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Complexity is a fundamental feature of biological systems. Omics techniques like
lipidomics can simultaneously quantify many thousands of molecules, thereby directly
capturing the underlying biological complexity. However, this approach transfers the
original biological complexity to the resulting datasets, posing challenges in data
reduction and analysis. Aging is a prime example of a process that exhibits complex
behaviour across multiple scales of biological organisation. The aging process is
characterised by slow, cumulative and detrimental changes that are driven by intrinsic
biological stochasticity and mediated through non-linear interactions and feedback within
and between these levels of organization (ranging from metabolites, macromolecules,
organelles and cells to tissue and organs). Only collectively and over long timeframes do
these changes manifest as the exponential increases in morbidity and mortality that define
biological aging, making aging a problem more difficult to study than the aetiologies of
specific diseases. But aging’s time dependence can also be exploited to extract key
insights into its underlying biology. Here we explore this idea by using data on changes in
lipid composition across the lifespan of an organism to construct and test a LipidClock to
predict biological age in the nematode Caenorhabdits elegans. The LipidClock consist of a
feature transformation via Principal Component Analysis followed by Elastic Net regression
and yields and Mean Absolute Error of 1.45 days for wild type animals and 4.13 days when
applied to mutant strains with lifespans that are substantially different from that of wild type.
Gompertz aging rates predicted by the LipidClock can be used to simulate survival curves
that are in agreement with those from lifespan experiments.

Keywords: aging, lipidomics, lipids, machine learning, biomarker, aging clock, Caenorhabditis elegans

INTRODUCTION

Biological aging is defined by an exponential increase in mortality and a concomitant, dramatic
increase in the risk of age-dependent diseases, including cancer, cardiovascular and
neurodegenerative diseases. However, it is becoming increasingly clear that individual biological
aging rates are not fixed and that subjects having identical chronological ages can have very different
biological ages (Jylhävä et al., 2017). Biological aging is impacted by genetics, lifestyle factors, diet,
intrinsic stochasticity, and drug interventions (Kennedy et al., 2014). Tools to objectively quantify
differences in biological aging rate and of biological age are therefore critical, not only to further our
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understanding of biological aging itself but also to the
identification and testing of age-modifying medical and
lifestyle interventions. Such tools are referred to as “Aging
Clocks” in the field of aging and geroscience. Ageing clocks
infer biological age, which is typically not identical with
chronological age. The ultimate goal are aging “clocks,” that
are able to predict future morbidity and all-cause mortality on
an individual level and with high precision.

The most prominent type of aging clock was originally
described by Horvath in 2013 (Horvath 2013) based on changes
inDNAmethylation (DNAm). Since then,methylation clocks have
seen extensive development for use in diverse human and animal
tissues and have gone through several iterations of refinement and
validation (Horvath and Raj, 2018; Bell et al., 2019; Noroozi et al.,
2021). There is now a repertoire of clocks to choose from and
clocks are widely deployed, including by several commercial
ventures (Horvath and Raj, 2018). Second generation
methylation clocks have reached a high level of precision and
accuracy and have been validated for their predictive power
towards morbidity and mortality, with clocks such a PhenoAge
(Levine et al., 2018) and GrimAge (Lu et al., 2019).

Methylation clocks are regarded as the gold-standard for
quantitative determination of biological age. However,
connecting DNA methylation to the underlying biological
mechanisms of aging remains challenging and this is an active
area of research (Levine, 2019).

However, in principle, aging clocks can be constructed using
many types of high dimensional data, as long as such data maps to
the physiological aging “state” of an organism. Indeed, aging
clocks have been created based on panels of clinical markers,
including routine clinical chemistry (Liu et al., 2018),
transcriptomic signatures (Mamoshina et al., 2018; Meyer and
Schumacher, 2021), metabolomic profiles (Robinson et al., 2020;
Hwangbo et al., 2021), inflammation (Sayed et al., 2021), facial
images (Bobrov et al., 2018; Xia et al., 2020), activity data from
commercial fitness trackers (Pyrkov et al., 2018) and changes in
gut microbiome (Galkin et al., 2020).

Clocks based on different types of data have distinct advantages
and disadvantages. Clocks based directly on readouts of physiological
and molecular state, such as transcriptomic (Mamoshina et al., 2018)
andmetabolomic clocks (Robinson et al., 2020; Hwangbo et al., 2021)
can be more readily interpreted when the aim is to extract actionable
insights, such as specific pathways or biological processes to target
with interventions. For example, transcriptomic clocks such as BiT
age analyze gene expression profiles with the aim of identifying
predictive gene sets. Identification of gene sets is then followed by
functional enrichment analysis to extract specific biological processes
involved in aging with potential value as targets in age modulation
(Meyer and Schumacher, 2021).

