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Background: Inflammation is implicated in the etiology of various aging-related diseases.
Numerous dietary and lifestyle factors contribute to chronic systemic inflammation; genetic
variation may too. However, despite biological plausibility, little is known about
associations of antioxidant enzyme (AE) and DNA base excision repair (BER)
genotypes with human systemic inflammation.

Methods:We genotyped 22 single nucleotide polymorphisms (SNPs) in 3 AE genes, and
79 SNPs in 14 BER genes to develop inflammation-specific AE and BER genetic risk
scores (GRS) in two pooled cross-sectional studies (n = 333) of 30–74-year-old White
adults without inflammatory bowel disease, familial adenomatous polyposis, or a history of
cancer or colorectal adenoma. Of the genotypes, based on their associations with a
biomarker of systemic inflammation, circulating high sensitivity C-reactive protein (hsCRP)
concentrations, we selected 2 SNPs of 2 genes (CAT and MnSoD) for an AE GRS, and 7
SNPs of 5 genes (MUTYH, SMUG1, TDG, UNG, and XRCC1) for a BER GRS. A higher
GRS indicates a higher balance of variant alleles directly associated with hsCRP relative to
variant alleles inversely associated with hsCRP. We also calculated previously-reported,
validated, questionnaire-based dietary (DIS) and lifestyle (LIS) inflammation scores. We
used multivariable general linear regression to compare mean hsCRP concentrations
across AE and BER GRS categories, individually and jointly with the DIS and LIS.

Results: The mean hsCRP concentrations among those in the highest relative to the
lowest AE and BER GRS categories were, proportionately, 13.9% (p = 0.30) and 57.4%
(p = 0.009) higher. Neither GRS clearly appeared to modify the associations of the DIS or
LIS with hsCRP.

Conclusion: Our findings suggest that genotypes of DNA BER genes collectively may be
associated with systemic inflammation in humans.
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1 INTRODUCTION

Substantial epidemiological evidence suggests that chronic
inflammation is associated with various aging phenotypes,
such as metabolic homeostasis, immune senescence, and
changes in body composition (Franceschi and Campisi, 2014).
Inflammation is also implicated in the etiology of multiple aging-
related diseases (Sanada et al., 2018), including cardiovascular
disease and cancer (Gan et al., 2004; Pawelec et al., 2014; Singh
et al., 2019). Dietary and lifestyle exposures likely contribute to
higher chronic systemic inflammation (Cavicchia et al., 2009;
Barbaresko et al., 2013; Kantor et al., 2013), and genetic variation
may too (Shen and Ordovas, 2009). Since reactive oxygen species
(ROS) play an important role in inflammation and the
pathogenesis of many inflammatory diseases (Mittal et al.,
2014), and antioxidant enzymes (AE) and DNA base excision
repair (BER) mechanisms contribute to protecting cells from
ROS-induced deleterious effects (Sun, 1990; Seeberg et al., 1995;
Mates, 2000), polymorphisms in AE and BER genes may be
especially important in regulating systemic inflammation.

Substantial basic science and human study evidence supports
that multiple dietary constituents and lifestyle factors contribute
to systemic inflammation, and recent epidemiologic evidence
consistently, strongly supports that dietary and lifestyle factors
collectively are particularly strongly associated with circulating
concentrations of inflammation biomarkers and chronic diseases
for which inflammation is considered an important risk factor.
Circulating concentrations of high sensitivity C-reactive protein
(hsCRP), an acute phase protein produced in the liver and
released into the circulation, has been used extensively
clinically and in epidemiologic studies (Byrd et al., 2019) as a
biomarker of inflammation. Although, for some applications, it
has some limitations (e.g., increases in response to infection and
other inflammatory medical conditions (Sproston and Ashworth,
2018)), it is reliably measured (Ridker, 2004), is the most widely
used biomarker of inflammation in epidemiologic studies, and is
highly correlated with other biomarkers of inflammation (Byrd
et al., 2019). We recently reported the development and
validation of novel, questionnaire-based, dietary and lifestyle
inflammation scores, the DIS and LIS, respectively (Byrd et al.,
2019). The components of the predominantly whole foods-based,
19-component DIS and the 4-component LIS [comprising
physical activity, body mass index (BMI), alcohol intake, and
smoking status] are weighted according to the strengths of their
associations with a panel of inflammation biomarkers (including
hsCRP) in a diverse population of Black and White male and
female adults from the 48 contiguous United States. The DIS was
more strongly associated with inflammation biomarkers than
were other reported dietary inflammation indices in three
populations (one of which included participants in the present
study), and the strongest associations were among those who
were jointly in the highest DIS and LIS categories (Byrd et al.,
2019).

Just as individual dietary and lifestyle factors, for the most
part, tend to be modestly and inconsistently associated with
inflammation, but collectively are strongly and consistently
associated with it (Byrd et al., 2019), it is unlikely that single,

relatively common AE or BER polymorphisms would be strongly
associated with systemic inflammation, but collectively they
might. Genetic risk scores (GRS) that combine multiple
variants in multiple genes were previously reported and found
to be associated with chronic disease outcomes (Wang et al., 2017;
Chalmer et al., 2018; Korologou-Linden et al., 2019a; Korologou-
Linden et al., 2019b; Leonenko et al., 2019; Mavaddat et al., 2019;
Watt et al., 2019; Zheutlin et al., 2019; Li et al., 2020; Mosley et al.,
2020; Sipeky et al., 2020). Associations of AE and BER GRS with
colorectal adenoma were previously reported (Wang et al., 2017);
however, there are no reported associations of these or other GRS,
alone or in interaction with dietary and lifestyle exposures, with
inflammation biomarkers.

