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Protein homeostasis (proteostasis) is maintained by a tightly regulated and interconnected
network of biological pathways, preventing the accumulation and aggregation of damaged
or misfolded proteins. Thus, the proteostasis network is essential to ensure organism
longevity and health, while proteostasis failure contributes to the development of aging and
age-related diseases that involve protein aggregation. The model organism
Caenorhabditis elegans has proved invaluable for the study of proteostasis in the
context of aging, longevity and disease, with a number of pivotal discoveries
attributable to the use of this organism. In this review, we discuss prominent findings
from C. elegans across the many key aspects of the proteostasis network, within the
context of aging and disease. These studies collectively highlight numerous promising
therapeutic targets, which may 1 day facilitate the development of interventions to delay
aging and prevent age-associated diseases.
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1 INTRODUCTION

The use of short-lived, rapidly reproducing, and easily modified model organisms has allowed us to
undertake cause and effect studies for cellular and organismal aging on a massive scale. The
nematode Caenorhabditis elegans in particular provides exceptional utility, as it possesses high
genetic homology with humans (>70%), and conserved biological signaling pathways (S. Zhang et al.,
2020). With the aid of C. elegans and other model organisms, we now know that many age-associated
phenotypes do not depend on the chronological age of an organism, but instead depend on the
accumulation of damage to the genome or proteome, and are defined by key signaling cascades such
as the insulin/insulin-like growth factor (IGF-1) signalling (IIS) pathway (López-Otín et al., 2013).
Identifying and exploiting biological networks or molecular targets that control organism aging and
longevity has thus become the focus of research, with the long-term goal of translating these findings
into therapeutic strategies. This is similarly true for the study of diseases arising from protein
dysregulation, where C. elegans is an invaluable model towards the study of neurodegenerative
proteinopathies, and often within the context of aging (Saez and Vilchez, 2014; Koyuncu et al., 2015).

Protein homeostasis (proteostasis) is crucial for organism longevity and health, and impairment
to the proteostasis network is a hallmark of aging (López-Otín et al., 2013). This network principally
functions to maintain proteome integrity, and is inclusive of the processes encompassing the
translation and post-translational processing of newly-synthesized proteins, as well as those that
control protein localization and degradation (Hipp et al., 2019). However, during aging this network
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becomes progressively impaired, and this drives the accumulation
of misfolded, dysfunctional and aggregated proteins (Saez and
Vilchez, 2014).

Here, we discuss how C. elegans has been used to understand
and exploit the underlying mechanisms behind proteostasis in
determining organismal longevity and aging. This will encompass
discussing protein translation, folding and maintenance by
chaperones, post-translational modifications, and the two main
proteolytic mechanisms: the ubiquitin-proteasome (UPS) and the
autophagy-lysosome pathway (Figure 1).

2 PROTEIN SYNTHESIS

Both the overall rate of protein synthesis and the fidelity of
translation decreases with age. These two observations are
distinct and reproducible across numerous studies and model
organisms (Anisimova et al., 2018). However, genetic
modulation to induce a decreased rate of protein synthesis
has been shown to be generally lifespan-extending, while
conversely, a decrease in translational accuracy is
associated with aged and diseased phenotypes (Syntichaki
et al., 2007b; Anisimova et al., 2018; Martinez-Miguel et al.,
2021) (Figure 2). As such, these two parameters of protein
synthesis are often studied independently from each other,
and rely on different biological components and mechanisms
for their observed effects on lifespan.

2.1 Translational Rates
Aging causes a functional decline in various components of the
protein translation system, as well as age-related regulatory
changes (Walther et al., 2015; Dhondt et al., 2017; Anisimova
et al., 2018). The net effect is that the rate and the frequency of
protein translation, and by extension protein synthesis,
decreases with age, with many of these age-associated

changes often having detrimental impacts on health and
lifespan (Syntichaki et al., 2007b; Dhondt et al., 2017). This
observed correlation has previously led to the speculation of a
possible relationship between a decreased translation rate and
the progression of age (Tavernarakis and Driscoll, 2002).
However, contrary to this expectation, a number of studies
have since shown that decreased protein synthesis increases
lifespan in both normal aging and long-lived paradigms
(Syntichaki et al., 2007b; Depuydt et al., 2016; Dhondt
et al., 2017). Thus, studies regarding protein translational
rates focus not only on the characterization and
understanding of translation pathways and regulators in
respect to health and lifespan, but also on how these
pathways can be exploited for potential therapeutic benefit.

There are primarily two non-conflicting theories often put
forward to rationalize the lifespan improvement observed
with the inhibition of protein synthesis. The first is that a
decrease in protein synthesis allows a greater allocation of
metabolic energy towards cellular maintenance and repair.
This is broadly in line with the principles of the disposable
Soma theory of aging (Jin, 2010), which postulates that there is
a fitness cost in the growth and development of an organism
through the diversion of resources away from cellular
maintenance (Wieser and Krumschnabel, 2001; Anisimova
et al., 2018). The second theory is that decreased protein
synthesis also broadly reduces the expression of aggregation-
prone proteins, thereby partially alleviating the buildup of
toxic aggregates and reducing the burden placed on aggregate-
clearance pathways (Silva et al., 2011; Kim and Strange, 2013;
Solis et al., 2018). From a molecular perspective, there are a
wide array of causes behind this decrease in protein synthesis.
This includes a broad decrease in transfer RNAs (tRNAs)
availability, downregulation and functional impairment of
ribosomes, as well as several hormonal and transcriptional
changes (Gonskikh and Polacek, 2017).

FIGURE 1 | The proteostasis network. To maintain proteome integrity, the proteostasis network is tightly regulated in healthy cells from translation to degradation.
The proteostasis network includes protein translation, protein folding by chaperones, post-translational modifications (PTMs), protein degradation mechanisms (e.g. the
ubiquitin-proteasome system (UPS), the autophagy-lysosome pathway) and the modulation of adaptive stress responses by physiological or environmental signals (e.g.
ISR: integrated stress response, UPR: unfolded protein response, HSR: heat shock response.
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2.1.1 The Mechanistic Target of Rapamycin Pathway
One of the most crucial, and rate limiting, steps of translation is
the initiation of translation by the mTOR pathway (Johnson et al.,
2013). This pathway, which is itself regulated by the availability of
metabolic energy and resources, controls various aspects of
growth, development, metabolism and stress responses. As
such, it possesses tight control over protein synthesis,
controlling the initiation and inhibition of key genes. The two
different mTOR complexes, mTORC1 and mTORC2, are the
central regulatory components of this pathway, with each
containing the mTOR kinase as the core functional unit
(Johnson et al., 2013). Our understanding of this pathway and
it is constituent components in the context of lifespan and aging,
while far from complete, has been greatly bolstered by numerous
studies utilizing C. elegans. We know that downregulation of the
mTOR pathway leads to an extension of organismal lifespan,
where, as discussed previously, this negative regulation leads to a
reduction in protein translation. This has been demonstrated
through RNA interference (RNAi) mediated knockdown of
various C. elegans analogues of mTOR pathway components,
such as the mTOR kinase (let-363), or the mTORC1 component

raptor (daf-15), which was found to yield an increase in lifespan
(Vellai et al., 2003; Jia et al., 2004). The pharmacological
inhibition of mTOR activity by rapamycin similarly results in
an extension of lifespan (Cornu et al., 2013). Caloric restriction
also increases lifespan through the downregulation of mTOR
activity. Likewise, reduced insulin signaling, achievable through
calorie restriction, leads to the activation of glutamine synthase
(GS), which then inhibits mTORC1 activity (van der Vos et al.,
2012). Moreover, the insulin-regulated transcription factor DAF-
16 (a FOXO analogue) negatively regulates transcription of daf-
15 and therefore the mTOR pathway (Jia et al., 2004).
Interestingly, mTOR inhibition through caloric restriction also
upregulates autophagy, another important component of the
proteostasis network (Hansen et al., 2008; Tóth et al., 2008).
Collectively, these studies in C. elegans demonstrate that the
mTOR pathway is broadly essential for longevity regulation
through cross-talk with other pathways, and also tightly
regulates translation. However, they also highlight important
caveats, where although inhibition of the mTORC1 complex
can enhance lifespan, it is not without undesirable “side
effects”. This includes delayed development, metabolic