Similarly, Robinson et al. have developed a clock using
untargeted metabolomics, which was able to detect metabolomic
age acceleration in individuals as a function of obesity, diabetes,
heavy alcohol use or depression (Robinson et al., 2020). Using
metabolic pathway enrichment, the authors were then able to
identify contributing mechanisms, including altered intracellular
communication involving tryptophan, tyrosine and biopterin
metabolic pathways and mitochondrial dysfunction.

An attractive class of molecules to investigate in this context
are biological lipids. Lipids are centrally involved in many
physiological processes. They play pivotal roles in signaling
(Fernandis and Wenk, 2007), membrane stability and fluidity
(Seu et al., 2006), as well as energy storage (Welte and Gould,
2017). Lipids are a diverse class of molecules, comprising species
from 8 different broad lipid families (Sud et al., 2007). In human
blood serum alone, over 3,000 lipids have been identified and
quantified (Psychogios et al., 2011; Quehenberger and Dennis,
2011). Furthermore, specific blood lipids and fatty acids are
already well-established and routinely used clinical markers for
cardiovascular and metabolic diseases (Arsenault et al., 2011). A
dysregulated lipid metabolism is connected to many disease states
including neurodegenerative diseases (Lim et al., 2020),
cardiovascular diseases (Ridker et al., 2005) and cancer (Shah
et al., 2008).

Modulation of lipid metabolism can also directly impact aging.
For instance, work in our lab has demonstrated that lifespan and
healthspan benefits of interventions based on synergistic
interactions between certain drugs require SREBP-dependent
changes in lipid metabolism, including changes in mono-
unsaturated fatty acid (MUFA) and medium-chain-fatty-acyl-
containing (TAGs) content (Admasu et al., 2018).

The lipidome is highly dynamic and known to change
significantly with age (Gonzalez-Covarrubias et al., 2013),
health status (de Diego et al., 2019) and diet (Boretti et al.,
2019). Several lipid classes and sub-categories appear to
undergo systematic changes with age (de Diego et al., 2019).
A 2020 longitudinal multiomics study found that 40% of the
metabolites that correlated with age where lipids (Ahadi et al.,
2020). In human plasma, ceramides have been reported to
increase with age (Mielke et al., 2015) while blood
lysophosphatidylcholine levels show a decline (Mapstone
et al., 2014). A lipid class that appears to stay constant and
does not show age-related changes is the endocannabinoid
anandamide which is involved in signaling in the brain
(Piyanova et al., 2015). Certain lipid signatures have been
linked to longevity in humans and animals. For instance, in the
blood plasma of centenarians, higher levels of sphingolipids
have been observed (Montoliu et al., 2014). A signature of 19
lipid features, including increased levels of phosphocholine
and sphingomyelin and a decrease in
phosphatidylethanolamine and long-chain triglycerides, has
been associated with familial longevity in women (Gonzalez-
Covarrubias et al., 2013). In the animal kingdom, it appears
that odd chain fatty acids and ether lipids are increased in
long-lived animals relative to shorter-lived ones (de Diego
et al., 2019).

The evidence for abundant age-dependent changes in
molecular lipid composition and their established relationship
to health and disease suggest that lipids might represent an
exciting target for the development of aging clocks, similar to
other “-omics” aging clocks. Here we report proof-of-principle
development and validation of one such a lipidomic clock in the
model organism Caenorhabditis elegans. We demonstrate that
our clock can predict the aging rate of WT and mutant C. elegans
based on their lipid profile alone.
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MATERIALS AND METHODS