Accordingly, herein we report the development of
inflammation-specific AE and BER GRS and their associations
with circulating hsCRP concentrations, individually and jointly
with the DIS and LIS in two pooled cross-sectional studies.

2 MATERIALS AND METHODS

2.1 Study Population
We pooled data from two, methodologically nearly identical,
cross-sectional studies of patients going for outpatient, elective
colonoscopies: Markers of Adenomatous Polyps (MAP) I,
conducted 1994–1997 in Winston-Salem and Charlotte, North
Carolina, and MAP II, conducted in Columbia, South Carolina in
2002. Both studies were conducted by the same principal
investigator (RMB) using nearly identical protocols and
questionnaires. Details of the MAP I and MAP II study
protocols were previously published (Boyapati et al., 2004;
Daniel et al., 2009). Briefly, participants were recruited from
patients with no history of colorectal neoplasms who were
scheduled for elective, outpatient colonoscopies at large
gastroenterology clinics. Eligibility included English-speaking,
30–74 years of age, and capable of informed consent;
exclusions included a history of colorectal adenomatous
polyps, familial adenomatous polyposis, cancer other than
non-melanoma skin cancer, known genetic syndromes
associated with colonic neoplasia, and inflammatory bowel
disease. The MAP I and MAP II consent rates were 67% and
76%, respectively, and the sample sizes were 526 and 267,
respectively, yielding an initial pooled sample size of 793.

Each study was approved by the Institutional Review Board of
the institution where it was conducted: Wake Forest University
School of Medicine for MAP I and the University of South
Carolina for MAP II. All participants provided informed
consent, and the present data analyses were conducted using
de-identified data. The MAP I and the MAP II studies hereinafter
are referred to as the pooled MAP studies.

2.2 Data Collection and Laboratory Assays
Prior to colonoscopy visits, all study participants completed
questionnaires on demographics, medical history, family
history of colorectal cancer, lifestyle, self-reported
anthropometrics (height, weight and waist and hip
circumferences), diet [using a previously validated, semi-
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quantitative 153-item Willett food frequency questionnaire
(FFQ) (Willett et al., 1985; MacIntosh et al., 1997)], and
hormonal and reproductive history (in women). Physical
activity was assessed using a modified Paffenbarger
questionnaire (Paffenbarger et al., 1993), which queried usual
lengths of times spent in specified moderate and vigorous
activities on weekdays and weekends. The times spent in each
activity category were summed, and the metabolic equivalents of
task (METs) hours/week calculated; then the MET-hours/week
from moderate and vigorous physical activities were summed.
We calculated BMI as weight in kilograms divided by height in
meters squared (kg/m2), and a waist:hip ratio, as waist
circumference divided by hip circumference.

Participants completed their questionnaires at home and
had fasting venous blood samples taken at their colonoscopy
visit prior to the procedure. The blood samples were collected,
handled, and stored in a manner allowing for genotyping and
biomarker measurements. Blood was drawn into pre-chilled,
red-coated Vacutainer tubes, which were immediately placed
on ice and shielded from light, and taken to the laboratory.
Tubes for serum and plasma were centrifuged under
refrigeration, and aliquoted into amber-colored
cryopreservation vials. The air in all aliquot vials was
displaced with an inert gas (nitrogen in MAP I; argon in
MAP II), and the vials were capped with O-ring screw caps.
The aliquots were then immediately placed in −70°C freezers
until analysis. hsCRP was measured via latex-enhanced
immunonephelometry on a Behring nephelometer II (BN-
II) analyzer (CV 4%; Behring Diagnostics). All hsCRP
assays were performed at the Molecular Epidemiology and
Biomarker Research Laboratory, University of Minnesota.

Tag single nucleotide polymorphisms (tagSNPs) that covered
all SNPs with a minor allele frequency (MAF) >5% in two
pathways—AE and DNA BER—were selected for genotyping
and supplemented with candidate SNPs when available. For
the AE genes, 6 SNPs were selected for MnSOD, 5 for GTSP1,
and 11 for CAT (Supplementary Table S1). For the BER pathway
genes, 11 SNPs were selected for XRCC1, 2 for UNG, 11 for TDG,
4 for SMUG1, 3 for POLB, 3 for PNKP, 6 for OGG1, 6 for
MUTYH, 3 for MPG, 6 for MBD4, 15 for LIG1, 5 for LIG3, 1 for
FEN1, and 3 for APEX1 (Supplementary Table S2). Genotyping
was conducted using the iPLEX Sequenom genotyping platform
at the University of Minnesota Genomics Center, the core
genotyping laboratory. The genotyping concordance for the
selected SNPs in 64 pairs of blinded duplicate samples was
≥95% (Wang et al., 2017).

2.3 Data Analyses
2.3.1 Exclusion Criteria
Prior to calculating the inflammation and genetic risk scores and
conducting statistical analyses, we excluded from analysis participants
missing or having extreme [>3 standard deviations (SD) of the study
population mean] circulating hsCRP concentration values (n = 206),
genotyping on>20% of the selectedAE and BER genes (n= 184), and
>15% of their food frequency questionnaire responses (n = 10); those
who reported implausible total energy intakes (<600 or >6,000 kcal/
day) (n = 10); those missing data on lifestyle factors (n = 12); non-

White participants (n = 30) (because of population stratification and
insufficient sample size for separate genetic analyses); and those with
extreme (>10,000 IU/day) supplemental carotene intakes (n = 8),
leaving a final sample size of 333 participants (MAP I = 187; MAP
II = 146).