FIGURE 2 | The links between translational regulation and aging. (A) With age, global translational rates decrease in a broad range of organisms, indicating a link
between loss of protein synthesis capacity and aging. However, translation is a highly energy consuming process and growing evidence indicates that a decline in protein
synthesis allows a greater allocation of metabolic energy towards cellular maintenance and repair. Subsequently, a decrease in protein translation promotes proteostasis
and leads to lifespan extension. Moreover, lowering protein translation also decreases the production of aggregation prone-proteins. (B) In addition to global
translational rates, translational fidelity may also decline with age, leading to increased amino acid misincorporation, as well as erroneous start and stop codon
readthrough. This results in the production of dysfunctional proteins and peptides, thereby increasing the accumulation of protein aggregates. As such, accurate
translation is necessary for organismal homeostasis and long lifespan.
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impairment, and decreased fertility (Schreiber et al., 2010; Zhang
et al., 2019). Furthermore, some of these changes in metabolism
and development may not be true “side effects”, but are rather a
direct outcome of lifespan extension arising from the fitness cost
in diverting energy and resources away from the growth and
development of organism towards maintenance (Blagosklonny,
2013; Maklakov and Chapman, 2019). Notably, recent studies
have shown that neuronal mTORC1 activation promotes lifespan
extension without delayed development (Zhang et al., 2019;
Smith et al., 2021) and another study found that reduced
translation in neurons, hypodermis or germline through
inhibition of mTOR pathways improved survival rate,
suggesting that mTOR inhibition regulates lifespan in a tissue-
dependent manner (Howard et al., 2021). These studies in C.
elegans thus not only advance our understanding of the mTOR
pathway in organism development and proteostasis maintenance,
but also provide important insights into the utility of the mTOR
pathway as a potential therapeutic target in humans for
combatting aging.

2.1.2 Translation Factors: Ribosomes, Elongation
Factors, and Initiation Factors
Outside of the mTOR pathway, translation rate is determined by
the combined interactions between the different components of
the translational machinery. As such many studies have focused
on individual components to assess their role and importance to
translation in the context of aging. RNAi-mediated knockdown of
components of either the small or large ribosomal subunits
prolongs lifespan in C. elegans (Hansen et al., 2007).
Moreover, depletion of the translational regulator S6K
similarly extends lifespan while also decreasing age-associated
protein aggregation (Hansen et al., 2007; Yee et al., 2021).
Likewise, inhibition of distinct translation initiation factors
also enhances C. elegans lifespan by up to 50% (Curran and
Ruvkun, 2007). It has been shown that depletion of IFE-2, a worm
orthologue of human eIF4E, increases lifespan through
decreasing global protein synthesis (Syntichaki et al., 2007a).
Interestingly, although IFE-2 availability has been known to
decline with age, inhibition of this factor resulted in
improvements to the lifespan and stress resistance of C.
elegans (Hansen et al., 2007; Syntichaki et al., 2007a).
Moreover, another study has shown that IFE-2 is highly
sequestered in mRNA processing (P) bodies due to age and
upon stress, and this sequestration decreases translation in
somatic tissues (Rieckher et al., 2018). Depletion of another
initiation factor, eIF4G/ifg-1, and deletion of two distinct
subunits of eIF3 also increases lifespan through decreasing
protein synthesis (Pan et al., 2007; Rogers et al., 2011; Cattie
et al., 2016). Cumulatively, these studies support the principle
that decreasing protein synthesis improves lifespan, furthermore
they have identified key translation initiation factors that appear
to be primary mediators of organismal longevity.

Indeed, translation initiation factors are central components of
survival and stress responses. One such example is the integrated
stress response (ISR), an important signaling pathway for the
regulation of protein translation that relies on the
phosphorylation of the translation initiation factor eIF2

(Derisbourg et al., 2021a). Interestingly, inhibition of the ISR
through mutations to the eIF2-activating protein complex eIF2B
promotes proteostasis and enhances lifespan (Derisbourg et al.,
2021b). Similarly, preventing the phosphorylation of the eIF2α
subunit of the eIF2 complex by either mutations or
pharmacological inhibition increases lifespan. However, this
extension was found to not be due to a decline in overall
protein synthesis, but instead arises from variations in the
translational efficiency of a subset of mRNAs (Derisbourg
et al., 2021b). The downstream effects of the ISR have a
crucial role in the proteostasis network for organism survival,
and is discussed in-depth further in this review. Nonetheless,
these studies indicate that decreasing protein synthesis for a
subset of genes, rather than a global decrease to protein
synthesis, may be sufficient to achieve an improvement to
lifespan. Furthermore, such studies indicate that because these
translational elements are involved in different stress responses,
they can also influence organismal lifespan by mechanisms
besides resource preservation arising from global protein
synthesis inhibition.

Collectively, growing evidence supports that decreasing the
rate of protein synthesis can have pro-longevity effects, with the
majority of proposed mechanisms relying on the reduction of
cellular burden, either metabolically or proteopathically. These
insights have been made possible through the use of C. elegans as
a model organism, and although comparatively slower, these key
findings are starting to be reproduced in mammalian models
(Essers et al., 2016; Thompson et al., 2016; Swovick et al., 2021).

2.2 Translation Fidelity
Although there is ongoing debate as to how significantly
translation fidelity changes with age, cumulative evidence
firmly indicates that the accurate synthesis of proteins defines
organismal lifespan and is essential for organismal health
(Tavernarakis and Driscoll, 2002; Anisimova et al., 2018; Ke
et al., 2018; Francisco et al., 2020). Excluding genomic causes,
these errors primarily arise due to inaccurate start and stop codon
recognition by the ribosome, amino acid mismatch during the
aminoacylation of tRNAs by aminoacyl-tRNA synthetases, and
inaccurate aminoacyl-tRNA selection by the ribosomes. One
study showed that the lifespan of C. elegans could be
improved by increasing translational fidelity, through the use
of pharmacological anti-aging treatments such as rapamycin,
trametinib and torin 1 (Martinez-Miguel et al., 2021). This
study further demonstrated that a fidelity-improving mutation
to the ribosomal 40S subunit RPS23 could likewise improve
lifespan primarily by decreasing erroneous stop-codon read-
through, with this lifespan extension reproducible across
multiple species, including C. elegans. Crucially, this mutation
did not impact the rate of translation, allowing translational
accuracy to be studied in a manner isolated from the effects
on translation rate (Martinez-Miguel et al., 2021). Another study
showed that knocking out efk-1, the C. elegans, orthologue of the
elongation factor eEf2K, decreases translation fidelity and
lifespan (Xie et al., 2019). Furthermore, depletion of multiple
aminoacyl-tRNA synthetases (ARSs) including leucyl, arginyl,
asparaginyl and methionyl ARSs similarly caused a decrease in
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lifespan through higher levels of amino acid misincorporation
(Xie et al., 2019). It has also become increasingly apparent that
errors in protein translation may arise from faulty RNA splicing,
where it has been shown that RNA splicing fidelity decreases
during aging, and that this decline is ameliorated by caloric
restriction (Heintz et al., 2017). In addition, the exposure to
reagents such as cadmium lead to disruption in RNA splicing and
contribute to aging (Wu et al., 2019).