C. elegans Sample Preparation
The data used to develop the LipidClock were derived from
cohorts of aging C. elegans, sampled at different time points. To
validate the lipid clock, we compared animals of four different
strains that are characterized by different lifespans. We used
standard wild-type (WT) Bristol N2 as controls undergoing
normal aging. We utilized mev-1 as short-lived strain. Mev-1
animals carry a defect in complex II of the electron transfer chain
(ETC), produce excessive amounts of reactive oxygen species, and
suffer from elevated oxidative damage, as well as defective energy
metabolism have shorter lifespans (Ishii et al., 1998; Senoo-
Matsuda et al., 2001). We selected two strains with extended
lifespan and healthspans; age-1 and eat-2. Lifespan is extended by
different mechanisms in these two strains. Age-1 carries a
nonsense mutation in phosphatidylinositol 3-kinase (PI3K), a
member of the insulin-like growth-factor axis (Friedman and
Johnson, 1988). Eat-2 animals have reduced pharyngeal pumping
rates, resulting in decreased food intake and extended lifespan by
a mechanism related to caloric restriction (Lakowski and Hekimi,
1998). We obtained hermaphrodite C. elegans strains of wild-type
N2, DA1116: eat-2 (ad1116), TJ1062: spe-9 (hc88) I; rrf-3 (b26)
age-1 (hx542), and TK22: mev-1 (kn1) III from the
Caenorhabditis Genetic Center. Cohorts were synchronized
using the standard alkaline hypochlorite approach (Stiernagle,
2006). For WT and mutant strains, nematodes were grown and
maintained on standard Nematode GrowthMedium (NGM) agar
plates at 20 °C with E. coli OP50-1 bacteria as a food source as
previously described (Admasu et al., 2018). Age-synchronized
adult worms were transferred to a fresh NGM plate containing 5-
fluoro-2′- deoxyuridine (FUdR) to prevent egg hatching and
overcrowding by progeny. Samples from aging cohorts were
collected for each strain at 3-, 5-, 10-, 15-, and 20-days post
hatching. However, for the short-livedmev-1 strain we found that
a significant number of animals start to die after day 10 of age and
we therefore only collected samples up to day 10 for this strain.
On each sampling day, between 2000 and 3,000 worms were
collected from each cohort by washing culture plates with M9
buffer. Three separate samples were collected on for each strain
and age.

Two-Phase Lipid Extraction for MS Analysis
Samples were processed as previously described (Admasu et al.,
2018). Briefly, worm pellets were transferred to 2 ml
polypropylene tubes containing 250 µL lysis buffer (20 mM
Tris- HCl pH 7.4, 100 mM NaCl, 0.5 mM EDTA, 5% glycerol).
Metallic beads were added to each tube before incubation on ice
for 15 min followed by homogenization using a bead beater
(Precellys, France). Homogenates were extracted using a Folch
extraction (Folch et al., 1957). For quantification purposes,
extraction solvents were spiked with internal standards PC 34:
0, PE 28:0, lysoPC 20:0, lysoPE 14:0, PS 34:0, PG 34:0, SM 30:1,
and Cer 35:1 (Avanti Polar Lipids). To each tube, 0.5% of
butylated hydroxytoluene (BHT) was added to prevent lipid
oxidation during extraction. After phase separation, the
organic phase was transferred to a fresh centrifuge tube and

dried under vacuum using a vacuum concentrator (SpeedVac,
Thermo Savant, Milford, United States). Finally, dried lipid
extracts were reconstituted in 100 µl methanol and kept at
−80°C until the MS analysis.

Data Acquisition
Lipidomics analysis was performed as previously described (Admasu
et al., 2018). Briefly, we used an Agilent 1260-Ultra Performance
Liquid chromatography (UPLC) system coupled to Triple Quad
Mass spectrometer (Agilent 6,490) with dynamic multiple reaction
monitoring (dMRM) for lipid quantification. The UPLC system was
equipped with a Waters ACQUITY BEH C18 column (1.0 ×
100mm). Solvent A was acetonitrile/H2O (60:40) with 10mM
ammonium formate and 1% formic acid. Solvent B was
isopropanol/acetonitrile (90:10) containing 10mM ammonium
formate and 1% formic acid. Gradient elution was performed
initially from 40 to 100% solvent B over 14 min at a flow rate
was 0.13 ml/min and a column temperature of 60°C. After 3 min at
100%, solvent B was decreased rapidly back to 40% in 1min and this
was then maintained until the end of the run at 20 min. The eluent
was directed to the ESI source of the mass spectrometer operated in
the positive ion mode. The MS conditions were as follows: For ESI:
gas temperature, 300 °C; gas flow, 10 L/min; sheath gas temperature,
350 °C; sheath gas flow, 8 l/min; and capillary voltage, 3,500 V.

