation plot below illustrate the similar correlations obtained across all models as
described in Panel (B) using the constant proteomic clock across all 10,000 models.
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preserved human plasma proteomic aging signature, which is
strongly associated to diseases. By comparing proteomic profiles
of individuals deviating from their chronological age based on their
proteomic plasma profile, we highlight markers of aging and
potential modulators which may contribute to a healthier aging
process.

2 Materials and methods

2.1 Identification of aging proteins

Aging proteins were identified by integrating the information of
four independent studies using the SOMAscan platform for proteomic

FIGURE 5
Accelerated and Decelerated agers show different expression levels of APs. (A) Example illustrating the identification of Chronological Agers (CA,
green), Decelerated Agers (DA, blue) and Accelerated Agers (AA, red) based on the average ΔAge estimates using 273 APs. (B) Overview of number of
significant associations between ΔAge and AP expression levels in the Arthur (Arthur et al., 2021) and Robbins (Robbins et al., 2021) dataset. (C)
Associations between ΔAge and AP expression are highly similar between datasets. (D) Associations between ΔAge and AP expression are highly
similar compared to the previously identified age-associations within the datasets. (E) Graphical summary of the integration of all results across datasets,
pointing to proteins which may have important influences on the aging process. Proteins depicted in Aging Decelerators and Aging Modulators are the
overlap of differentially expressed proteins between datasets. *For Aging Accelerators, all proteins are found to be significant (q < .01) in the CA versus AA
comparison in the dataset of Robbins (Robbins et al., 2021) only. For a full overview of differentially expressed APs between biological age groups, see
Supplementary Table S10,11.
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measurements (Sathyan et al., 2020b; Arthur et al., 2021; Ferkingstad
et al., 2021; Robbins et al., 2021). Two studies stated that they used
SomaScan version 4 (Sathyan et al., 2020b; Ferkingstad et al., 2021) and
two studies reported a ‘5k assay’ (Arthur et al., 2021; Robbins et al.,
2021). As several SOMAmers target similar proteins this provides a
resolution on proteoform level, however for readability we refer to
‘proteins’ across this study and an overview of the number of included
aptamers across studies is presented in Table 1. Two studies provided
raw SOMAscan data of the plasma proteome (Arthur et al., 2021;
Robbins et al., 2021), while the other two provided summary statistics of
their analyses for all measured plasma proteins (Sathyan et al., 2020b;
Ferkingstad et al., 2021). For a full overview of the included studies and
demographics, see Table 1. For the studies providing raw data, we
performed linear modeling to test for the effect of age on protein
expression levels, while correcting for most of the available metadata to
correct for possible confounding effects. Proteins were defined as
significantly associated to aging at a Benjamini-Hochberg (FDR)
adjusted p-value (q) below 0.01 (q < .01).

2.2 Identification of preserved aging protein
signature

We calculated FDR adjusted p-values (q) for all datasets
independently and we overlapped all significant proteins from
our four studies based on the provided UniProt identifier. Due to
variability in cohorts and the variation in measured proteins across
studies, we identified all proteins significantly associated with age in
three or more studies showing similar aging effect directions across
the studies they were measured in to be our preserved set of Aging
Proteins (APs).

2.3 Protein-protein interaction networks

We obtained Protein-Protein interaction (PPI) networks using
Cytoscape v3.9.1 (Shannon et al., 2003) to mine the String Database

(Szklarczyk et al., 2019). Proteins were mapped based on their gene
symbol. A high confidence interaction score was used (0.90) for the
network creation.

2.4 Cluster analysis of the plasma proteome

To cluster the plasma proteome based on similar expression
trajectories across aging, we first smoothened the data using a
local regression analysis (loess function) from the R stats package
(v4.1.0) with a span of 0.75. For this analysis, we used the
proteomic data of Arthur et al. (2021) (Arthur et al., 2021), as
this dataset provided the largest age range. The relative
fluorescent units (RFU) indicative of protein expression was
first log2 transformed, and then z-scores were computed for
each protein individually. Next, we applied our LOESS model
for each protein separately to reduce noise and variability using
the following model: Protein expression ~ Age.

An unsupervised hierarchical clustering analysis was performed
using the hclust function from the R stats package using the
‘complete’ method and a dissimilarity cut-off value of 6.

2.5 Enrichment of APs among plasma
proteome clusters

To test for enrichments of our APs among our defined
clusters, we conducted a hypergeometric test for each
cluster individually using the phyper function from the stats
package in R. For each cluster individually, we calculated the
probability of obtaining the same number or more of APs for the
corresponding cluster size, given the number of Aging Proteins
(273 APs) in our full proteomic background dataset
(5,284 proteins, as provided by Arthur et al. (2021) (Arthur
et al., 2021)). Obtained p-values were adjusted using the FDR
(Benjamini-Hochberg) method and considered significant at an
adjusted p-value < .05.

TABLE 2 Description of altered aging trajectory groups. Provided are the number of individuals per group, chronological age, the discrepancy of estimated
proteomic and chronological age, and the demographics of the individuals. P-values indicate if there are differences for the given variables between the groups.