Other studies in C. elegans have found that inhibition of some
ARS can instead have pro-longevity effects. In these lines, RNAi-
mediated knockdown of the tyrosine ARS yars-2 is necessary for
the longevity phenotype of daf-2 mutant worms, a genetic model
of reduced IIS signaling (Son et al., 2017). Similarly, another study
showed that the leucine ARS lars-1 activates the mTOR pathway,
which as discussed previously, negatively impacts lifespan
(Nakamura et al., 2016). These effects on lifespan appear to be
independent of changes to translational fidelity, and are a
relatively recent discovery. As such, much of the regulatory
roles played by ARSs and tRNAs remains unclear. Indeed,
despite evidence that the misaminoacylation of tRNAs can
lead to diseases that involve protein aggregation,
misaminoacylation has recently been acknowledged to play an
important functional role in various cellular processes and stress
responses (Schimmel, 2018). Although studies investigating the
role of misaminoacylation in aging and disease with C. elegans
remains sparse, there are an increasing number of studies using C.
elegans to study how ARSs and the loss of tRNA into small tRNA-
derived fragments contributes to aging and disease, with detailed
studies and extensive reviews into this subject available elsewhere
(Kato et al., 2011; Shin et al., 2021; Zhou et al., 2021).

From studies in C. elegans, there is now clear evidence that
translational fidelity is important for the preservation and
maintenance of proteome integrity, and by extension both
longevity and healthspan. Moreover, these studies identified
new sources of translational error, and have begun to clarify
previously unknown regulatory roles of the different components
of the translational machinery. These new findings may have
significant consequences for therapeutic development, and as
such, there is ample room for further research.

2.3 Protein Folding
The chaperome network is formed by chaperones and co-
chaperones that have an integral role in enabling the assembly
of proteins into a functional state (Brehme et al., 2014). As such,
the chaperome network stabilizes folding intermediates of newly
synthesized or unfolded proteins, and further prevents the
denaturation or irreversible aggregation of many proteins
(Heintz et al., 2017). Chaperones can be broadly classified as
ATP dependent, or ATP independent (Mogk et al., 2018). ATP-
dependent chaperones such as HSP70 are responsible for both
protecting proteins against aggregation while also using the
chemical energy provided by ATP to overcome
thermodynamically unfavorable intermediates during folding.
ATP-independent chaperones such as small heat shock
chaperones, also called holdases, likewise bind to unfolded
proteins to prevent their aggregation, but most are not
thought to contribute to protein folding (Mogk et al., 2018).

Due to their essential role, chaperones must be ever-present in
cells for proteome maintenance and protein folding. However,
with age, misfolded and aggregated proteins accumulate and
exceed the stabilizing capacity of available chaperones,
diverting many chaperones away from other crucial functions
such as regulating the proper folding of nascent proteins
(Labbadia and Morimoto, 2015) (Figure 3). In addition, there
is evidence from studies in C. elegans showing that chaperone
expression becomes increasingly impaired with age, further
compounding the burden of insults to the proteome (Labbadia
and Morimoto, 2015).

The overexpression of several chaperones, such as small heat
shock proteins and members of Hsp70 family, decreases
aggregate formation and extends lifespan in C. elegans
(Yokoyama et al., 2002; Walker and Lithgow, 2003; Morley
and Morimoto, 2004). Accordingly, the disruption of
chaperone complexes can be deleterious to lifespan and health.
Indeed, the TRiC/CCT complex, a chaperonin that promotes the
folding of 10% of the proteome, is essential for regulation of
longevity (Noormohammadi et al., 2016). Disruption in the
assembly of TRiC/CCT complex causes cellular defects, while
increasing TRiC/CCT assembly through the overexpression of
the subunit CCT8 leads to an extended lifespan in C. elegans and
reduces the neurotoxicity of aggregation-prone polyglutamine

FIGURE 3 | Dysregulation of protein folding during aging. (A)
Chaperones assist the proper folding, refolding and disaggregation of
proteins. ATP-dependent chaperones such as chaperonins and heat shock
proteins interact with protein polypeptides to stabilize folding
intermediates. The energy provided by ATP enables the conformational
support and subsequent release of the folded protein by the chaperone
complexes. (B) Unfolded proteins or polypeptides can be sequestered by
holdases. Holdase proteins assemble into higher-order complexes, capable
of isolating and preventing the aggregation of the disordered unfolded
proteins and peptides. During aging, deficits in chaperone levels and activity
significantly increases the rate of protein misfolding, accelerating the
accumulation of damaged, misfolded and aggregated proteins This
accumulation of misfolded proteins can in turn overwhelm the capacity of the
remaining chaperones to maintain proteostasis, leading to cell malfunction
and death.
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(polyQ) (Noormohammadi et al., 2016). Accordingly, one
paradigm is that protein aggregates are invariably deleterious
to organism health and lifespan. However, this has been
challenged by the proteomic analysis of long lived daf-2
mutant worms, which found that long-lived adult daf-2 worms
possess a higher chaperone-associated aggregate load compared
to wild-type worms (Walther et al., 2015). These aggregates were
comparatively chaperone-rich, and were proposed to be a feature
of a “protective aggregation response” that sequestered surplus
and dysfunctional proteins in order to alleviate the burden to the
proteostasis system. Interestingly, while there were no changes in
Hsp70 and Hsp90 expression, small heat shock protein levels
increased significantly, meaning this response prioritized
sequestration and isolation of unfolded proteins, rather than
repair and folding (Walther et al., 2015). Although there are
several studies in other organisms that investigate the protective
potential of aggregation (Saad et al., 2017), further work is
required to fully characterize this potential stress response and
how it impacts aging.

It has also become increasingly apparent that individual
chaperones possess important regulatory functions outside
protein stabilization and folding, and that these unique
functions are not compensated for by other types of
chaperones. For instance, RNAi-mediated knockdown of daf-
21/Hsp90 chaperone in non-neuronal tissues decreases lifespan
in both wild-type and long-lived daf-2 worms. Notably, this
lifespan attenuation revealed that Hsp90 ensures DAF-16
isoform A nuclear translocation and function, but this process
does not rely on any of the protein stabilizing properties of Hsp90
(Somogyvári et al., 2018). Although there is much more to
uncover in regards to other functions of individual
chaperones, it is clear that chaperones are primary mediators
of proteostasis and therefore lifespan. Studies in C. elegans, have

begun to uncover, but also explore their role as the primary
effector of numerous stress responses.

3 POST-TRANSLATIONALMODIFICATIONS

The regulation of protein fate through post-translational
modifications (PTMs) is a crucial mechanism by which
proteostasis is maintained. PTMs achieve this through several
mechanisms, including modulation of protein stability, activity,
and degradation (Ito et al., 2021). Although there are numerous
PTMs, in this review, we focus on the four most common PTMs
thought to be involved with aging and longevity, i.e.
phosphorylation, SUMOylation, acetylation, and ubiquitination
(Walsh et al., 2005) (Figure 4).