2.3.2 Dietary and Lifestyle Inflammation Scores
Weighted DIS and LIS to represent the combined contributions of
foods and beverages and lifestyle to systemic inflammation (Byrd
et al., 2019) were originally developed in a heterogenous subset of
the previously described Reasons for Geographic and Racial
Differences in Stroke Study (REGARDS) cohort (Howard et al.,
2005), and validated in three other study populations. Briefly,
foods, beverages, and micronutrient supplements for the DIS were
selected and grouped into 19 score components [18 whole foods
and beverages plus a micronutrient supplement score (described
below); Supplementary Table S3] a priori based on biological
plausibility, prior literature, and applicability across different
commonly used FFQs. The 18 whole foods and beverages
included leafy greens and cruciferous vegetables, tomatoes, deep
yellow or orange vegetables and fruits, legumes, refined grains and
starchy vegetables, other vegetables, nuts, apples and berries, other
fruits and real fruit juices, fish, poultry, red and organ meats,
processed meats, high-fat dairy, low-fat dairy, other fat, added
sugars, and coffee and tea. To account for supplemental
micronutrients, a supplement score was calculated by ranking
supplemental micronutrient intakes, based on the sex- and
study-specific distribution, into tertiles. The tertiles were then
assigned values of 0–2 and multiplied by +1 or −1 based on
their literature-supported anti-inflammatory or pro-
inflammatory contributions, respectively. The LIS comprised 4
components: physical activity, current smoking status, alcohol
intake, and BMI (the detailed descriptions and rationales for
inclusion are provided in Supplementary Table S3).

For the present study we calculated the DIS and LIS exactly as
previously described (Byrd et al., 2019; Byrd et al., 2020). After
calculating the components described above, we standardized each
continuous food group, by sex, to a mean of 0 and SD of 1.0, and
created dummy variables for the categorical variables in the LIS. Then,
we multiplied the values by the previously reported weights (provided
in Supplementary Table S3) and summed them to constitute the DIS
and LIS. [Notes: a) The previously reported weights for the DIS and
LIS components were based on the strengths of their multivariable-
adjusted, individual associations with an inflammation biomarker
score comprising four biomarkers of systemic inflammation in a
diverse subset of the REGARDS cohort, and validated in three
populations (Byrd et al., 2019). b) The biomarker score in
REGARDS was calculated as the sum of normalized circulating
concentrations of IL-6, IL-8, IL-10 (with a negative sign), and
hsCRP]. A higher score represents a higher balance of pro-
inflammatory to anti-inflammatory dietary or lifestyle exposures.

2.3.3 Genetic Risk Scores
We developed AE and BER Genetic Risk Scores (GRS) as follows.
First, we assessed all SNPs for Hardy-Weinberg equilibrium. We
combined variant allele heterozygotes and homozygotes when
there were ≤10 participants with either genotype. Then, for each
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genotype, we calculated and compared mean plasma hsCRP
concentrations across genotypes using sex-and BMI-adjusted
general linear models. For further perspective, from these
results, we calculated proportional mean hsCRP concentration
differences between the variant genotypes and the common
homozygote as: (variant genotype-common homozygote/
common homozygote x 100%) (Supplementary Tables S4,
S5). We included SNPs in the AE GRS if the proportional
mean differences in hsCRP concentrations were >5% with a
p-value ≤0.05, or if the proportional mean differences in
hsCRP concentrations were >10% with a p-value ≤0.15.
Similarly, we included SNPs in the BER GRS if the
proportional mean differences in hsCRP concentrations were
>10% with a p-value ≤0.15. Based on these SNP selection criteria,
for the AE GRS we included 1 SNP for CAT and 1 for MnSoD
(Supplementary Table S6); and for the BER GRS we included 1
SNP forMUTYH, 1 for SMUG1, 3 for TDG, 1 for UNG, and 1 for
XRCC1 (Supplementary Table S7).

Next, for each SNP included in a GRS, we scored each variant
allele 1 point and gave it a positive sign if the mean biomarker
concentration was higher among those with the variant allele, and
a negative sign if it was lower. Finally, we summed the values
assigned to the genotypes to yield the respective GRS. A higher
GRS indicates a higher balance of variant alleles directly
associated with hsCRP relative to variant alleles inversely
associated with hsCRP.

2.3.4 Statistical Analyses
We summarized and compared the characteristics of the study
participants across plasma hsCRP concentration tertiles using
one-way ANOVA for continuous variables (transformed by the
natural logarithm to meet normality assumptions when
indicated) and chi-square tests for categorical variables.