MS Data Analysis
Data processing, including peak smoothing and integration of area
under the curve for each transitionmeasured, was performed using
theMassHunter Quantitative B.08.00 (Agilent). Manual inspection
of raw peaks was carried out to ensure correct peak picking, and the
peak area data were exported in csv format for further analysis. The
peak area of each endogenous lipid species was normalized to the
corresponding class-specific IS for quantitation. To ensure the
accuracy and reproducibility, pooled quality controls samples were
analysed throughout the analytical sequence (once in between
every 10 experimental samples) and coefficients of variation
(CoV) were calculated for all 238 dMRM transitions. Only those
MRM transitions that had CoV <25% were used in subsequent
analysis. Overall, 168 lipid species were reliably quantified. Of
these, 26 were ceramides (Cer), 23 lysophosphatidylcholines
(LPC), 11 ether-linked lysophosphatidylcholines (LPC-O), 10
lysophosphatidylethanolamine (LPE), 41 phosphatidylcholine
(PC), 19 phosphatidylethanolamine (PE), 5 phosphatidylglycerol
(PG), 13 phosphatidylserine (PS), and 20 Sphingomyelin (SM).
The total dataset comprised data on 168 lipid species, for 54
samples covering three mutant strains and wild type at ages
between 3 and 20 days (Table S2). The data will be available on
GitHub (https://github.com/max-unfried/lipid-clock).

STATISTICAL METHODS

Principal Component Analysis
At the core of the LipidClock is a coordinate transformation by
Principal Component Analysis (PCA) followed by supervised
learning via Elastic net regression, an approach similar to the rat
epigenetic clock by Levine et al. (2020), in which PC1 strongly
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correlates with age. PCA is a method widely used for linear
dimensionality reduction and feature extraction. It is a Eigenvalue
method that is used to factorize a matrix into its principal
components (PCs), which can be used as features instead of the
original data to train machine learning models. PCA rotates the
coordinate system of feature space (lipid species) to align the main
axes with directions in feature space along which the covariance
between samples is maximal. Here, we first normalized lipid data by
dividing the abundance of each lipid species by themedian for young
control animals collected during the same run. To give equal weight
to increases and decreases in lipid abundance, we then converted
lipid abundances into log-2 fold changes vs the mean for each lipid
species across all experiments. We then carried out PCA on this log-
2 fold change datamatrix, resulting in a new base for the feature (log-
fold change in lipids) space. The original data comprised 168 lipid
species, observed across 54 samples. The PCA therefore yields 54
singular vectors or principal components (PCs) (Strang, 2016). The
singular vectors are an orthonormal base of the subspace of the full
feature space in which the 54 samples are contained. Lipid changes
for each sample (experimental condition) can therefore be expressed
in terms of the 54 PCs. We transform each sample into these PC
coordinates before training the aging clock regression model.

Elastic Net Regression
Standard linear regression can yield individual estimated
coefficients that are large and this can destabilize the model. A
way to counteract this is to penalize the model with a sum of
squared coefficient values. This penalty is called L2-penalty and has
the effect of minimizing the size of all coefficients. Another way of
penalizing the model is based on the absolute sum of coefficients
(L1-penalty). The L1-penalty minimizes the size of all coefficients
and allows for coefficients to be removed from the model (become
0). This reduces the number of coefficients (features) that are used
by the model, making the model easier to interpret. Elastic net
regressions include both L1 and L2 penalties. The weights of these
penalties are tuned via the parameters alpha and the l1-ratio. We
trained an elastic net regression model using the 54 linearly
independent PC coordinates for each sample as input features
(intendent variables) and chronological age as a dependent
variable. For training we only used data from WT cohorts and
young (day 3) mutants. Model parameters were optimized using
10-fold cross validation by Grid search over an l1-ratio from 0 to 1
in 0.01 intervals and for the alpha parameter values of [1e-5, 1e-4,
1e-3, 1e-2, 1e-1, 0.0, 1.0, 10.0, 100.0].

RESULTS

In this study we developed a lipid-based predictor of biological
age, which we named LipidClock. The underlying data for the
clock consists of the lipid profile of wildtype and mutant C.
elegans strains, totaling 168 lipid species. The proposed
LipidClock to measure the biological age of C. elegans consist
of a data transformation via Principal Component Analysis
followed by Elastic Net Regression. The results of this
approach are described below.

Individual Principal Components Show
Correlation With Age
By construction, coordinates along all the 54 PCs are able to
reconstruct the complete dataset, reproducing 100% of the
variance. However, PC1 alone captured 49% of the overall
variance and, combined, the first 3, 5 and 10 PCs explained 66,
82 and 92% of the variance, respectively [Sup. Fig S1]. When
analyzing data from aging cohorts, age is expected to be the
major source of biological aging within each cohort (genotype,
treatment condition) (Tarkhov et al., 2019; Minteer et al.,
2020). Following transformation of all samples into
principal component space, we therefore determined the
linear correlation of each PC coordinate with age in both
WT and mutant cohorts (Figure 1). We considered
correlation strong when the absolute r-value was larger or
equal to r = 0.7. Using this definition, we found that, among the
first 5 PCs, three showed strong correlations with
chronological age in WT cohorts (Figure 1). Interestingly,
conservation of such patterns was variable in mutant strains,
suggesting that, as expected, mutations affecting lifespan
impact aging mechanisms captured by the main PCs. PC2
was unequivocally correlated to aging across all strains while
PCs 1 and 3 also showed correlation with age but were less
conserved across strains. Plotting PC1 against PC2
(Supplementary Figure S2) shows clusters where all the
strains on day 3 are still close to each other. Furthermore,
the WT at day 10 clusters with the slow aging mutants at day
15, andWT at day 15 with the mutants at day 20. However, WT
at day 20 is slightly separated, but one would expect that it
would cluster with age-1 and eat-2 at day 25 if this data were
available.