3.1 Phosphorylation
The addition of a phosphoryl group from adenosine triphosphate
(ATP) to serine, threonine, or tyrosine residues serves as the most
common PTM for proteins (Santos and Lindner, 2017).
Phosphorylation is often necessary to facilitate functional
conformational changes or provide a chemical moiety required
for catalytic activity and protein-protein interactions (Yaffe,
2002). Numerous studies have demonstrated that protein
phosphorylation regulates longevity in C. elegans (Derisbourg
et al., 2021b; Huang et al., 2018; Lin et al., 2001; Li et al., 2021).
One well studied mechanism of longevity regulation is in how
phosphorylation controls various aspects of the IIS pathway
(Kenyon et al., 1993; Lin et al., 2001). The foremost example
arises when insulin-like ligands bind to the insulin/IGF-1
receptor DAF-2, which initiates a phosphorylation cascade
culminating in the phosphorylation of the transcription factor
DAF-16. Like its analogue FOXO in humans, the

FIGURE 4 | Post-translational modifications (PTMs). Distinct PTMs such as phosphorylation, acetylation, ubiquitination, and SUMOylation modulate the activity,
intracellular localization and degradation of numerous proteins, determining cellular function and organismal longevity. (A) The ATP-consuming process of
phosphorylation is required for the activity of many proteins, either through providing a functional chemical moiety, or by allowing the protein to translocate to the required
cellular compartment. (B) Acetylation is also required for the function of various proteins, and is particularly important for correct chromatin function. In this instance,
histone acetylation is required for chromatin opening and access to DNA by the cell. (C) The ubiquitination of unwanted proteins marks them for recognition and
degradation by the UPS. This often requires repeated units of ubiquitin to be successively added to a growing polyubiquitin chain. The balance between ubiquitination
and deubiquitination can thus control and regulate the composition of the proteome. (D) SUMOylation can both activate or deactivate modified proteins. SUMOylation
can trigger conformational changes that allow proteins to interact with their biological substrates, block binding sites to prevent substrate interaction, or act as a
component of a structural motif to enable recognition of the modified protein.
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phosphorylation of DAF-16 results in its inactivation and
retention in the cytoplasm, negatively regulating longevity by
preventing the transcription of lifespan-extending effectors
(Tatar et al., 2003). Targeted RNAi screens for different
serine/threonine protein phosphatases to further study the role
of the kinases in the IIS pathway have subsequently identified
other novel longevity regulators, such as pptr-1 (Padmanabhan
et al., 2009). PPTR-1 negatively regulates the phosphorylation of
AKT-1, preventing AKT-1 from inhibiting DAF-16. The
modulation of pptr-1 regulates a wide range of reduced IIS-
related phenotypes including longevity, the activation of stress
responses, and entry into the dauer state (Padmanabhan et al.,
2009). A more recent study, similarly focused on IIS-dependent
phosphorylation, demonstrated that there are 476 differentially
regulated phosphosites in daf-2 mutant worms (W.-J. Li et al.,
2021). Their analysis also indicated that casein kinase 2 (CK2)
negatively modulates longevity (Li et al., 2021).

These numerous studies thus cement phosphorylation as a
fundamental component of the IIS pathway, however
phosphorylation has also been found to play a crucial role
beyond IIS. Phosphoproteomics analysis of C. elegans at two
different temperatures (20 and 25°C) has revealed that
phosphoprotein GTBP-1 modulates longevity at both
temperatures, and promotes resistance to heat and oxidative
stresses (Huang et al., 2018). This study also indicated that the
kinases CK2, MAPK, and CAMK2 may similarly modulate aging
through their kinase activity (Huang et al., 2018). Other studies
have found that the phosphorylation of actin binding protein
drebrin through the kinase ataxia-telangiectasia mutated (ATM)
regulates lifespan and stress tolerance by improving the stability
of drebrin and dynamics of actin remodeling (Kreis et al., 2019).
Furthermore, phosphorylation of AMP-activated protein kinases
has been found to be crucial for the regulation of cellular energy
metabolism and cellular homeostasis, and by extension lifespan,
across numerous studies (Hwang et al., 2014; Chang et al., 2017;
Park et al., 2020). For example, one recent study demonstrates
that the nuclear protein kinase vaccinia-related kinase (VRK-1)
promotes lifespan extension through phosphorylation and
activation of AMP-kinases (Park et al., 2020).

Thus, both preventing phosphorylation, as with DAF-16, or
promoting phosphorylation, through phosphoproteins such as
GTBP-1 or the phosphorylation of various AMP-kinases, can
drastically increase lifespan, and firmly demonstrates that PTMs
are key determinants of longevity.

3.2 Acetylation
Acetylation is the addition of an acetyl group to a nitrogen
molecule of a target protein (Santos and Lindner, 2017).
Numerous studies into the impact of protein acetylation on
aging focus on age-associated changes in histone acetylation.
During aging, histone acetylation is modulated, and is coupled to
changes in metabolic activity and gene expression (Peleg et al.,
2016). Sirtuin proteins are histone deacetylases, and act as
important regulators of histone acetylation (Grabowska et al.,
2017). Increased histone deacetylase activity of silent information
regulator 2 (Sir2) extends lifespan (Tissenbaum and Guarente,
2001). Moreover, DAF-16 nuclear localization, which is essential

for longevity and stress signal regulation, can be modulated by
acetylation through the sirtuin SIR 2.4 protein (Chiang et al.,
2012). Sirtuin activators such as oligonol also prolong lifespan in
C. elegans infected with lethal Vibrio cholera (Park et al., 2016).
Another study has indicated that early stage exposure to heat
stress results in increased histone acetylation and helps the
establishment of epigenetic “memory”, leading to an extended
stress response and longevity in C. elegans (Zhou et al., 2019).
Crucially, proteomics analysis comparing young worms to aged
worms revealed the accumulation of acylated proteins,
particularly in mitochondria (Hong et al., 2016). The
accumulation of acylated proteins in mitochondria has been
further shown to cause mitochondrial dysfunction and
contribute to aging (Hong et al., 2016).

Although the detrimental effects of acetylated protein
accumulation remains poorly understood, these studies
nonetheless show that epigenetic and metabolic regulation by
acetylation modifications have an important role in longevity.