Arthur et al., 2021 Robbins et al., 2021

Accelerated
(n = 28)

Chronological
(n = 46)

Decelerated
(n = 25)

p Accelerated
(n = 92)

Chronological
(n = 255)

Decelerated
(n = 88)

p

Age (mean;
sd [range])

50.29;
17.79 [26–79]

47.59;
16.87 [25–80]

53.04;
15.00 [26–77]

.416 35.73;
12.09 [16.7–59.80]

33.64;
12.64 [16.7–65.2]

34.10;
16.81 [17.00–65.90]

.441

ΔAge
(mean; sd
[range])

6.98;
1.90 [5.03–11.93]

−0.28;
1.06 [-1.99–1.76]

−6.97;
1.76 [-11.66–-5.09]

<.001* 7.06;
1.76 [5.03–12.93]

0.11;
1.11 (−1.99–1.99)

−7.27;
2.29 [-16.37–-5.02]

<.001*

Gender
(m/f)

23/5 36/10 23/2 43/49 117/138 39/49

BMI (mean;
sd [range])

25.57;
2.92 [17.8–29.5]

24.62;
2.59 [18.5–29.3]

24.75;
3.13 [20.3–30.0]

.357 28.88;
6.62 [18.03–50.94]

26.39;
5.27 [17.31–48.26]

24.65;
5.16 [17.30–39.29]

<.001*

Race (black/
caucasian)

- - - 29/63 105/150 37/51

Note: p-values calculated across groups using a one-way ANOVA.
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2.6 Functional enrichment of APs

To identify the biological relevance of our protein subsets of
interest, we mined the KEGG-, GO- and Reactome databases using
the R packages clusterProfiler (v4.2.2) and ReactomePA (v1.38.0).
We used Entrez or UniProt identifiers as input and used all
5,284 measured SOMAmers by Arthur et al. (2021) (Arthur
et al., 2021) as background set to test for over-representations.
SOMAmers mapped to multiple proteins were excluded in these
analyses. Using the Benjamini-Hochberg approach, p-values were
adjusted. Enrichment was defined at a significance level of q < .05.
For the GO-analysis, q-values were calculated for each class
separately (molecular function, cellular component, and
biological process). We modified the parameter setting to the
minimum number of genes per category as three.

2.7 Associations between APs and
phenotypes

To test which phenotypes are enriched in associations with APs,
we made use of summary statistics as provided by Ferkingstad et al.
(2021) (Ferkingstad et al., 2021). In short, they identified across
373 phenotypes which of their 5,284 plasma proteins were associated
to this phenotype after correction for age and sex effects and
accounting for multiple testing using the Bonferroni correction.
Applying this information of sets of proteins associated to specific
phenotypes, we could then infer the number of APs associated to
each phenotype. Using a hypergeometric test, we then tested for each
phenotype if the number of APs associated to it was greater than
expected in the corresponding set size, given the number of APs
(273) in the complete proteomic background dataset
(5,284 proteins). Nominal p-values were corrected using a
Bonferroni approach, and associations were considered significant
at an adjusted p < .01.

2.8 Age prediction using the plasma
proteome

To determine whether our APs can predict chronological age, we
fitted LASSO models (Alpha = 1, minimum lambda value as
estimated after 10-fold cross validation) using the R package
glmnet (v4.1-4) in the available datasets using all 273 APs and
sex as input variables. For Arthur et al. (Arthur et al., 2021) we
selected 100 individuals to train our model to predict chronological
age, which we tested on the remainder of the sample (n = 50). For
Robbins et al. (Robbins et al., 2021) we selected 500 individuals as
training set and tested on the remainder (n = 245). Our input
variables consisted of the within sample z-scaled log2 transformed
APs and gender. To estimate the predictive validity of our models,
we correlated for each model the original age with the predicted
proteomic age using Spearman’s correlation.

To obtain a reduced model of our APs, we calculated across all
models the frequency of each selected input variable. Next, we
overlapped the variables used in the majority of the models
(selected in > 5,000 models) across both datasets to identify
key proteins across datasets. Using Ridge Regression analysis

(alpha = 0), we repeated our age prediction as described above
using only these 15 proteins and sex as input.

2.9 ΔAge estimations

To obtain unbiased estimates and correct for potential under- or
overestimates of the predicted proteomic age caused by the fitted
proteomic LASSO model, we performed a correction to account for
this as described by De Lange & Cole (de Lange and Cole, 2020). In
short, after predicting our age using a fitted proteomic model, we
fitted a novel linear model to estimate the chronological age (linear
model LM � PredictedAge ~ Chronological Age) and again
predicted the ages of our samples using the following equation:

UnbiasedAge Prediction � PredictedAge – Intercept of LM( )
/Coefficient of LM

This unbiased estimate of predicted age was then used to
subtract from the chronological age to obtain our unbiased ΔAge.
Mean average error (MAE) was calculated for each dataset
individually as followed:

MAE � Σ ΔAge
∣∣∣∣

∣∣∣∣( )/number ofΔAge estimates

2.10 Identification and comparison between
accelerated, decelerated and chronological
agers

To identify Accelerated Agers (AA), Decelerated Agers (DA), and
Chronological Agers (CA) we took the average ΔAge which was
calculated across all LASSO models. As random permutations were
performed to select 1/3rd of the sample randomly for estimation of the
chronological age, participants had ~3,300 ΔAge estimates, although
slight differences in the number of estimates may occur resulting of the
random permutations. ΔAge cut-off values were based on the MAE for
themodels across datasets, and deviating individuals were picked beyond
this MAE, whereas non-deviating individuals well within the MAE.
Thus, as a cut-off value for AA, we used aΔAge of≥ 5 years, indicative of
on average an overestimation by 5 years across all models. Similarly, for
DA we used a ΔAge of ≤ −5 years, indicative of on average an
underestimation of the chronological age by 5 years across all models.
For CA, we used a cutoff of |ΔAge| < 2 years.