Datapoints ofmev-1 on day 10 are separated from all the other
data points, indicating that their trajectory has been diverging.
Overall, this depicts that PC1 and PC2 encode information
on aging.

The major source of variance in our dataset when
comparing samples between (rather than within) strains is
mutant status. Comparing individual PC coordinates
between young (day 3) WT and young mutant cohorts
gives an indication which of the PCs captured initial
(young) mutant status and which of these (if any)
overlapped with aging PCs. Considering PCs that are not
strongly correlated with aging, we found that PCs 6, 7, and 8
were clearly encoding cohort differences related to mutant
status but not aging (Figure 2.). PC6 separated mev-1
mutants, PC7 age-1 mutants and PC8 captured signatures
for all three mutants vs. WT. Neither of these PCs was
strongly correlated with aging.

The Lipid Clock
Having confirmed that several PCs capture aging changes in WT
and mutant strains, we constructed an aging clock to predict
cohort age based on lipid composition in terms of PCs. For this,
we utilized a supervised learning method that is commonly used
for the construction aging clocks, regularized linear regression
(elastic-net regression).
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Importantly, we carried out elastic-net regression only
using wild-type samples (all ages) and samples from young
(day 3) mutant cohorts. This choice meant that the model is
driven to deemphasize or disregard PC coordinate directions
along which mutants are already highly different from wild
type when young. The resulting model therefore emphasizes
directions in PC space along which WT animals exhibit
substantial changes during aging but along which WT and
mutants are similar when young. The model was trained to
predict the chronological age of WT worms and define normal
WT aging rate. Importantly, samples from old aging mutant
cohorts between day 5 and day 20 were never used for training,

meaning that these samples could be used as an unbiased test
of the final model. We optimized L1 and L2 penalty parameters
via Grid Search on repeated 10-fold cross validation with the
training data split into 10 chunks, of which 9 were used for
training and 1 for validation. This process was repeated 10
times. Grid Search found the optimal parameters to be 0.01 for
alpha and 0.67 for l1-ratio.

The mean absolute error on the repeated 10- Fold cross
validation was 1.45 days, meaning that within this dataset of
wildtype and young (day 3) mutants, cohort age was
predicted with an error of less than 2 days. The final
model assigned significant weights to PC1 and PC2 with

FIGURE 1 | Showing the Pearson Correlation of Principal Components with age we observe that some of the PCs exhibit significant correlation with age across
multiple strains. Especially PC1, PC2 and PC3 fall into this category.

Frontiers in Aging | www.frontiersin.org May 2022 | Volume 3 | Article 8282395

Unfried et al. Lipid Clock

https://www.frontiersin.org/journals/aging
www.frontiersin.org
https://www.frontiersin.org/journals/aging#articles


smaller contributions to higher PCs and several PCs having
zero coefficients.

The Lipid Age estimator for the LipidClock is given by:

Lipid Age � 8.72 + 0.25PC1 + 0.62PC2 + 0.05PC5 + 0.36PC6

− 0.07PC7–0.22PC9 . . . .O(PC10*) (1)
*) A full list of weights be found in Supplementary Table S3.
We then applied this lipid clock model to our day 5–20 aging

mutant (mev-1, eat-2, age-1) cohorts to evaluate if age in mutant
strains could be predicted by the model, despite the fact that no
aged mutants were included in the training data.