3.3 SUMOylation
Protein SUMOylation is the covalent attachment of a small
ubiquitin like modifier (SUMO) to lysine residues of target
proteins (K. A. Wilkinson and Henley, 2010). This
SUMOylation then facilitates, or prevents, the interaction of
the modified protein with its interaction partner.
SUMOylation is involved in several biological processes
including development, DNA damage stress-responses, and
mitochondrial dynamics (Flotho and Melchior, 2013). These
diverse roles of SUMOylation are well studied, in particular,
its role in development (Broday et al., 2004; Zhang et al.,
2004; Kaminsky et al., 2009; Pelisch et al., 2017). However,
many recent studies also highlight the role of SUMOylation in
the regulation of longevity (Moll et al., 2018; Princz et al., 2020).
Of note is how reduced IIS can modulate protein SUMOylation,
where IIS driven SUMOylation of the germline RNA binding
protein CAR-1 was found to shorten lifespan in C. elegans.
Conversely, the expression of a mutant CAR-1, one which
cannot be SUMOylated, promotes enhanced proteostasis and
lifespan extension (Moll et al., 2018). The role of SUMOylation in
IIS was further expanded in a recent study showing that
SUMOylation of DAF-16 regulates mitophagy and
mitochondrial dynamics, affecting lifespan (Princz et al.,
2020). Furthermore, the same study showed a tissue-specific
dependency on SUMOylation, where the RNAi-mediated
knockdown of the small ubiquitin-like modifier gene, smo-1,
shortened lifespan, while the overexpression of smo-1,
specifically in intestine tissue, was sufficient to extend lifespan
(Princz et al., 2020). Moreover, SUMOylation also regulates
essential biological processes for healthspan and lifespan (Lim
et al., 2014; Baytek et al., 2021). SUMOylation modulates the
UPRER in C. elegans by regulating calreticulin gene expression in
an XBP-1-dependent manner (Lim et al., 2014). SUMOylation
also regulates chromatin dynamics by regulating protein activity
of the chromodomain factor MRG-1 (Baytek et al., 2021).
SUMOylation targets have previously been identified through
gene ontology analysis, with most of these SUMOlyated proteins
playing a role in metabolism (Drabikowski et al., 2018), and
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indeed evidence has been found that SUMOylation plays a role
under calorie restricted conditions, by modulating the NHR-49
transcription factor (Drabikowski, 2020). These studies
demonstrate that SUMOylation plays a decisive role in the
proteostasis network for determining aging and longevity in C.
elegans, in particular through modulation nodes of the IIS.
However, as the majority of SUMOylation targets remain
poorly characterized or understood, further research is
necessary before the true impact of SUMOylation can be
appreciated.

3.4 Ubiquitination
Ubiquitination is the covalent conjugation of ubiquitin, a small highly-
conserved protein, to a lysine residue or N-terminal methionine of a
target protein (Yau and Rape, 2016). Ubiquitination is a multistep
reaction reliant on the coordination of E1, E2, and E3 enzymes
(Hochstrasser, 2006). The process begins with ubiquitin-activating
enzyme (E1), which activates ubiquitin through an ATP-dependent
mechanism. The activated ubiquitin then transfers to the ubiquitin-
conjugating enzyme (E2). Finally, a specific ubiquitin-protein ligase
(E3) mediates the attachment of ubiquitin from the E2 enzyme to the
target protein (Hochstrasser, 1996). Conversely, deubiquitinating
enzymes (DUBs) can remove ubiquitin molecules and thereby
unmark proteins (K. D. Wilkinson, 2000).

Ubiquitination can determine the fate of a given protein in
several ways; it can mark it for degradation by the proteasome
or autophagy pathways, regulate their activity, modulate
protein-protein interactions and intracellular localization
(Hershko and Ciechanover, 1998). Ubiquitination thus has a
central regulatory role across a wide range of biological
process, including signal transduction, transcriptional
regulation, the DNA damage response, and the immune
response (Hershko and Ciechanover, 1998). Furthermore,
ubiquitination also regulates various stress responses and
can also influence protein aggregation (Brehme et al., 2014)
(Vilchez et al., 2014; Koyuncu et al., 2018). There is ample
evidence that ubiquitination plays a crucial role in aging and
longevity (Li et al., 2007; Powers et al., 2009; Kevei and Hoppe,
2014; Tawo et al., 2017; Koyuncu et al., 2021), however the
underlying mechanisms are only now becoming clearer. The
ubiquitination of a target protein is primarily achieved by the
activity of E3 ubiquitin ligases, and can be reversed with
deubiquitinase enzymes (Hochstrasser, 2006). We now
understand that several of these E3 ligases and
deubiquitinases modulate longevity (W. Li et al., 2007;
Mehta et al., 2009). Several E3 ligases have been reported as
regulators of the IIS pathway. For instance, the E3 ubiquitin
ligase CHIP regulates the levels of DAF-2 through its
ubiquitination and degradation, which modulates longevity
(Tawo et al., 2017). Downregulation of RLE-1 E3 ligases
results in less polyubiquitination of DAF-16, and increased
DAF-16 transcriptional activation which results in extended
lifespan (W. Li et al., 2007). The WWP-1 E3 ligases are
required for the regulation of lifespan under caloric
restricted conditions (Carrano et al., 2009). The lifespan
regulation by WWP-1 depends on E3 Ubiquitin ligase
activity and also interactions with the E2 ubiquitin conjugating

enzyme UBC-18 (Carrano et al., 2009). Moreover, it has been
shown the interactions of ubiquitin-selective chaperone CDC-48
and ATX-3 deubiquitinase modulate longevity through IIS
(Kuhlbrodt et al., 2011). A decrease in both cdc-48.1 and atx-3
enhances their substrate stability and longevity by up to 50%
(Kuhlbrodt et al., 2011). Recently, we have explored the role of
ubiquitination in maintaining proteostasis and regulating longevity
by analyzing system-wide ubiquitination changes that occur during
aging (Koyuncu et al., 2021). Our findings revealed a global loss of
ubiquitination during aging, which is ameliorated by longevity
pathways, such as caloric restriction and reduced IIS (Koyuncu
et al., 2021). This remodeling of ubiquitination patterns
throughout the proteome is a result of elevated deubiquitinase
activity. Remarkably, dysregulation of ubiquitination leads to the
selective accumulation of various proteasome targets such as the
intermediate filament, IFB-2 and EPS-8, a modulator of RAC
signaling (Di Fiore and Scita, 2002; Geisler et al., 2019; Koyuncu
et al., 2021). Accumulation of IFB-2 leads to loss of intestinal integrity
while increased EPS-8 hyperactivates RAC signaling in muscle and
neurons causing changes in actin cytoskeleton and hyperactivation of
protein kinase JNK. Therefore, the dysregulation in the
ubiquitination of structural and regulatory proteins across tissues
contributes to aging features and regulate longevity (Koyuncu et al.,
2021).

Ubiquitination thus has a much more significant role in aging
than previously thought, and further research may allow us to
therapeutically exploit parts of the ubiquitination network for
anti-aging purposes.

5 PROTEIN DEGRADATION SYSTEMS

5.1 The Ubiquitin-Proteasome System
The UPS is the main system for selective degradation of proteins,
determining the half-life of multiple regulatory proteins and
controlling the clearance of damaged and unnecessary proteins
(Pickart, 2001). Repeated addition of ubiquitin creates a
polyubiquitin chain, marking the target protein for recognition
and processing by the proteolytic machinery of the UPS, the 26S
proteasome (Glickman and Ciechanover, 2002). A Lys48-linked
polyubiquitin chain is the primary signal for recognition and
degradation by the 26S proteasome. The 26S proteasome itself is
composed of a 20S core catalytic particle and 19S regulatory
particles (Saez and Vilchez, 2014).

The UPS declines after development in C. elegans, as observed
by in vivo imaging strategy following the levels of chimeric green
fluorescent protein fused to a non-cleavable ubiquitin moiety
(Segref et al., 2011). Studies into the relationship between
proteasome activity and longevity have shown that elevated
UPS activity, mediated by elevated assembly or activity
through induction of proteasome subunits, leads to an
extension in lifespan (Vilchez et al., 2012; Chondrogianni
et al., 2015). Reverting this age-related decrease in proteasome
activity through the overexpression of 19S proteasome subunit
rpn-6.1 increased survival rate and heat stress resistance (Vilchez
et al., 2012). Moreover, long-lived glp-1 mutants, which lack a
germline, have enhanced proteasome activity upon DAF-16
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activation (Vilchez et al., 2012). Another study has shown that
overexpression of the psb-5 catalytic subunit of the 20S
proteasome results in an extension of lifespan and resistance
to oxidative stress in a DAF-16 dependent manner
(Chondrogianni et al., 2015).