We calculated and compared mean hsCRP concentrations across
categories of exposure variables using multivariable general linear
models, and because we transformed hsCRP concentrations by the
natural logarithm, we report geometric means and their
corresponding 95% confidence intervals (CI). We compared
mean hsCRP concentrations across tertiles of the BER GRS, and
dichotomized categories of the AE GRS (due to the small number of
SNPs included). To assess potential interaction between the AE GRS
and BER GRS in relation to mean hsCRP concentrations, we
conducted a joint/combined (cross-classification) analysis in
which participants in the joint lowest AE GRS category/BER GRS
category were the reference group. Addition of covariates to the
models for these main effects and interaction analyses negligibly
affected the results, so we report only the crude results from these
analyses. We also compared multivariable-adjusted mean hsCRP
concentrations across DIS and LIS categories. For the DIS and LIS
models, we selected covariates based on a combination of previous
literature, biological plausibility, and whether inclusion/exclusion of
potential covariates from the model affected the estimated
proportional difference in the mean concentration of hsCRP
between the highest and lowest score tertile by ≥10%. The
covariates selected for the fully-adjusted models for both the DIS
and LIS included sex, education (less than high school, high school
degree, college graduate or higher), current hormone replacement

therapy use (among women), and aspirin and/or other non-steroidal
anti-inflammatory drug use (≥1/wk or <1/wk). The DIS models also
included study, total energy intake, current smoking (yes/no), BMI
(<25.0, 25.0–29.9, and≥30.0 kg/m2), alcohol intake (none,moderate,
heavy), and physical activity level (low, moderate, high); the LIS
models also included the DIS (continuous). Finally, to assess
potential modification of the inflammation scores-hsCRP
associations by the two GRS, we further examined the adjusted
associations of the inflammation scores with hsCRP concentrations
stratified by dichotomized AE and BER GRS.

We conducted all statistical analyses using SAS version 9.4
software (SAS Institute, Inc. Cary, NC, United States), and
considered a two-sided p-value ≤0.05 statistically significant.

3 RESULTS

Selected characteristics of the participants according to hsCRP
concentration tertiles are summarized in Table 1. Plasma hsCRP
concentrations ranged from 0.14 to 32.67 μg/ml. Participants in
the highest relative to the lowest hsCRP tertile were more likely to
be female, a current smoker, and, if a woman, to take HRT; less
likely to be formally educated and to have a heavy alcohol intake;
and, on average, had a higher BMI, DIS, and LIS, and lower total
vitamin C intake.

Mean plasma hsCRP concentrations according to AE and BER
GRS categories are shown in Table 2. There was a dose-response
pattern for increasing mean hsCRP concentrations across the BER
GRS tertiles, and themean hsCRP concentration among those in the
highest relative to the lowest BER GRS tertile was, proportionately,
statistically significantly 57.4% higher. Among those in the high
relative to the low AE GRS category, the mean hsCRP concentration
was estimated to be 13.9%higher, but the findingwas not statistically
significant. Adjustment for multiple covariates (e.g., sex, the DIS and
the LIS) negligibly affected the estimates.

The mean plasma hsCRP concentrations in the joint
dichotomized AE/BER GRS categories are shown in Table 3.
The lowest joint AE/BER GRS category was considered the
reference group (the hypothesized lowest risk group). Although
we found no statistically significant interaction between the AE and
BER GRS, the mean hsCRP concentration was highest (62.7%
higher) among those in the highest relative to the lowest joint AE/
BER GRS category (p = 0.006). Adjustment for multiple covariates
negligibly affected the estimates.

We previously reported that in the larger (n = 423) pooled
MAP studies population, which did not exclude participants
missing genotyping data or who were not White, among those
in the highest relative to the lowest DIS and LIS quartiles,
multivariable-adjusted mean circulating hsCRP concentrations
were 31.6% (p = 0.02) and 129% higher (p < 0.001), respectively
(Byrd et al., 2020). In the present, more restricted pooled MAP
studies population, among those in the highest relative to the
lowest DIS and LIS tertiles, multivariable-adjusted mean
circulating hsCRP concentrations were 18.5% (p = 0.66) and
120% higher (p < 0.001), respectively (Supplementary Table S8).

Multivariable-adjusted mean plasma hsCRP
concentrations across DIS and LIS tertiles, stratified by
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dichotomized BER and AE GRS are shown in Table 4. We
observed no strong or statistically significant evidence for
effect modification of the DIS- and LIS-hsCRP associations by
either GRS. However, there were some suggestions that the
positive DIS-hsCRP association was slightly stronger among
those with a high AE GRS, and that the positive LIS-hsCRP
association was slightly stronger among those with a low AE
GRS. Specifically, among those with a high AE GRS, the mean

hsCRP concentration among those in the highest relative to
the lowest DIS tertile was estimated to be 45.5% higher,
whereas among those with a low AE GRS it was estimated
to be 13.3% higher. Among those with a low AE GRS, the
mean hsCRP concentration among those in the highest
relative to the lowest LIS tertile was 194.3% higher,
whereas among those with a high AE GRS it was estimated
to be 68.6% higher.

TABLE 1 | Selected characteristics of participants (n = 333)a, by tertiles of plasma high sensitivity C-reactive protein (hsCRP), in the pooled MAP I and MAP II cross-sectional
studiesb.

Characteristicsa Plasma hsCRP tertiles

1 2 3 pc

0.14–1.63 μg/ml
(n = 112)

1.64–4.40 μg/ml
(n = 111)

4.41–32.67 μg/ml
(n = 110)

Demographics
Age (years) 55.7 ± 8.5 57.2 ± 8.6 56.6 ± 8.4 0.46
Male (%) 58.9 48.7 35.5 0.002
College degree or higher (%) 45.7 27.7 14.8 < 0.001
Family history of CRC in a first degree relative (%) 19.6 33.3 33.0 0.06