Figure 3 shows the relationship between chronological age
and predicted biological age for each of the mutant cohorts.
Because aged WT were included in the training set, wildtype ages
are predicted with high degree of accuracy, as expected. For
mutant cohorts, predictions at day 3 are also highly accurate,
which is also expected because young (day 3) mutants were also
included in the training data. At day 5, predicted ages largely
overlap for WT and the slow aging strains (age-1 and eat-2).
However, the model predicts substantially higher ages for mev-1
at day 5, indicating that, based on their lipid composition, mev-1
worms are biologically older than 5 days. From day 10 onwards,
the slow aging strains age-1 and eat-2 followed similar trajectories

FIGURE 2 | Boxplots of Principal Components of strains at day 3 show that certain PCs encode strain specific information. PCs 6, 7, and 8 encode differences in
cohort related to mutant status. PC6 separates mev-1 mutants, PC7 seperates age-1 mutants and PC8 captured signatures for WT compared to all three mutants.
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to each other but are well separated from WT N2 and from the
fast agingmev-1. Evaluating the error of the age estimator on this
cohort yielded a mean absolute error of 4.13 days. This error is
driven predominantly by the overestimation of ages for themev-1
strain. On average, the clock overestimates the age of mev-1 by
4.9 days. In contrast, age is underestimated by 2.28 and 2.0 days
for age-1 and eat-2, respectively.

The rate of change (slope) of predicted biological age to actual
chronological age can be interpreted as strain-specific aging rate.
The aging rate for each strain was therefore determined by fitting
a regression line to the relationship between chronological and
predicted biological (lipid) age. As the model was trained with the
chronological age of WT as dependent variable, it is not
surprising that chronological age and biological agree well for
WT. By construction, WT worms having an ageing slope of 1,
aging 1 day per day, approximately (black line, Figure 3). Slopes
below 1 indicated slower biological aging rate while slopes above
one indicated accelerated aging relative to WT. Based on this
definition, we find that mev-1 age approximately twice as fast as
WT (slope: 2.04 ± 0.003) while age-1 (slope: 0.55 ± 0.053) and
eat-2 (slope: 0.5 ± 0.075) age half as fast.

These predicted aging rates are consistent with the know
biology of these strains. Mev-1 generate excess oxidative
damage and are known to be short-lived while age-1 and eat-2
are both long lived. However, the model does not distinguish
between age-1 and eat-2, even though these two strains, while
both long-lived, have different lifespans.

Simulated Survival
A defining quality of biological aging is that mortality increases
exponentially with age. The age-dependent increase is mortality is
described by the Gompertz–Makeham law (Eq 2.) (Gompertz,
1825):

M � MExt +M0eln(2)
age

MRDT (2)
Where M is the mortality given age, MExt is the external, age-

independent mortality (Makeham term), M0 is the initial
mortality at the onset of adulthood, and MRDT is the
mortality rate doubling time, defined as the time in days over
which the risk of dying from age-dependent causes doubles.

To investigate differences in aging rate of mutants vs. WT
animals further, we used the estimated aging rates to calculate
mortality trajectories for each mutant strain by scaling
Gompertz aging rates relative to WT (Figure 4). We then
simulated lifespan data based on these scaled mortality
trajectories using a simple Monte Carlo model and
compared them to actual lifespan data for mev-1 and age-1,
collected in our laboratory under the same conditions as those
used for the lipidomics cohorts (Figure 4).

We estimate MExt, M0 and the MRDT for the WT by grid
search in the parameter space by calculating the root-mean
square error between the average of 100 Monte Carlo
simulations and the experimental data. For WT C. elegans
MRDT at 20°C has been reported to be 3 days, hence we
search for the MRDT of our data between 2.5 and 3.5 days.

FIGURE 3 | Age predictions made by the LipidClock and fitted lines indicating the aging rates. Aging rate for WT is 0.99 ± 0.003, for age-1 0.55 ± 0.053, for eat-2
0.5 ± 0.075, and for mev-1 2.04 ± 0.003.
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Furthermore, realistic values for MExt lay between 0 and 0.2, and
for M0 in the interval of 0–0.01.

We determined aging rates for mutant strains relative to WT
based on the biological age determined by the lipid clock and used
these estimates of relative aging rates to scale the MRDT for each
mutant strain. No other parameter optimization was performed,
leaving MExt and M0 unchanged. In other words, we then
calculated stochastic survival curves using a simple Monte
Carlo approach based on the scaled strain-dependent mortality
dynamics. Briefly, for each cohort and day (age), the age-specific
mortality was calculated based on Eq. 2. A uniform random
number between 0 and 1 was then generated for each surviving
animal in the cohort. If this number was larger than the age-
dependent mortality, a death event was recorded, and the number
of survivors was decremented. The resulting list of death events
was then analyzed using the same approach as our experimental
lifespan data (Figure 4). The simulations used the same number
of worms that correspond to the experimental lifespan data which
were 257 N2 worms, 60 age-1 worms, 121 eat-2 worms and
89 mev-1 worms. Both the code for the LipidClock as well as for
simulation of the survival curves are available on GitHub (https://
github.com/max-unfried/lipid-clock).