Similarly, epidermal growth factor (EGF) signaling has been
reported to positively modulate proteasome activity by
upregulating the expression of genes involved in the UPS such
as Skp1-like protein SKR-5 (Liu et al., 2011). EGF signaling also
regulates longevity by upregulating UPS activity, where animals
lacking SKR-5 also have shorter lifespans (Liu et al., 2011). Other
recent studies also support the role of proteasome activity on the
regulation of lifespan, where defects in the import of
mitochondrial proteins results in proteasome activation and
lifespan extension (Sladowska et al., 2021).

These studies into the impact of proteasomal regulation on
longevity highlights the importance of the UPS on aging and
longevity. Thus, the proteasome can be an important target to
find novel interventions to promote healthy aging.

5.2 Autophagy-Lysosome Pathway
Autophagy is an evolutionary conserved degradation pathway, in
which cellular components including defective organelles and
protein aggregates are sequestered in double-membrane vesicles
and delivered to the lysosome for degradation (He and Klionsky,
2009). More than 30 proteins (encoded by ATG genes) are
recruited at different steps of the autophagy process (Klionsky
et al., 2016). There are three well-characterized types of
autophagy: macroautophagy, microautophagy and chaperone-
mediated autophagy (CMA). In macroautophagy, cytoplasmic
components are first encapsulated into a double membrane-
bound vesicle, called an autophagosome. This autophagosome
then fuses with the lysosome to form an autolysosome, in which
the sequestered cytoplasmic cargo is degraded with hydrolases,
glycosidases, nucleotidases, lipases and proteases (Klionsky et al.,
2016). In microautophagy, cytosolic cargo is delivered directly to
the lysosome for degradation. In CMA, chaperones such as
HSP70 promote the lysosomal degradation of targeted proteins
(Glick et al., 2010).

Like the UPS, there is now substantial evidence that the
autophagy-lysosome pathway is linked to the regulation of
aging and age-related diseases. Dysfunctional autophagy
during aging has been observed across a diverse range of
species, including C. elegans (Aman et al., 2021). Genetic
manipulation experiments of selective and non-selective
autophagy pathway components have demonstrated an
important role of autophagy in lifespan and healthspan (Tóth
et al., 2008; Hansen et al., 2018; Kumsta et al., 2019). Either the
knockdown or inactivating mutations of several autophagy
components such as bec-1 (orthologue of the mammalian
APG6/VPS30/beclin1), lgg-1, Igg-3, unc-51, or atg-7 leads to an
accelerated aging phenotype and shortened lifespan (Tóth et al.,
2008; Hansen et al., 2018). Moreover, several studies indicate that
the upregulation of autophagy is mechanistically crucial for the
extension of lifespan by different pro-longevity pathways
(Meléndez et al., 2003; Hansen et al., 2008; Alberti et al., 2010;
Gelino and Hansen, 2012). For instance, the RNAi-mediated

downregulation of bec-1 suppresses the extension of lifespan in
daf-2 mutants (Meléndez et al., 2003). In addition, the
knockdown of autophagy-regulating transcriptional factors
such as hlh-30 and daf-16 shortens the lifespan of both wild
type and daf-2mutant worms (Lin et al., 2018). It has been shown
that worms exposed to dietary restriction have increased levels of
the autophagy marker LGG-1 (the orthologue of ATG8) in their
hypodermis, and require functional autophagy promoting genes
for longevity (Mörck and Pilon, 2006; Hansen et al., 2008; Tóth
et al., 2008).

Overexpression of the key regulator of autophagy sqst-1/p62
induces autophagy in distinct tissues of C. elegans, leading to an
extension of lifespan, and an overall improvement in organismal
fitness (Kumsta et al., 2019). Overexpression of autophagy
regulators such as AMPK enhances autophagy activity and
extends lifespan (Hansen et al., 2018). Additionally, the
induction of autophagy with different pharmacological agents
such as spermidine, resveratrol, and metformin prolongs lifespan
in C. elegans (Mariño et al., 2011; Gillespie et al., 2019).
Pharmacological inhibition of XPO-1 similarly leads to
increased autophagy and lifespan by nuclear enrichment of
HLH-30 in C. elegans (Silvestrini et al., 2018).

These studies consistently demonstrate that maintaining and
upregulating autophagy can be beneficial for lifespan.
Mechanistically, this longevity effects may arise from the
persistent clearance of misfolded and aggregated proteins.

6 ADAPTIVE STRESS RESPONSE
MECHANISMS

Alterations to the activity of various organelles and biological
pathways in response to stress has been extensively studied
(Schulz et al., 2007; Dilberger et al., 2019; Taylor and Hetz,
2020; Derisbourg et al., 2021b). However, these stress
responses are now known to change with age, and also
contribute to organismal longevity. Given the stabilizing effects
of chaperones, they are a key component of many adaptive
responses to environmental stressors that challenge cellular
integrity (Hipp et al., 2019). However, these stress responses
also include wide regulatory changes, including variations in gene
expression, activation of proteolytic pathways, and more. The
most common stress responses in the cell include the heat shock
response (HSR), the ISR, the unfolded protein response of the
endoplasmic reticulum (UPRER) and the UPR of the
mitochondria (UPRmt). Here we focus on recent studies
examining the link between the different stress responses and
longevity in C. elegans.

6.1 Heat Shock Response
Proteotoxic stress, such as heat stress, can upregulate the
expression of many specialist chaperones as a part of the HSR.
Moreover, binding of damaged and misfolded proteins to
chaperones leads to the liberation of heat shock transcriptional
factors (HSFs) from chaperone complexes, which further
upregulates the transcription of additional chaperones. The
chaperones upregulated by the HSR principally act to stabilize
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and refold thermally denatured proteins, however the HSR also
regulates a broad range of genes involved in normal aging,
including the small heat shock protein sip-1, and cyp-35B1, a
member of cytochrome P450 family (Hsu et al., 2003).

The HSR is mainly regulated by HSFs, specifically HSF-1 in C.
elegans (Akerfelt et al., 2010). In worms, the activation of HSR by
HSF-1 is also controlled by thermosensory neurons that sense
temperature changes, in addition to the basal levels of HSF-1
present in chaperone complexes (Prahlad et al., 2008). Activation
of HSF-1 induces the transcription of several chaperones,
including HSP70, HSP90 family members, and small heat
shock proteins (Hsu et al., 2003). There is substantial evidence
that HSF-1 is also a regulator of aging, where HSR activation
enhances longevity and stress tolerance by utilizing aspects of
longevity-enhancing mechanisms similar to reduced IIS, caloric
restriction and suppression of mTOR activity (Morley and
Morimoto, 2004; Steinkraus et al., 2008; Seo et al., 2013;
Kovács et al., 2019). Overexpression of hsf-1 prolongs lifespan
and decreases age-associated protein aggregation of disease-
related proteins. Moreover, upregulation of HSF-1-target genes
under unstressed conditions similarly extends longevity (Walker
and Lithgow, 2003). Accordingly, RNAi-mediated knockdown of
hsf-1 shortens lifespan (Hsu et al., 2003; Morley and Morimoto,
2004). Interestingly, overexpression of a modified version of HSF-
1, incapable of inducing the expression of HSPs, was found to also
prolong lifespan (Baird et al., 2014). Thus HSF-1 can likely
upregulate lifespan-extending genes outside what is considered
the subset of HSR target genes. This is supported by other studies,
where transcriptomics analysis revealed that several distinct
longevity associated genes including pha-4, lys-7 and dod-3 are
upregulated in HSF-1-dependent long-lived strains (Sural et al.,
2019). Likewise, a recent study has also shown that mitochondrial
stress can result in HSF-1 dephosphorylation, which induces the
upregulation of lifespan extending holdases (Williams et al.,
2020), further exemplifying the role of HSF-1 in mediating
lifespan extending pathways. In addition, the upregulation of
HSF-1 in neurons leads to the activation of DAF-16 in other
tissues, making neuronal HSF-1 essential for longevity in a cell
non-autonomous manner (Douglas et al., 2015).