Lifestyle
Regulard NSAID use (%) 32.1 32.4 33.0 0.99
Regulard aspirin use (%) 42.7 36.0 30.0 0.14
HRT use in women (n = 174) (%) 39.1 63.2 62.0 0.02
Current smoker (%) 1.7 19.2 22.2 0.02
Body mass index (kg/m2) 26.2 ± 5.5 28.5 ± 6.1 30.5 ± 7.2 < 0.001
Waist:hip ratio 0.893 ± 0.102 0.922 ± 0.138 0.916 ± 0.094 0.13
Heavy alcohol intakee (%) 10.7 9.0 5.5 0.01
Physical activity (METs/wk)f 293.5 ± 198.8 336.9 ± 217.3 321.0 ± 199.7 0.28
Circulating 25-OH-vitamin D3 (ng/ml) 28.2 ± 10.7 26.6 ± 12.2 24.9 ± 9.9 0.13

Dietary intakes
Total energy (kcal/d) 1,794 ± 706 1,881 ± 678 1,883 ± 752 0.57
Total fat (% kcal/d) 31.7 ± 8.0 32.4 ± 7.0 33.1 ± 7.6 0.41
Totalg calcium (mg/1,000 kcal/d) 531 ± 345 497 ± 274 476 ± 320 0.42
Dietary fiber (g/1,000 kcal/d) 11.5 ± 4.7 11.1 ± 3.9 10.3 ± 3.3 0.08
Red & processed meats (servings/wk) 6.7 ± 5.2 7.4 ± 6.3 8.1 ± 5.6 0.18
Fruits & vegetables (servings/wk) 34.8 ± 20.9 35.8 ± 24.2 36.2 ± 25.2 0.90

Antioxidants:
Totalg carotene (IU/1,000 kcal/d) 4,823 ± 3,392 4,403 ± 3,579 4,310 ± 3,413 0.50
Totalg lutein (mg/1,000 kcal/d) 1,761 ± 1,310 1,506 ± 1,060 1,629 ± 1,225 0.29
Totalg lycopene (mg/1,000 kcal/d) 2,830 ± 2,626 2,849 ± 2,221 2,712 ± 2,689 0.91
Totalg vitamin C (mg/1,000 kcal/d) 99 ± 218 71 ± 144 52 ± 140 0.005
Totalg vitamin E (mg/1,000 kcal/d) 38 ± 75 32 ± 98 33 ± 81 0.14
Totalg omega-3 fatty acid (g/1,000 kcal/d) 0.12 ± 0.10 0.11 ± 0.10 0.11 ± 0.12 0.78
Dietary flavonoids (mg/1,000 kcal/d) 264 ± 270 225 ± 219 222 ± 203 0.24
Dietary glucosinolates (mg/1,000 kcal/d) 9.6 ± 7.7 11.4 ± 11.5 11.6 ± 13.3 0.29
Supplemental selenium (mcg/1,000 kcal/d) 3.6 ± 10.3 5.3 ± 18.0 5.1 ± 20.6 0.43

Prooxidants:
Totalg iron (mg/1,000 kcal/d) 13.2 ± 16.8 12.1 ± 11.3 11.5 ± 11.7 0.63
Dietary omega-6 fatty acids (g/1,000 kcal/d) 6.7 ± 2.8 6.5 ± 2.1 6.2 ± 2.2 0.27
Saturated fats (g/1,000 kcal/d) 11.3 ± 3.2 11.8 ± 2.9 12.5 ± 3.3 0.02
DISh 0.6 ± 2.69 1.03 ± 2.88 1.63 ± 0.37 0.01
LISi 0.14 ± 0.69 0.44 ± 0.69 0.72 ± 0.67 < 0.001

Abbreviations: CRC, colorectal cancer; DIS, dietary inflammation score; HRT, hormone replacement therapy; LIS, lifestyle inflammation score; MAP, Markers of Adenomatous Polyps;
MET, metabolic equivalents of task; NSAID, non-steroidal anti-inflammatory drug.
an = 331 for age, n = 332 for regular NSAID use, n = 246 for circulating 25-OH-vitamin D3, and n = 275 for dietary flavonoids and glucosinolates due to missing data.
bData presented as mean (standard deviation) unless otherwise specified.
cp-values based on chi-square test for categorical variables and ANOVA for continuous variables (transformed by the natural logarithm to meet normality assumptions, when indicated).
d≥ once per week.
eHeavy alcohol intake defined as >1 drink/day for women and >2 drinks/day for men.
fModerate + vigorous physical activity.
gTotal = dietary = supplemental.
hFor construction of dietary inflammation score, see text; a higher score indicates a more proinflammatory diet.
iFor construction of lifestyle inflammation score, see text; a higher score indicates a more proinflammatory lifestyle.
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4 DISCUSSION

Our findings suggest that certain BER genotypes (MUTYH, SMUG1,
TDG, UNG, and XRCC1) collectively may be associated with
systemic inflammation, as reflected by circulating hsCRP
concentrations. We found no definitive evidence that AE
genotypes collectively are associated with systemic inflammation;
however, plasma hsCRP concentrations were estimated to be
modestly higher among individuals with more AE risk variants
(i.e., had a higher AE GRS). We also found suggestions that the AE
and BER GRS may i) modestly modify the associations of collective
dietary and lifestyle exposures with systemic inflammation, and ii)
interact with each other such that those with a higher relative to a
lower joint BER/AE GRS may have modestly higher systemic
inflammation. These findings from this preliminary investigation
support further investigations in larger, general populations.