We found that the root-mean square error between the
simulated WT curves and our experimental wildtype data is
low for different sets of reasonable and realistic parameter
configuration. For MRDT values of 2.8–3.5 days, ExtMort
between 0.01–0.02 and Mort0 in the interval of 0.002–0.005 a
good fit is obtained. These parameters seem sensible as they
correspond to values found in the literature.

Consistent with these estimates, WT survival in our hands is
well modelled usingMRDT of 3.5 days, ExtM of 1.5% per day and
an initial mortality (M0) of 0.5% per day (see Figure 4.). We
found that predicted lifespan curves under these conditions were
also in qualitative agreement with observed survival data for age-1
andmev-1, but the simulated data somewhat overestimated eat-2
survival.

Interpretation of PCs in Terms of Lipid
Species Involved
Transformation into PC coordinates is an orthogonal linear
transformation, with each PC defining a vector in feature (lipid)
space. To investigate further lipid species and pathways driving these
aging changes, we grouped the individual lipid species into their
main groups and analyzed contribution of individual lipid classes to
each principal component (Figure 5). Each principal component is
composed of a weighted sum of Cer, LPC, LPE, PC, PE, PG, PS, and
SM. We separated the lipid species by positive (increase with age)
and negative (decrease with age) weights.

While for many of the components there was no clear trend in
terms of the lipid classes involved, by analysing the first 3
principal components and their composition we were able to
determine which lipid classes were most involved in aging
changes along these PCs.

PC1 was almost exclusively dominated by negative weights
(decline in abundance with age), and LPC followed by Ceramides
were the main lipid species involved in this decline (Figure 5).

PC2was alsomainly impacted by LPC andCeramides, however in
this case all the Ceramides contributing to PC2 had positive weights,
meaning they increased with age - whereas the LPC are still weighted
negatively. Moreover, aging associated LPCs such as LPC 20:4, LPC
18:2 and LPC 18:1 have high weights in PC1 and PC2 when we
explore the composition of the negative weight LPC composition.
PC3 appeared to capture amixture of LPCs and PCs. Further analysis
of lipid species involved, enrichment of specific species or molecular
features associated with individual ageing or mutant PCs could be
carried out based on these weights. However, this would be beyond
the scope of this proof of principle study.

DISCUSSION

In this study we successfully constructed and tested a lipid clock
using C. elegans. We used C. elegans because samples for ageing

FIGURE 4 | Simulated Survival Curves: Thick step curves represent data from experimental lifespan experiments. The thin lines are a total of 100 Monte Carlo
simulations, with their average depicted as dotted lines.
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cohorts can be generated rapidly in this short-lived organism and
because of the availability of mutant strains that differ
substantially in lifespan and biological aging rate. However,
the methodology described would work without major
modification for lipid extracts from samples of other biological
origin, including lipids extracted from blood plasma. Here, we
focused on three nematode strains, two long-lived and one short
lived and compare them to WT aging, demonstrating that it is in
principle possible to use lipidome signatures to construct a lipid-
based “clock”.

Change in an aging organism is driven by cumulative changes
that are slow when compared to physiological responses, which
are characterized by rapid dynamical change, such as oscillations
and cycles or, following perturbation, rapid return to equilibrium.
Aging is therefore expected to be a major source of variance when
analyzing data describing a biological system across its lifespan.
PCA is a technique to identify correlated features or “directions”
in feature space along which covariance is large and this can be
exploited in the construction of clocks and classifiers (Tarkhov
et al., 2019; Minteer et al., 2020).

Previous works have shown that the several of the first (most
important) Principal Components generally correlate with age
and PC1 is considered predominantly capture aging dynamics
(Tarkhov et al., 2019; Levine et al., 2020; Tarkhov et al., 2022). As
expected, in our dataset, the first PCs, representing most of the
variance in the data, show strong correlations with age
(Figure 1.). These PCs are prime candidates for inclusion
when constructing aging clocks. Indeed, 7 out of the first 10
principal components—accounting for 92% of the variance—are
automatically selected by our elastic net model. However, it

should be noted that not all PCs show aging patterns that are
consistent between WT and mutant cohorts (Figure 1). This is
expected as the mutant strains that we chose are characterised by
significant perturbations in food intake (eat-2), aging rate and
stress response (age-1) and mitochondrial metabolism/oxidative
damage (mev-1). All have lifespans substantially different
from WT.