To identify which APs were significantly associated to ΔAge, we
fitted linear models for each AP individually. Across both datasets,
we used the following models:

Arthur et al., 2021—Protein expression ~ Age + Gender + BMI

+ ΔAge

Robbins et al., 2021—Protein expression ~ Age + Gender

+ BMI + Ethnicity + ΔAge

We extracted the p-values and estimates of our variable ΔAge to
obtain the estimated association with the protein level, while
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statistically correcting for the other demographic variables. Nominal
p-values were adjusted using an FDR correction (Benjamini-
Hochberg) and proteins were considered differentially expressed
at an adjusted p-value < .05.

To identify which APs show significant differences between our
identified groups in terms of relative expression, we fitted linear
models for each protein individually while including our ‘Biological
Age Group’ (AA, DA or CA) as categorical variable. Across both
datasets, we used the following models:

Arthur et al., 2021—Protein expression ~ Age + Gender

+ BMI + Biologial AgeGroup

Robbins et al., 2021—Protein expression ~ Age + Gender

+ BMI + Ethnicity + Biologial AgeGroup

We extracted the p-values and estimates of our categorical
variable Biological Age Group to obtain the differences in relative
expression levels and significance levels across all proteins, while
statistically correcting for the other demographic variables. Nominal
p-values were adjusted using an FDR correction (Benjamini-
Hochberg) and proteins were considered differentially expressed
at an adjusted p-value < .1.

2.11 Partial correlations for clinical blood
values

To assess if ΔAge estimates may have clinical relevance, we
obtained clinical blood values from Arthur et al. (2021) (Arthur
et al., 2021). Prior to analyses, outliers in clinical blood variables,
i.e., values 1.5 times the interquartile range (IQR) below the first
quartile, or 1.5 times the IQR above the third quartile, were
removed. We only excluded those scores within an individual
that were considered outlier scores within a variable and included
the remaining clinical blood values for these individuals.
Partial correlations between ΔAge and clinical blood values
were calculated while statistically correcting for age and BMI
effects using the pcor.test function from the ppcor package
(v1.1) in R.

3 Results

3.1 Identification of plasma proteins
associated with aging

To come to a preserved human aging proteome, we tested which
plasma protein expression levels were associated with age. To
identify these proteins, we integrated the results of four
independent, large-scaled studies on different cohorts using
plasma proteome data of ~5,000 proteins generated with the
SOMAscan platform (Sathyan et al., 2020b; Arthur et al., 2021;
Ferkingstad et al., 2021; Robbins et al., 2021). Despite clear
differences between study cohorts, we obtained plasma proteomic
information on approximately 5,000 proteins in individuals of the
ages 16–95 years old across cohorts (Table 1).

First, we identified within each cohort which protein
expression levels were associated with aging across the
individual studies (Figure 1A). Using linear modeling we
identified 314 unique proteins to be significantly associated
with age (q < .01) in the dataset of Arthur et al. (2021)
(Arthur et al., 2021), and 503 unique proteins in the dataset of
Robbins et al. (2021) (Robbins et al., 2021) (q < .01, Figure 1A).
For the two studies who provided detailed summary statistics, we
performed an FDR correction across all nominal p-values
obtained per protein. In Sathyan et al. (2020), who used a
comparable linear model approach, we identified 652 unique
proteins to be significantly associated with age (q < .01). In
Ferkingstad et al. (2021), who used a more complex random
effects model to estimate age effects, we identified 3,888 unique
proteins significantly associated with age (q < .01). Using this
approach, in total 4,002 unique proteins - reflecting almost 80%
of all measured proteins - were found to be significantly
associated with age in at least one study. Across all four
studies, 104 proteins (~2%) were significantly associated with
age (q < .01, Figure 1A). We also identified similar estimated age-
associated effects across cohorts for proteins that showed
significant differences in two studies (Supplementary Figure
S1). The high number of unique proteins associated with
aging across studies may be explained due to the variability
between cohorts and driven by the high statistical power of
Ferkingstad et al. (2021).

Next, we focused on a preserved human plasma aging proteome.
We selected proteins significantly associated with age after
correcting for multiple comparisons (q < .01) in at least three
studies to allow for minor cohort differences, with similar effect
directions (up- or downregulated with age) across all studies
(Figure 1A). A total of 273 plasma proteins were found to meet
these criteria, from now on referred to as “Aging Proteins” (APs;
Figure 1A, see Supplementary Table S1 for a complete overview).
Among all APs, 196 showed increasing levels during aging and
77 proteins showed decreasing levels. A comparison of these results
across literature focusing on age-associated changes in the blood
(serum or plasma) using other methods than the SOMAscan
platform provided additional evidence for age-associated changes
in 139 of these proteins, of which 132 proteins show similar age-
associated effects in at least one other study (Supplementary
Table S2).

We further tested if our APs were also associated with
exceptional forms of aging. For this, we used the results from the
independent study of Sebastiani et al. (2021) (Sebastiani et al., 2021),
who used the SOMAlogic platform to measure the levels of serum
proteins of centenarians (mean age 105 years) compared to healthy
controls (mean age 79 years; Table 1). We identified 214 of all
273 APs in these results based on SomaID. Despite differences in the
used biomaterial (plasma versus serum) and a unique population of
extraordinary ages, 166 APs (78% of identified APs) showed
significant changes in the group comparison of centenarians
versus controls (FDR < .05). These results were in high
concordance with our aging effects (e.g., increased in
centenarians compared to controls, and increased plasma
expression with aging) as only few APs showed opposite effect
directions (Supplementary Figure S2; Supplementary Table S3).
Similar results were found in the same study using a Mass
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Spectrometry approach (Sebastiani et al., 2021), although less APs
were identified (Supplementary Table S3). These results indicate that
our APs further change their expression levels at extreme ages in a
similar direction as we described before and again underline the
important role of APs in aging and their preservation across cohorts.