Previous basic science studies, reviewed extensively elsewhere
(Sun, 1990; Seeberg et al., 1995; Mates, 2000; Di Virgilio, 2004;

Kidane et al., 2014; Yang and Lee, 2015; Li and Chen, 2018), provide
biological plausibility for investigating possible associations of AE
and BER genotypes with inflammation. Briefly, higher levels of
reactive oxygen and nitrogen species (RONS), from both exogenous
and endogenous sources, damage cell structures and DNA, eliciting
inflammatory responses (which in turn can increase RONS levels)
and DNA BER, respectively. Antioxidant enzymes lower RONS
levels, or neutralize their excessive cellular oxidation effects (Yang
and Lee, 2015). As examples, of the genes included in our AE GRS,
CAT defends against superoxide and hydrogen peroxide and
constitutes a primary defense against oxidative stress (Röhrdanz
and Kahl, 1998), and MnSoD prevents disruption of mitochondrial
membrane potential and catalyzes dismutation of superoxide
radicals (Röhrdanz and Kahl, 1998; Mäntymaa et al., 2000). As
reviewed elsewhere (Kidane et al., 2014; Li and Chen, 2018), there is
increasing evidence for interplay between DNA repair and
inflammation. DNA damage is present during inflammation,
accumulates during chronic inflammation, and DNA repair plays

TABLE 2 |Meana plasma high sensitivity C-reactive protein (hsCRP) concentrations according to categories of DNA base excision repair (BER) and antioxidant enzyme (AE)
genetic risk scores (GRS), in the pooled MAP I and MAP II cross-sectional studies.

GRS, GRS categories GRS category medians Plasma hsCRP, µg/mL

n Mean (95% CI)a Prop. diff.b (%) Pa

BER GRSc

Tertiles
1 0 151 2.2 (1.9, 2.7) Ref.
2 1 113 3.0 (2.5, 3.7) 35.8
3 2 69 3.5 (2.7, 4.6) 57.4 0.009

AE GRSd

Low −2 200 2.6 (2.2, 3.0) Ref.
High 3 133 2.9 (2.4, 3.6) 13.9 0.30

Abbreviations: AE, antioxidant enzyme; BER, base excision repair; CI, confidence interval; GRS, genetic risk score; hsCRP, high sensitivity C-reactive protein; MAP, Markers of
Adenomatous Polyps; Prop. diff., proportional difference; Ref., reference.
aGeometric means, 95% confidence intervals, and p-values for mean differences from crude general linear models; unequal sample sizes in tertiles due to ranking ties; differences in the
numbers of participants due to availability of blood samples for assays.
bProportional difference calculated as (comparison group mean-reference group mean)/(reference group mean) x 100%.
cBER genetic risk score based on 7 SNPs in 5 BER genes; see complete list of genes and SNPs in the text and Supplementary Table S7; a higher GRS indicates a higher number of
variant relative to common alleles.
dAE genetic risk score based on 2 SNPs in 2 AE genes; see complete list of genes and SNPs in the text and Supplementary Table S6; a higher GRS indicates a higher number of variant
relative to common alleles.

TABLE 3 |Meana plasma high sensitivity C-reactive protein concentrations according to joint tertiles of antioxidant enzyme and DNA base excision repair genetic risk scores,
in the pooled MAP I and MAP II cross-sectional studies (n = 333).

BER GRS
categoriesb

AE GRS categoriesc

Low (< −1) High (≥ −1)

nd hsCRP
means

(95%
CI)

Prop.
diff.e

(%)

p-values nd hsCRP
means

(95%
CI)

Prop.
diff.e

(%)

p-values

Low (< 1) 90 2.0 (1.6, 2.6) Ref. — 61 2.6 (1.9, 3.4) 26.0 0.21
High (≥ 1) 110 3.1 (2.6, 3.9) 54.4 0.006 72 3.3 (2.5, 4.3)f 62.7 0.006

Abbreviations: AE, antioxidant enzyme; BER, base excision repair; CI, confidence interval; GRS, genetic risk score; hsCRP, high sensitivity C-reactive protein; MAP, Markers of
Adenomatous Polyps; Prop. diff., proportional difference; Ref., reference.
aGeometric means, 95% confidence intervals, and p-values from crude general linear model.
bBER GRS based on 7 SNPs in 5 BER genes; see complete list of genes and SNPs in the text and Supplementary Table S5; categories based on median GRS.
cAE GRS based on 2 SNPs in 2 AE genes; see complete list of genes and SNPs in the text and Supplementary Table S4; categories based on median GRS.
dUnequal sample sizes in tertiles due to ranking ties; differences in the numbers of participants due to availability of blood samples for assays.
eProportional difference calculated as (comparison group mean-reference group mean)/(reference group mean) x 100%.
fContinuous-by-continuous P for interaction = 0.65; categorical-by-categorical P for interaction = 0.47; categories based on median GRS.
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an important role in counteracting this damage (Kidane et al., 2014).
RONS-induced DNA damage is generally repaired by the BER
pathway (Wallace et al., 2012), and mutations in BER genes are
associated with chronic inflammation. The DNA damage response
(DDR) directly activates several transcription factors, such as NF-κB
and interferon regulatory factors (IRFs) (McCool and Miyamoto,
2012). These transcription factors induce the expression of various
immune genes, including those for inflammatory cytokines and
chemokines. In addition, the DDR and oxidative stress induce the
expression of several ligands for activating immune receptors.
Although the exact mechanisms for these observations are not
fully elucidated, possible mechanisms could include that
accumulation of RONS-induced lesions (or associated mutations)
in, for example, the mitochondrial genome, could lead to respiratory
defects that increase intracellular ROS concentrations (Li and Chen,
2018); and oxidative DNA damage excision fragments could activate
sensing programs such as cGAS/STING (Li and Chen, 2018), which
may promote inflammatory outcomes. Evidence such as outlined
above supports that DNA BERmay play a role in controlling RONS