Overall, studies in C. elegans have not only shown that the
HSR is necessary for thermal protection of the proteome, but also
for normal function under unstressed conditions. Moreover,
HSF-1 is an essential modulator of aging and longevity
through the activation of the HSR and other pathways.

6.2 Integrated Stress Response
The ISR is an important central stress response in eukaryotic cells,
which is induced by a broad range of physiological and
environmental changes (Pakos-Zebrucka et al., 2016). The ISR
is primarily activated by the phosphorylation of a serine of eIF2α.
This reaction is catalyzed by eIF2α kinases after stress stimuli
such as viral infection, hypoxia and amino acid deprivation
(Harding et al., 2003; Wek et al., 2006; García et al., 2007).
The phosphorylation of eIF2α results in a broad decrease in
protein translation, while increasing the translation of selected
survival genes, such as activating transcription factor 4 (ATF4). If
this adaptive response proves insufficient to counteract the stress,

additional components of the ISR are activated to induce cell
death, preventing potential cellular dysfunctions from impacting
organismal health. After the stress stimulus disappears, or is
mitigated, eIF2α is dephosphorylated, stopping the ISR and
thereby allowing translation and other cellular process to
return to normal levels (Novoa et al., 2003; Donnelly et al.,
2013). In worms, there are two main eIF2α kinases; the
general control nonderepressible 2 (GCN2) kinase, and the
PKR-like endoplasmic reticulum kinase (PERK) (Derisbourg
et al., 2021b). Previous studies have suggested that ISR is
induced with age in different organisms (Derisbourg et al.,
2021a), whereas enhanced ISR activation is already observed
from early adulthood in C. elegans (Derisbourg et al., 2021b).

As discussed previously (section 2.1.2), although the decrease
in protein synthesis induced by the ISR may be expected to be
lifespan extending, the ISR is detrimental to lifespan in C. elegans.
The cause behind this impairment to lifespan has only recently
become to be understood. Through a large-scale mutagenesis
screen, it was found that lifespan extending mutations to eIF2
inhibited the ISR, and these mutations relied on the putative
kinase kin-35. Crucially, the lifespan extension mediated by kin-
35 was found to be independent of any changes to protein
synthesis (Derisbourg et al., 2021b). This finding indicates that
the ISR may decrease lifespan due to the selective translation of
key detrimental genes. Furthermore, contrary to previous studies
that observed that knockouts of ISR kinases gcn-2 and pek-1 do
not have impact on longevity, this study also showed that single
inhibitory amino acid substitutions to GCN-2 and PEK-1 lead to
lifespan extensions (Henis-Korenblit et al., 2010; Baker et al.,
2012). There is still further investigation needed to fully
understand the transcriptional changes caused by the ISR, and
why this decreases lifespan in C. elegans.

The unfolded protein response of the endoplasmic reticulum
(UPRER).

The endoplasmic reticulum (ER) houses and regulates many
of the chaperones that aid protein folding, as well as many
enzymes that are responsible for the maintenance of
proteostasis (Schönthal, 2012). The protein folding capacity of
the ER is monitored by the unfolded protein response (UPRER)
signaling pathway. This pathway is conserved from yeasts to
mammals, and is activated by the accumulation of unfolded and
misfolded proteins in the ER lumen (Hipp et al., 2019). To
maintain protein folding fidelity, the UPRER regulates mRNA
translation to decrease the further accumulation of misfolded
proteins, while also upregulating folding chaperones in the ER
(Taylor and Hetz, 2020). In the metazoan ER, there are three
identified activators for the different signaling pathway sub-
branches of the UPRER, i.e. IRE1 (inositol-requiring enzyme),
PERK (protein kinase RNA-like endoplasmic reticulum kinase),
and ATF6 (activating transcription factor 6).

Activation of the UPRER by external stress declines with age,
and this decline is associated with several age-related diseases
(Taylor and Dillin, 2011). By studying the metazoan UPRER-
component analogues in C. elegans, we have begun to understand
what contributes to this decline in UPRER responsiveness, and
how this impacts organismal aging. Genetic manipulation of the
ER stress response has shown that the UPRER has an important
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role in the modulation of lifespan and healthspan (Klionsky et al.,
2016). Further studies in C. elegans, demonstrated that
overexpression of the stress-activated transcriptional factor
XBP-1 in neurons prolongs lifespan in a cell non-autonomous
manner (Taylor and Dillin, 2013). In addition to neuronal UPRER

activation, intestinal UPRER activation enhanced longevity
through an increase in lipophagy (Imanikia et al., 2019;
Daniele et al., 2020). A recent study further demonstrated that
constitutive activation of the UPRER with XBP-1 in astrocyte-like
glia prolongs lifespan and stress resistance (Frakes et al., 2020).
Moreover, a wide range of longevity paradigms such as reduced
insulin signaling and caloric restriction require the UPRER (Chen
et al., 2009; Henis-Korenblit et al., 2010; Matai et al., 2019). Thus,
the consensus between these studies is that activation of the UPR
improves lifespan, and is most likely mediated through the
increased presence of chaperones preventing aggregate
formation, as well as some contribution from upregulation of
various metabolic processes such as lipophagy.

Interestingly, although the UPRER is not activated in the long-
lived daf-2 mutant worms, an enhancement to lifespan through
reduced insulin signaling requires the presence of IRE1α/XBP1
(Henis-Korenblit et al., 2010). Conversely, caloric restriction of
worms induces a higher basal level of UPRER activity, and the
increased lifespan phenotype requires the ER stress branch IRE-1
(Matai et al., 2019). This provides clear evidence that the IIS and
UPRER are in some way linked by a common regulatory element,
and that the UPRER contributes to the lifespan enhancement
observed under calorie restricted conditions. However, the
precise mechanism behind how caloric restriction, or the IIS
pathway, influence or utilize the UPRER remains unclear.

It has been also shown that the activation of the hexosamine
pathway, which leads to enhanced UPRER activity, increases
lifespan through improvement of ER-associated protein
degradation (Denzel et al., 2014). Another study has also
reported that enhancing lifespan with vitamin D treatments
requires IRE1α and XBP1 (Mark et al., 2016). Additionally,
treatment with activators of the UPRER, such as tunicamycin,
prolongs lifespan based on IRE1α branch of UPRER (Matai et al.,
2019). Accordingly, mutations in IRE1α or XBP1 has been found
to shorten lifespan (Taylor and Hetz, 2020). Collectively, these
studies show that UPRER activation is necessary for both normal
and enhanced organismal lifespan, that multiple regulatory and
nutrient sensing pathways converge on the UPRER, and also that
various components of the UPR show promise as therapeutic
targets for anti-aging outcomes.