Functional enrichment analyses of all APs highlight various
processes, such as those related to structural molecule activity,
glycosaminoglycan binding and extracellular matrix organization
(all FDR < .05; Figure 1B, see Supplementary Table S4 for a complete
overview). Some differences in enriched terms were found between
APs that positively or negatively associated with aging. For example,
the terms ‘MET activates PTK2 signaling’ and ‘IGF binding protein
complex’ are only enriched in APs downregulated with age
(Figure 1B). These results suggest that multiple processes are
affected in the aging process, leaving a robust signature in the
human plasma proteome as identified across studies and methods.

To further test if our APs were biologically connected to each
other we used the String Database and identified a significant
enrichment of protein-protein interactions (PPI) among all our
APs (p = 1.0e−16). Interestingly, 56 (20.5%) of our 273 APs were
found to form a highly interconnected PPI subnetwork (Figure 1C).
This subnetwork is enriched for a diversity of pathways, such as
Growth factor binding, diseases of metabolism and TNF-activated
receptor activity (all FDR < .05, Figure 1D). Altogether, these results
highlight a preserved human aging proteomic signature in the
plasma across independent studies and methods and suggest that
a variety of biological processes are contributing to or are affected
during aging.

3.2 Aging proteins follow multiple
trajectories and are linked to a variety of
biological processes

Similar changes in expression levels over time across proteins
may indicate their involvement in similar biological processes.
Therefore, we clustered the complete plasma proteome on similar
expression trajectories across the aging process. Using unsupervised
hierarchical clustering on smoothened data (LOESS regression, see
methods) of all 5,284 SOMAmers measured in Arthur et al. (2021)
(Arthur et al., 2021) we identified 15 clusters with similar expression
trajectories containing 8 (cluster 13) to 1772 (cluster 1) proteins
(Figure 2A). Functional enrichment analyses of these clusters across
the GO-, KEGG- and Reactome databases showed enrichments
among a wide diversity of functions, cellular components, and
pathways for these clusters, such as processes related to the
extracellular matrix, regulation of neurogenesis, and complement
and coagulation cascades (Supplementary Table S5). These results
indicate that this approach may identify biologically connected
networks across aging trajectories based on similar expression
trajectories of all plasma proteins.

To test for processes robustly affected by aging we tested which
clusters showed an overrepresentation of APs in the dataset of
Arthur (Arthur et al., 2021). We found 8 clusters containing 8 to
253 proteins significantly enriched with APs (FDR < .05; Figure 2B,
see Supplementary Table S6 with statistics and number of APs in
each cluster). These clusters show a variety of expression trajectories
during aging, such as linear and non-linear up- or downregulation,

suggestive of respectively more or less involvement of these
processes across the aging trajectory (Figure 2B). These clusters
are enriched for several biological processes, including complement
and coagulation cascades (cluster 10), the IGF-receptor signaling
pathway (cluster 8) and processes related to the central nervous
system development (cluster 11; Figure 2B, Supplementary Table
S5). Largely we identified similar enriched processes among our
clusters as in our initial analysis using only APs, but we also
identified novel processes such as those related to the central
nervous system, e.g., ‘regulation of nervous system development’
(cluster 11) and ‘GABA receptor binding’ (cluster 14), highlighting
the added value of this network approach. Altogether, these results
give more insight into age-associated processes and may provide a
temporal insight across aging when these processes are affected or
involved.

3.3 Aging proteins are strongly linked to age-
associated diseases

As aging is a main risk factor in a multitude of diseases, we
examined if our preserved APs are associated with phenotypes
linked to diseases. For this we used summary statistics of the
plasma protein associated phenotypes by Ferkingstad et al. (2021)
in which they identified sets of plasma proteins associated with a
variety of phenotypes after adjustment for sex and age effects. Of
these phenotypes, 208 were established using a Case-Control
approach, which we call disease-associated phenotypes, and
109 were measured quantitative traits (QTs).

We found that individual APs were associated to more
phenotypes (on average 74 associations) compared to other
plasma proteins (on average 55 associations, p < 2.2e-16,
Figure 3A). Our top 20 APs with the most phenotype
associations showed a high overlap with previous studies which
used proteomic clocks to predict the phenotypes frailty,
multimorbidity or mortality (Sathyan et al., 2020b; Tanaka et al.,
2020) (Supplementary Table S7). We also detected several highly
phenotype-associated novel proteins, namely, WAP four-disulfide
core domain protein 2 (WFDC2), Trafficking protein particle
complex subunit 3 (TRAPPC3), Macrophage scavenger receptor
types I and II (MSR1) and CUB domain-containing protein 1
(CDCP1). These results suggest that our APs may be more
pleiotropic than other proteins, as reflected by their higher
involvement in phenotypes.

To test which phenotypes were enriched with AP associations,
we first determined the proportion of APs among all plasma proteins
associated with each phenotype after adjustment for sex and age
effects. Across all phenotypes, 179 were significantly enriched with
APs (56%, Bonferroni corrected p < .01; see Supplementary Table S8
for a full overview), of which most were disease-associated
(128 phenotypes). The majority of these still comprises diseases
in which age is a known important risk factor, such as Heart Failure,
Dementia and Renal Tubulopathies (Figure 3B). The most
significant AP enriched QTs were estimated glomerular filtration
rate, urea and creatinine, which may point to kidney functioning
and perhaps liver functioning - two organs known to be affected
during aging and important for maintaining homeostasis in the
blood. Furthermore, several immune associated traits were found to
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be highly associated with APs, such as number of Lymphocytes,
Neutrophils and Eosinophils. Together, these results point to a link
between APs and age-associated diseases and may suggest impaired
organ function and immune changes reflected in the blood.