levels, and that the efficiency of such control may affect RONS-
induced inflammation. As examples of the polymorphic BER-related
genes included in our BERGRS,MUTYH contributes to the repair of
one of the most frequent and stable forms of oxidative damage by
removing the mismatched 8-oxoG adenine (Sampson et al., 2005;
Nielsen et al., 2011); SMUG1 removes uracil from single- and
double-stranded DNA in nuclear chromatin (Nilsen et al., 2001;
Broderick et al., 2006); TDG has been implicated in DNA
demethylation and could repair G/T and G/U mismatches via
removing thymine and uracil moieties (He et al., 2011; Wu and
Zhang, 2017); UNG repairs mutagenic G/U mismatches caused by
deamination of cytosine (Krokan et al., 2001); and XRCC1 plays a
role in repairing single-stranded DNA breaks (Duell et al., 2000;
Thompson andWest, 2000). In summary, AE and BER genes reduce
systemic inflammation via reducing RONS production, neutralizing
oxidation, and repairing oxidative damage in humans.

Recently, GRS, also called polygenic risk scores (PRS), have
been used as tools for investigating risk for various diseases
(Wang et al., 2017; Chalmer et al., 2018; Korologou-Linden

TABLE 4 | Multivariable-adjusted meana plasma high sensitivity C-reactive protein (hsCRP) concentrations (µg/ml) across tertiles of dietary (DIS) and lifestyle (LIS)
inflammation scores, stratified by dichotomized DNA base excision repair (BER) and antioxidant enzymes (AE) genetic risk scores (GRS), in the pooled MAP I and MAP II
cross-sectional studies.

GRS strata/
tertiles
of inflammation
scoresb

DIS LIS

Tertile
medians

nc Meana

(95%
CI)

Prop.
diff.
(%)d

P Tertile
medians

nc Meana

(95%
CI)

Prop.
diff.
(%)d

P

BER GRSe

Low (< 1)
1 −1.82 50 2.4 (1.5, 3.9) Ref. −0.41 50 1.8 (1.2, 2.6) Ref.
2 1.12 51 2.4 (1.6, 3.8) 1.2 0.50 52 2.5 (1.7, 3.6) 41.2
3 3.29 50 3.2 (2.1, 5.1) 34.1 0.36 1.19 49 4.0 (2.7, 5.8) 123.7 0.001
High (≥ 1)
1 −1.36 61 2.8 (1.9, 4.2) Ref. −0.41 59 2.1 (1.6, 2.9) Ref.
2 1.00 60 3.3 (2.2, 5.0) 17.3 0.50 61 3.1 (2.3, 4.1) 44.0
3 4.06 61 3.3 (2.3, 4.9) 18.7 0.65 1.16 62 4.9 (3.6, 6.7) 130.9 < 0.001
Pinteraction

f 0.78 0.80

AE GRSg

Low (< −1)
1 −1.48 66 2.7 (1.9, 3.9) Ref. −0.41 71 1.8 (1.4, 2.4) Ref.
2 1.07 67 3.3 (2.3, 4.7) 21.9 0.50 66 3.4 (2.5, 4.6) 85.7
3 3.77 67 3.1 (2.2, 4.4) 13.3 0.54 1.16 63 5.4 (4.0, 7.3) 194.3 < 0.001

High (≥ −1)
1 −1.72 44 2.7 (1.6, 4.4) Ref. −0.18 48 2.0 (1.4, 2.9) Ref.
2 1.04 45 2.0 (1.3, 3.2) −23.1 0.71 43 2.3 (1.6, 3.4) 15.0
3 3.55 44 3.9 (2.4, 6.3) 45.5 0.06 1.39 42 3.4 (2.3, 5.0) 68.6 0.08
Pinteraction