The unfolded protein response of the mitochondria (UPRmt).
The mitochondria provides cellular energy and regulates a

broad range of metabolic events (Dilberger et al., 2019). As a
consequence of the process of oxidative phosphorylation
(OXPHOS), mitochondria produce reactive oxygen species
(ROS) (Sies and Cadenas, 1985). Elevated levels of ROS can
lead to cellular damage, with such damage also called oxidative
stress (Sies and Cadenas, 1985). Impairment of the mitochondria
is associated with cellular dysfunction and is considered a
hallmark of aging. Damage to mitochondrial integrity induces
transcriptional responses, including the mitochondrial
unfolded protein response (UPRmt) which is regulated by

mitochondrial-to-nuclear communication. The UPRmt induces
the recovery of mitochondrial networks through mitochondrial
biogenesis and metabolic adaptations, promoting cell survival
under stress conditions (Münch and Harper, 2016; Shpilka and
Haynes, 2018). Whereas an acute stress in the mitochondria can
lead to cell dysfunction and death, a reduced amount of
mitochondrial stress can be beneficial for organismal longevity
in a process known as mitohormesis. Mitohormesis also
encompasses the activation of the UPRmt.

In C. elegans, the UPRmt is regulated by the transcription
factor ATFS-1 and the co-factors DVE-1 and UBL-5, where
ATFS-1 is activated by disruptions to mitochondrial
proteostasis as well as ROS produced by OXPHOS. This
activation leads to transcriptional regulation to regulate
survival and mitochondrial stress through ATFS-1 (Shpilka
and Haynes, 2018). It is important to note that although
ATSF-1-regulated genes are upregulated in long-lived worms,
chronic expression of ATFS-1 itself is not sufficient to extend
lifespan (Soo et al., 2021). However, activation of the UPRmt is
known to positively regulate longevity in C. elegans (Dillin et al.,
2002; Durieux et al., 2011; Ito et al., 2021). In these lines, RNAi-
mediated knockdown of mitochondrial OXPHOS components
such as complexes I, III and IV promotes longevity through
activation of the UPRmt (Feng et al., 2001; Dillin et al., 2002).
Decreasing mitochondrial protein translation by knockdown of
mitochondrial ribosomal protein S5 (mrps-5) likewise extends
lifespan through enhanced UPRmt (Houtkooper et al., 2013).
Furthermore, changes in mitochondrial dynamics due to
impaired fission or fusion has been shown to decrease
mitochondrial translation, upregulating the UPRmt and
extending lifespan (Y. J. Liu et al., 2020).

Pharmacological agents can similarly extend lifespan through
targeting activators and inhibitors of the UPRmt. Antimycin, an
inhibitor of mitochondrial ETC complex III, extends lifespan
(Dillin et al., 2002). Likewise, Metolazone, a blocker of Na + -Cl−
cotransporters, including NKCC-1, also prolongs lifespan by
activating the UPRmt. However how NKCC-1 activates the
UPRmt in C. elegans is still unclear (Ito et al., 2021). Another
study has shown that NAD+ level decreases with age in C. elegans,
and restoration of NAD+ levels with NAD + boosters increases
sir-2.1 (sirtuin homolog) activity, which in turn improves lifespan
through activation of the UPRmt (Mouchiroud et al., 2013). In
addition, the mitochondrial chaperone prohibitin is an important
part of the UPRmt in longevity regulation (Gatsi et al., 2014).
Interestingly, depletion of prohibitin, which induces UPRmt,
shortens lifespan in wild type worms whereas this depletion
extends lifespan in metabolically compromised worms (Artal-
Sanz and Tavernarakis, 2009; Gatsi et al., 2014).

The lifespan extension afforded by the UPRmt relies, at least in
part, on cell non-autonomous interactions between different
tissues. It has been shown that neuronal induction of UPRmt

by the accumulation of expanded-polyQ aggregates leads to
UPRmt induction in the intestine, and depends on the
neuronal release of serotonin and long-range Wnt signaling
pathway (Berendzen et al., 2016; Q.; Zhang et al., 2018). In
addition to the nervous system, other tissues can also
communicate their proteostasis status and induce the UPRmt
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in distal tissues (Calculli et al., 2021). For instance, aggregation of
the germ granule component PGL-1 triggers intracellular changes
in the mitochondrial network of C. elegans germline cells. In turn,
the germline releases long-range WNT ligands that induce an
overactivation of the UPRmt in somatic tissues, promoting
somatic mitochondrial fragmentation and aggregation of
proteins linked with age-related neurodegenerative diseases
such amyotrophic lateral sclerosis and Huntington’s (Calculli
et al., 2021).

Beyond the UPRmt, other factors could be involved in
mitohormesis. The most prominent example is the
contribution of ROS towards aging in respect to oxidative
damage and regulatory roles. The Harman Free Radical
Theory of Aging postulates that cellular aging is driven by the
formation of mitochondrial ROS. These ROS induce a damage to
distinct components of the cell, including DNA, the proteome,
and the mitochondria itself. This has been challenged by studies
in C. elegans, which have found that lifespan can be decoupled
from oxidative damage or oxidant sensitivity. In fact, it has been
proposed that low levels of ROS may be beneficial for longevity,
where ROS could potentially act as signaling molecules that
promote mitohormesis (Ristow and Schmeisser, 2014). For
example, it has been reported that deletion of the
mitochondrial superoxide dismutase sod-2 increases ROS
production, yet prolongs lifespan despite the increased levels
of oxidative damaged proteins (Van Raamsdonk and Hekimi,
2009). Moreover, worms treated with low amounts of the oxidant
reagent paraquat also live longer (Yang and Hekimi, 2010). One
study showed that a mild reduction of respiration extends
longevity through ROS mediated activation of the hypoxia-
inducible factor HIF-1 (Lee et al., 2010). Glucose restriction
also leads to the formation of ROS due to enhanced
mitochondrial respiration, prolonging lifespan in C. elegans
(Schulz et al., 2007). The knockdown of the hydroxylase clk-1
was also found to enhance longevity despite elevated levels of
ROS production (Lakowski and Hekimi, 1996; Lee et al., 2010)
Together, these studies indicate that the role of ROS in
mitohormesis and aging is less clear as previously thought,
and further demonstrate possible roles of ROS as both signal
molecules and cellular stress factors. Further studies are required
to fully assess the contribution of ROS and oxidative damage
towards organism health and longevity. Nevertheless, studies in

C. elegans support that the UPRmt can be a powerful promoter of
longevity, and a promising therapeutic target for pharmacological
intervention.

7 CONCLUSION

Ensuring proteome integrity requires tight regulation and
crosstalk of distinct components of the proteostasis network
from translation to degradation. However, with age, the
burden of misfolded proteins exceeds the capacity of cells to
maintain proper proteome integrity, leading to disruptions in
cellular function. Cumulative evidence using C. elegans as a
model organism has highlighted the important role of the
proteostasis network in longevity regulation as well as the
onset of age-related disease regulation. These studies in C.
elegans have also provided invaluable information about the
regulation of distinct proteostasis nodes at the organismal
level, including their regulation by cell non-autonomous
mechanisms that can be crucial to find novel therapeutic
targets to delay age-related diseases in humans.
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