To further establish the link between APs and diseases, we tested
if APs are more specifically associated with disease-associated
phenotypes and not QTs. To test this, we separated the
phenotypes in their originally provided diseases or QTs category.
In disease-associated phenotypes, we found on average more
associations with APs (30 associations) than across all plasma
proteins (12 associations; Welch’s t-test, p < 2.2e-16, Figure 3C).
In QTs we identified no significant difference in the average number
of associations across these subsets of proteins (both 44 associations;
Welch’s t-test, p = .51, Figure 3C). These results underline an
intriguing association between diseases and APs and suggest that
APs are more affected by or involved in diseases.

To explore which APs are mostly associated with disease-
associated phenotypes, we linked each individual AP to AP
enriched disease-associated phenotypes. Leading our top
10 proteins we found Growth/differentiation factor 15 (GDF15), a
well described aging protein, and Tumor necrosis factor receptor
superfamily member 1A and 1B (TNFRSF1A, TNFRSF1B), two
receptors from the TNF-superfamily which are predominantly
expressed by immune cells. GDF15 was associated with
91 phenotypes, which shared most phenotypes with other
proteins from the top 10 (Figure 3D). Together, the top
10 shared a link to 32 phenotypes (Figure 3D), and the top
20 proteins still shared 21 phenotypes (Supplementary Figure
S3). This suggests that a large group of APs plays a role across
multiple shared diseases. Altogether, these results underline the link
between age-associated plasma proteins and age-associated diseases
and suggest the probable potential of these proteins in promoting
the healthspan and reflecting health status due to their pleiotropic
functioning and association to diseases.

3.4 A selection of aging proteins is a good
predictor of chronological age

To test the predictive validity of our APs in predicting
chronological age, we created multiple proteomic clocks based
on our APs. First, we performed a LASSO regression analysis
which allows for variable selection to predict ages using all
273 APs and sex as input variables. In short, for both datasets
of Arthur (Arthur et al., 2021) and Robbins (Robbins et al., 2021),
we repeated the LASSO regression analysis 10,000 times on
~2/3rd of a randomly permuted sample to select the most
important variables. Using these variables, we created
predictive models and tested these models on the remaining
sample by predicting their ages and then correlated the
predicted ages to the original ages. On average across all
10,000 models, we obtained strong correlations between the
original and predicted age in the datasets of Arthur (Arthur
et al., 2021) (rAPavg = .943) (Figure 4A) and Robbins (Robbins
et al., 2021) (rAPavg = .939, Figure 4C). Predictive models for
Arthur (Arthur et al., 2021) consisted on average of 61 APs and
37 APs were used in the majority of the models (selected
in >5000 LASSO regression analyses). For Robbins (Robbins

et al., 2021) models consisted on average of 110 APs and
88 APs were used in the majority of models. These results
show that AP expression levels in the plasma are good
predictors of age.

To test if APs are better predictors of age than other plasma
proteins, we questioned if models with similar sized sets of random
proteins would perform equally well in the datasets as the models
consisting only of APs. On average, our models using only APs
highly outperformed models using sets of 273 random proteins
before variable selection, and this effect was stronger in the dataset of
Robbins (Robbins et al., 2021) (rrandom = .662) than Arthur (Arthur
et al., 2021) (rrandom = .767) (Figure 4B; Figure 4D). Next, we tested
the predictive validity of these models across datasets. To do so, we
aimed to validate these models between datasets by applying the
models created in the Arthur dataset (Arthur et al., 2021) to the
Robbins dataset (Robbins et al., 2021) and vice versa, without
recalibrating the models between datasets. When applying the
models generated in the Arthur dataset (Arthur et al., 2021) to
the Robbins dataset (Robbins et al., 2021), we observed a lower, but
still strong correlation between predicted and chronological age
(rvalidation = .846; Figure 4B). The other way around, when applying
the created models using the Robbins dataset (Robbins et al., 2021)
to the Arthur dataset (Arthur et al., 2021), we obtained an even
stronger predictive validity than in the original dataset (rvalidation =
.950; Figure 4D). These results highlight that our preserved AP
plasma signature is more strongly associated with aging compared to
other proteins.

With the aim to select APs with the most age predicting values,
we overlapped the proteins used in themajority of the models for age
prediction in Arthur (Arthur et al., 2021) (37 APs) or Robbins
(Robbins et al., 2021) (87 APs). This resulted in 15 APs most used
across both studies (Figure 4E). Using only these 15 APs, we
repeated our age prediction analyses as described above using a
Ridge regression to include all APs, thereby creating a single,
constant proteomic clock. This reduced subset of APs still had a
strong predictive validity across 10,000 models in the dataset of
Arthur (Arthur et al., 2021) (rAPavg = .927, Figure 4F) and Robbins
(Robbins et al., 2021) (rAPavg = .888). For both datasets similar sized
sets of random proteins were on average poor predictors of
chronological age (rrandomArthur = .324, rrandomRobbins = .323).
Models built in the dataset of Arthur (Arthur et al., 2021) were
on average still good in predicting age in the dataset of Robbins
(Robbins et al., 2021) (rvalidation = .855), and models build in the
dataset of Robbins (Robbins et al., 2021) outperformed themselves
in the dataset of Arthur (Arthur et al., 2021) (rvalidation = .923).
Together, these results show that our proteomic clock consisting of
15 APs is a very good predictor of chronological age, even across
independent datasets.