f 0.33 0.56

Abbreviations: AE, antioxidant enzyme; BER, base excision repair; CI, confidence interval; DIS, dietary inflammation score; GRS, genetic risk score; hsCRP, high sensitivity C-reactive
protein; LIS, lifestyle inflammation score; MAP, Markers of Adenomatous Polyps; Prop. diff., proportional difference; Ref., reference.
aGeometric means of plasma hsCRP (µg/ml), 95% confidence intervals, and p-values from general linear models; in the DIS models, adjusted for total energy intake, sex, education (less
than high school, high school degree, college graduate or higher), current hormone replacement therapy use (among women), current smoking (yes/no), body mass index category,
alcohol intake (non-, moderate-, heavy-drinker), physical activity level, study, and aspirin and/or other non-steroidal anti-inflammatory drug use (≥1/wk or <1/wk); in the LIS models,
adjusted for sex, education (less than high school, high school degree, college graduate or higher), current hormone replacement therapy use (among women), aspirin and/or other non-
steroidal anti-inflammatory drug use (≥1/wk or <1/wk), and DIS (continuous).
bFor construction of scores, see text; higher scores indicate more proinflammatory diets or lifestyles.
cUnequal sample sizes in tertiles due to ranking ties; differences in the numbers of participants due to availability of blood samples for assays.
dProportional difference calculated as (comparison group mean—reference group mean)/(reference group mean) x 100%.
eBER GRS based on 7 SNPs in 5 BER genes; see complete list of genes and SNPs in the text and Supplementary Table S7; categories based on GRS median.
gPinteraction from the interaction term for dichotomized GRS*inflammation score tertiles in general linear models.
fAE GRS based on 2 SNPs in 2 AE genes; see complete list of genes and SNPs in the text and Supplementary Table S6; categories based on GRS median.
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et al., 2019a; Korologou-Linden et al., 2019b; Leonenko et al.,
2019; Mavaddat et al., 2019;Watt et al., 2019; Zheutlin et al., 2019;
Li et al., 2020; Mosley et al., 2020; Sipeky et al., 2020), and support
the concept of investigating associations of GRS with various
outcomes. However, our study is the first to report associations of
GRS with an inflammation biomarker. In epidemiologic studies,
various GRS/PRS were reported to be associated with multiple
diseases, including colorectal cancer (Wang et al., 2017), prostate
cancer (Sipeky et al., 2020), breast cancer (Mavaddat et al., 2019;
Watt et al., 2019), Alzheimer’s disease (Korologou-Linden et al.,
2019a; Korologou-Linden et al., 2019b; Leonenko et al., 2019),
and psychiatric diseases (Chalmer et al., 2018; Zheutlin et al.,
2019). To our knowledge, there are no reported investigations of
an AE GRS, and only one (Wang et al., 2017) of a BER GRS. That
analysis used data pooled from three colonoscopy-based case-
control studies (408 adenoma cases and 604 controls), and
constructed a BER GRS based on 65 individual SNPs in 15
BER genes (Wang et al., 2017). That study’s findings suggested
that colorectal adenoma risk among participants in the highest
relative to the lowest tertile of that BER GRS was statistically
significantly higher (odds ratio = 2.07, 95% CI = 1.26–3.40)
(Wang et al., 2017). A cross-sectional study of hemodialysis
patients (n = 167) investigated associations of BER genetic
polymorphisms (3 SNPs; 2 for MUTYH and 1 for OGG1, but
not the same as those in our study) with inflammation
biomarkers (Cai et al., 2012). The findings suggested that two
variant MUTYH genotypes, singly and in combination with an
OGG1 variant, were associated with higher IL-1β and IL-6
concentrations in that patient population (Cai et al., 2012).
However, as noted, the authors investigated only three SNPs
from BER genes and a GRS was not constructed (Cai et al., 2012).

Several studies investigated BER genetic variants as potential
effect modifiers of associations of dietary and lifestyle exposures
with colorectal adenoma risk (Corral et al., 2013; Wang et al.,
2017), and support the concept of GRS as potential modifiers of
associations of environmental exposures with various outcomes.
However, our study is the first to report such potential effect
modification in relation to an inflammation biomarker. Results
from the three pooled case-control studies noted above suggested
that the positive association of a higher balance of pro-over anti-
oxidant dietary and lifestyle exposures with colorectal adenoma
risk was stronger among those with more relative to fewer BER
genetic variants (Wang et al., 2017). In a matched case-control
study (677 adenoma cases and 691 controls), BER gene SNPs
(although the SNPs investigated were not the same as those in our
study) were estimated to be potential effect modifiers of the
associations of colorectal adenoma with smoking (MUTYH
Pinteraction = 0.002, OGG1 Pinteraction = 0.01, and FEN1
Pinteraction = 0.01), alcohol (LIG3 Pinteraction = 0.02), and dietary
folate (LIG3 Pinteraction = 0.02) (Corral et al., 2013).

Our study has several limitations. First, the GRS were calculated
based on tagSNPs in onlyAE and BER genes in the present, relatively
small study population, rather than via a genome-wide association
study in a large population, and involved multiple comparisons.
However, to our knowledge, our study is the first to report
associations of GRS with an inflammation biomarker and
provides support and preliminary data for future more definitive

investigations. Second, our study population included only White
participants who went for outpatient colonoscopy, which may limit
the generalizability of our findings. Third, although our tagSNP
approach comprehensively covered all common SNP variation in
AE and BER genes, it was not possible to cover rare variation (MAF
≤5%); thus, potential influential SNPs may have been excluded.
Fourth, we had measurements on only one biomarker of
inflammation, hsCRP. A panel of biomarkers to represent
multiple aspects of inflammation may more accurately represent
systemic inflammation (Byrd et al., 2019), and as noted in Section 1,
hsCRP has certain limitations. However, our study populationwas in
general good health; we excluded those with inflammatory bowel
disease, cancer, familial adenomatous polyposis, or extreme hsCRP
values; assessed the use of NSAIDs as potential confounders and
effect modifiers; and hsCRP measurements in such a population are
highly correlatedwith those of other inflammation biomarkers (Byrd
et al., 2019). Other limitations include the general limitations of
using FFQs to assess diet, such as recall error, limited food choices,
and issues regarding capturing seasonal intake patterns. However,
we used a previously validated FFQ (Willett et al., 1985), and in our
study, recall error would be expected to be non-differential
(participants reported dietary and lifestyle exposures before
hsCRP measurements), which would be expected to attenuate the
DIS and LIS results.

Strengths of our study include the collection and assessment of
extensive dietary, lifestyle, and medical data as potential
confounding factors, the high quality of the laboratory
measurements, and the inclusion of both men and women.
Also, to our knowledge, our study is the first to report i)
associations of AE and BER GRS with a biomarker of
inflammation in humans, and ii) AE and BER GRS as
potential effect modifiers of the associations of collective
dietary and lifestyle exposures with a biomarker of inflammation.

In conclusion, our findings, taken together with previous
literature, suggest that, collectively, genotypes of DNA BER genes
may be associated with systemic inflammation in humans. Our
study serves as a pilot study that supports further investigations of
inflammation-specific BER and AE GRS, individually and in
interaction with each other and dietary and lifestyle inflammation
scores, in larger, general populations.
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