To further corroborate the predictive validity of these proteomic
clocks we aimed to test them in an independent cohort, i.e., a cohort
not used for the selection of our APs. Since studies using similar
proteomic methods, experimental designs and sharing of data are
very limited, we decided to test our models on the small dataset
provided by the COVIDome study (Sullivan et al., 2021) (Table 1).
Although this dataset may not be a perfect control as it contained
hospitalized patients, we focused on the 29 COVID-negative
patients of which proteomic data was available. These patients
ranged from 22 to 80 years and 268 of our APs were measured.
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After applying the models containing all APs on this dataset, we
obtained on average a strong correlation for the models created in
Robbins, et al. (Robbins et al., 2021) (r = .751) and moderate
correlation in Arthur, et al. (Arthur et al., 2021) (r = .560)
(Supplementary Figure S4). Applying the reduced models using
the previously selected 15 APs showed a lower, but moderate
correlation using the models of Robbins, et al. (Robbins et al.,
2021) (r = .641), and similar results using models of Arthur,
et al. (Arthur et al., 2021) (r = .523). Across all four sets of
models we obtained on average no correlation (all average r ≈ 0)
after permuting the model weights across APs, suggesting that our
trained models still contains age predictive information in this
independent cohort. Altogether, these results underline that our
preserved AP signature has predictive information on aging across
cohorts.

3.5 Assessment of altered blood signatures
across aging trajectories

When comparing the average predicted age of individuals based
on the 273 APs with their chronological age, some individuals are
either predicted older or younger based on their plasma profile
(ΔAge, Figure 5A). Across the datasets of Arthur (Arthur et al.,
2021) and Robbins (Robbins et al., 2021), we observed
approximately normally distributed ranges of ΔAge values among
both datasets (Shapiro-Wilk test; pArthur = .401, pRobbins = .308) and
no associations between chronological age and ΔAge was observed
across both datasets (Supplementary Figure S5). The mean ΔAge in
the dataset of Arthur (Arthur et al., 2021) was −0.01, with a mean
average error of 3.955 years. In the Robbins dataset (Robbins et al.,
2021), the mean ΔAge was 0.046, with a mean average error of
3.391 years. Altogether, these model statistics suggest an unbiased
and reliable estimate of ΔAge across both datasets.

In our previous analyses, we highlighted a link between APs and
phenotypes related to kidney and liver functioning (Figure 3B). To
further explore if ΔAge may be informative for health status, we
explored if our ΔAge estimates associate with clinical blood markers
(CBMs). CBMs, such as levels of cholesterol and CO2, are used to
assess a general state of health or how well certain organs are
working. Arthur et al. (2021) (Arthur et al., 2021) provides
extensive blood phenotyping including a clinical and
immunological panel of 116 male individuals of which they also
obtained plasma proteomic data. We obtained several nominal
significant partial correlations between ΔAge and CBMs after
correcting for chronological age and BMI. For example, higher
levels of uric acid were associated with a higher (biologically
older) ΔAge (Partial r = .267, p = .005), whereas higher levels of
magnesium were associated with a lower (biologically younger)
ΔAge (Partial r = −.197, p = .036). Near significant associations
were found for levels of aspartate aminotransferase, a marker of liver
functioning, (Partial r = −.189, p = .051) and HDL cholesterol,
sometimes referred to as the good cholesterol (Partial r = −.171, p =
.072). For a full overview, see Supplementary Table S9. These results
suggest that ΔAge estimates may potentially have clinical relevance
in assessing a general state of health.

Next, we questioned which APs contribute the most in observed
deviations between chronological and biological ages. To do so, we

applied two statistical modeling approaches. First, we associated AP
expression levels to ΔAge estimates, while statistically correcting for
chronological age, sex, BMI and ethnicity (latter variable in the
dataset of Robbins (Robbins et al., 2021) only). These associations
would identify potential ‘aging modulators’ across our cohorts. We
identified 63 APs to be significantly associated with ΔAge in the
Arthur dataset (Arthur et al., 2021) and 56 in the Robbins dataset
(Robbins et al., 2021), of which 15 APs overlapped (all FDR < .05;
Figure 5B). For example, we identified positive associations between
GDF15 and ΔAge, suggesting that higher levels of this protein in the
plasma may reflect to a higher biological age (‘accelerated’ aging,
AA), whereas lower levels may reflect to a lower biological age
(‘decelerated’ aging, DA). Associations between APs and ΔAge
showed high concordance between datasets (r = .73, p < 2.2e-16;
Figure 5C), suggesting similar contributions in modulating aging
trajectories across cohorts. Moreover, the associations between APs
and ΔAge showed similar effects compared to initially identified
aging effects in the dataset of Arthur (Arthur et al., 2021) (r = .86, p <
2.2e-16) and Robbins (Robbins et al., 2021) (r = .91, p < 2.2e-16;
Figure 5D). Together, this suggests that the AP signature in the
plasma of decelerated agers reflects a more youthful systemic
environment, whereas accelerated agers show an older systemic
environment.

As processes and proteins contributing to AA and DA may differ,
we aimed to define the proteins contributing to decelerated or
accelerated aging. Therefore, as our second approach, we defined
three biologically aging groups: 1) Chronological Agers (CA), with a
maximum of 2 years difference between estimated age and
chronological age (|ΔAge| < 2), 2) Decelerated Agers, with an
underestimation in their age based on plasma proteomic profile
(ΔAge < −5), and 3) Accelerated Agers, with an overestimation in
their age based on proteomic profile (ΔAge >5); Figure 5A). In the
Arthur dataset (Arthur et al., 2021) 46 individuals showed CA, 25 DA
with a maximum underestimation of more than 11.5 years, and 28 AA
with a maximum overestimate of almost 12 years. The dataset of
Robbins et al. (Robbins et al., 2021) contained 255 individuals
showing CA, 88 DA with a maximum underestimate of more than
16 years, and 92 AA with a maximum overestimate of almost 13 years.
For complete demographics of these subsamples, see Table 2. No
significant differences in demographics were found between groups,
except for BMI in Robbins et al. (Robbins et al., 2021) in which the AA
group had on average the highest BMI measures and the DA group the
lowest. These results hint to an association between BMI and aging
quality.

Next, we compared our DA groups against our CA groups to
identify a proteomic signature of decelerated aging, while
statistically correcting for chronological age, sex, BMI and
ethnicity (latter variable in the dataset of Robbins (Robbins
et al., 2021) only). Between DA and CA nine proteins were
differentially expressed (FDR < .1) in the dataset of Arthur
(Arthur et al., 2021) (Supplementary Table S10), and
11 proteins in Robbins (Robbins et al., 2021) (Supplementary
Table S11). Only two proteins overlapped between datasets,
namely, Proto-oncogene tyrosine-protein kinase receptor Ret
(RET) and Triggering receptor expressed on myeloid cells 2
(TREM2), so called ‘aging decelerators’ (Figure 5E). When
repeating this for AA compared to CA, in the dataset of
Arthur (Arthur et al., 2021) no differentially expressed
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proteins were found (Supplementary Table S10). Conversely, in
the Robbins dataset (Robbins et al., 2021), 46 proteins were
differentially expressed between AA and CA (FDR <.1,
Supplementary Table S11). Expression of the four proteins
that overlap between DA versus CA and AA versus CA
comparisons in this dataset – namely, Chondroadherin
(CHAD), Complement receptor type 2 (CR2), Protein SET
(SET), and TREM2 - go in opposite directions in DA
compared to AA. Altogether, these results highlight several
proteins which may in multiple ways be associated with the
aging process, either by accelerating or decelerating the
process, or play a modulatory role in aging which may have
divergent effects depending on the expression levels (Figure 5E).

4 Discussion

The aim of this study was to identify markers of aging and
potential targets to improve the quality of aging. By integrating the
results of four independent large-scaled human plasma proteome
datasets, we identified a set of 273 preserved aging proteins (APs)
with similar age-associated effects across studies, enriched for a
variety of functional processes and highly associated with a
multitude of age-associated phenotypes. Using only 15 of these
proteins we were still able to estimate an individuals’ age with good
accuracy, emphasizing their potential as biomarkers of aging.
Moreover, we identified a subset of proteins differentially
expressed in individuals with a plasma proteomic profile that
diverged from their chronological age, which may be valuable
targets to improve the quality of aging.

Across the four integrated studies, almost 80% of all measured
plasma proteins (> 4,000) was associated with aging across studies,
illustrating the complexity and variability of the aging process. This
number exceeds a previous systematic review of age-associated proteins
across tissues and cells (Johnson et al., 2020). This results of the higher
throughput of our used datasets allowing a broader, more specific
screening of the aging plasma proteome than before, but also because of
the inclusion of bigger cohorts such as the deCODE cohort. Illustrative
of this first benefit is highlighted in our phenotype associations, in
which we identified several novel cross-disease associated proteins.
Although we focus only on a small subset of this large group of APs
(~2%), we show in ourmodels that these 273APs aremore associated to
aging than other proteins in the plasma. Moreover, the age-predictive
validity of our clocks is close to previously reported aging clocks using
491 age-associated proteins (Lehallier et al., 2020), even in our reduced
models using 15 APs. Although these presented proteins may be
different compared to other presented proteomic clocks (Tanaka
et al., 2018; Lehallier et al., 2019; Sathyan et al., 2020b), this can be
explained due to a variety of factors. Across studies there may be several
technical factors, such as used anti-coagulants, and biological
differences, such as different age ranges, ethnicity and corrections
for BMI, which may influence the plasma proteome in the cohorts.
To overcome these differences, we therefore focused on the overlap
between the different studies as they also present several of these
confounding factors.

A limitation of our selection strategy is a potential bias in selection
due to the single platform used across studies. Nevertheless, direct
comparisons of the SOMAscan andOlink platforms have shownmostly

moderate to high correlations between measurements (Ferkingstad
et al., 2021; Haslam et al., 2022; Katz et al., 2022). It is important to
note that different normalization procedures, inter- and intraplate
variability as observed in the SOMAscan assay may affect our
selection (Candia et al., 2017), however we have tried to overcome
this by finding the overlap across studies. Lastly, we presented additional
evidence for 132 APs, which are preserved across different methods
(Supplementary Table S2). Furthermore, it must be noted that this
preserved signature includes information across individuals of different
ethnicities, namely, white and black Americans, Jewish Ashkenazi and
an Icelandic population. Importantly, our analysis across the dataset of
Robbins et al. (Robbins et al., 2021) showedmore than 1,000 significant
differences in protein expression levels between ethnicities of which
138 APs (51% of all APs), suggestive of altered aging trajectories across
diverse genetic backgrounds (Supplementary Figure S6). In line with
this, we want to highlight the limitation of the cross-sectional nature of
this data. Given the high variability in the plasma proteome and the
strong link between APs and diseases, this might impact our identified
aging proteome. Longitudinal measurements are essential to
disentangle APs from other confounding factors such as age-
associated diseases, and to identify protective and detrimental
proteins across aging trajectories. This leaves a great opportunity for
future research to better disentangle the human aging proteomic
signature.

Among our APs we identified a subset of well-known candidates
such as GDF15, a stress responsive cytokine resulting of mitochondrial
dysfunction (Conte et al., 2022). GDF15 is described as a key player in
human aging and predictor of mortality (Wiklund et al., 2010; Johnson
et al., 2020; Conte et al., 2022). Using the Human Ageing Genomic
Resources database (Tacutu et al., 2018), we verified that 41 APs had
either genetic variants associated with longevity, were known to induce
or inhibit cellular senescence or were altered in a dietary restriction
intervention resulting in delayed age-related degeneration or lifespan
expansion across different species (Tacutu et al., 2018). Moreover,
several identified proteins, such as Insulin-like growth factor-binding
protein 2 (IGFBP2) and Insulin-like growth factor-1 (IGF1), belonged to
the IGF family and are part of a highly conserved pathway which has
been shown to play a major role in previous aging and longevity studies
across species (Barbieri et al., 2003; Rincon et al., 2005). Together, these
findings complement to previous well described results of proteins and
pathways related to aging and longevity and highlight themost potential
therapeutic targets to improve the aging process.

Additionally, we show an association between APs and their
involvement in disease. Even after initial correction for age effects in
associations between plasma levels and phenotypes, our results indicate
that our set of APs are more associated with phenotypes, specifically
disease-associated, than the rest of the plasma proteome. While this
should be interpreted carefully as no causal evidence is provided
between plasma levels and phenotypes, we believe that the
combination of our results suggests that targeting age-associated
proteins in the plasma may be of value to combat age-associated
diseases and thereby increases the healthspan. Likewise, it has been
suggested that increasing the healthspan may be the most important
treatment for age-associated diseases and several interventions with
translational potential have been put forward to reach this goal
(Kaeberlein et al., 2015). Importantly, targeting these proteins
systemically will require more elaborate studies to avoid unnecessary
side-effects or identify underlyingmechanisms. For example, increasing
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the AP Beta-2-microglublin systemically has adverse effects on
hippocampal-dependent cognitive functioning and neurogenesis
(Smith et al., 2015). Conversely, a cleaved domain of the AP Klotho,
KL1, was shown to be sufficient to enhance cognition and to mediate
the effects of the complete protein (Gupta et al., 2022).

Previous research already indicated how a ‘younger’ systemic
environment contributes to slowing the aging process or even to
rejuvenation of tissues across the body (Villeda et al., 2011; Loffredo
et al., 2013; Katsimpardi et al., 2014; Sinha et al., 2014; Villeda et al.,
2014; Baht et al., 2015; Castellano et al., 2017; Huang et al., 2018;
Palovics et al., 2022; Yankova et al., 2022). In line with these findings,
our results show altered expression levels of APs between those who
deviate from chronological aging and indicate a more aged systemic
environment in those who show proteomic signs of accelerated aging. It
is important to emphasize that although these results reflect altered
aging signatures in the plasma proteome, these results are based on a
relatively small number of proteins given the size of the full proteome.
Other unmeasured proteins may play a confounding or mediating role
in altering aging trajectories. Interestingly, we also identified that
changes in several clinical health biomarkers associated with
differences between proteomic and chronological age. We found an
association with higher uric acid levels, which is associated with
impaired kidney functioning (Bellomo et al., 2010), in addition to an
enrichment of AP associations in known markers used to assess kidney
functioning (estimated glomerular filtration rates, urea and creatinine).
Furthermore, both uric acid and urea aremainly synthesized in the liver
(Morris, 2002; El Ridi and Tallima, 2017), and uric acid has been
hypothesized to contribute to the increased life span of humans
compared to other mammals (Alvarez-Lario and Macarron-Vicente,
2010). Together, this may point to these organs being highly affected by
or vulnerable to aging. As these two organs are involved in filtering the
blood, it may be that due to the aging process these organs cannot
properly function anymore, leading to a more toxic and less
homeostatic environment in the blood over time. A recent study
using umbilical cord plasma injections in human elderly showed
beneficial effects on estimated ages using epigenetic profiles, but also
improved biomarkers of kidney functioning such as creatinine levels
and estimated glomerular filtration rates (Clement et al., 2022).
Altogether, this points to an important role of these organs in aging
and suggests impaired functioning of these organs over time. This may
ultimately cause homeostatic disturbances in the blood, leading to
detrimental biological events across the body.

Besides these two organs, we alsowant to highlight the presence of an
age-associated plasma signature of brain aging.We found both dementia-
related phenotypes and a cluster related to central nervous system
development to be enriched for AP associations. Moreover, we
identified an important role for TREM2, of which several genetic
variants are a well-known risk factor for Alzheimer’s disease and
other neurodegenerative diseases (Carmona et al., 2018), in
individuals who deviate from their chronological age. Given the
strong links between age-related cognitive decline, dementia and
aging, these potential targets may provide valuable insights in brain
aging. Targeting this may both reduce a burden on caretakers, and
increase autonomy of individuals on later ages, ultimately leading to an
increased healthspan.

In summary, we presented a preserved human proteomic
signature of aging which appears to be linked to age-associated
diseases. Using this preserved aging signature, we provide insights in

some of the most important pathways affected during the aging
process. Altogether, these results contribute to the understanding of
aging and put several important proteins and mechanisms forward,
which may be of use for further studies to experimentally
disentangle the biological mechanisms of aging.
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