Despite 1) these differences and 2) the comparatively small
dataset, our lipid clock was able to identify both acceleration and
slowing of biological aging in these mutant strains. The model not
only correctly identified strains that age faster or slower in terms
of their biological (lipid) age comparedWT, but these data can be
used to scale survival curves and predict lifespans with relatively
high accuracy (Figure 4.). It is noteworthy that in constructing
the clock, we never made use of any of the aged mutant samples.
At no point did we encode remaining lifespan or strain-specific
morality as training variable. Even though the model therefore
had never “seen” data on biological aging for any of the mutant
strains, it correctly identified fast agingmev-1 as biologically older
than their chronological age and slow-aging age-1/eat-2 as
biologically substantially younger. This indicates that aspects
of aging have signatures in lipid space that are universal or at
least preserved between WT and diverse mutant strains.

In this study, we did not focus on the specific changes in lipid
species, but rather on the global changes in lipid space that can
correlate with lifespan. Further analysis of these changes to the
lipidome may provide insights into signalling membrane
composition and metabolic changes involved in aging with
specific lipids involved in specific physiological process (de
Diego et al., 2019).

FIGURE 5 | Lipid composition of Principal Components; The top panel shows the lipid species with positive weights in each principal component. The bottom
graph shows the distribution of negative weighs for each of the PCs.
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Analysing the principal components and their weighted
composition of lipid species, we can give indications on the
interpretations of these PCs. If a lipid has a negative weight in
a PC, and the PC is positively correlated with age, the lipid will
decrease with age. If the PC is negatively correlated with age, and
the lipid has negative weights, the lipid will increase. For positive
weights the reverse is true. Analysing the composition of the
individual PCs, we find that for the 1st PC almost all lipid species
have a negative weight and PC1 is the only PC for which this is the
case. PC1 being positively correlated with age, having a Pearson
correlation coefficient of r = 0.82 for the wildtype, means that PC1
captures lipid species that are correlated with each other and that
decrease with age in the wildtype.

PC2 is both positively correlated with age for all the strains and
has a significant weight in the elastic net regression. Analysis of the
lipid species involved in PC2 showed an age-dependent increase in
certain Ceramide species and a decrease in LPCs. This is consistent
with recent studies that describe an increase of Ceramides (Sacket
et al., 2009; Khayrullin et al., 2019) and a decrease of LPCs with age
(Gonzalez-Freire et al., 2019). Furthermore, LPC 20:4, LPC 18:2
and LPC 18:1 are associated with aging phenotypes such as LPC 18:
2 being a strong predictor of accelerated decline in gait speed
(Gonzalez-Freire et al., 2019), low LPC 20:4 is associated with
decreased mitochondrial oxidative capacity (Semba et al., 2019),
and LPC 18:1 being a biomarker for human longevity with higher
concentrations in the plasma of centenarians (Montoliu et al.,
2014). In our case, LPC 18:1 and LPC 20:4, have strong negative
weight in the first Principal Component, whereas LPC 18:2 has the
second largest negative weight in PC2, while LPC 18:1 is still
weighted heavily.

Consistent with other recent developments in aging clocks, we
find that dimensionality reduction by PCA prior to regression
functions well in constructing aging clocks (Minteer et al., 2020).
One drawback of PCA and linear regression methods is that they
can only capture linear dependencies. However, signatures of
non-linear dynamics may be accounted for by further refinement,
for example using Mutual Information scaled PCA, kernel
methods or neural networks to extract more representative
features. Such approaches would however require substantially
larger datasets if available, but may further enhance the
predictive power.

Our findings suggest that lipid clocks may be a promising
addition to the emerging field of -omics-derived aging clocks.
Lipids are a diverse class of molecules that play a pivotal role in
many physiological processes. A limitation of this study is that it
is currently based on whole body lipid extracts while lipids clocks
suitable for human studies would have to be based on lipid
signatures available based on less invasive samples, in
particular lipid extracts from body fluids such as plasma or
urine. However, lipids derived from human blood serum are
affected by physiological and pathophysiological process
throughout the body. There is an abundant existing literature
regarding specific blood lipids and lipid signatures and their link
with aging, disease risk and disease processes (Ridker et al., 2005;
Shah et al., 2008; Arsenault et al., 2011; Gonzalez-Covarrubias
et al., 2013; de Diego et al., 2019; Lim et al., 2020). Lipid clocks
may therefore be an attractive option for systems-level readouts

of age-dependent metabolic and disease status that can be
constructed using a class of molecules accessible in body fluids.

CONCLUSION

In this study we developed to our knowledge the first lipid based
predictor of biological age and named it “LipidClock”. This is a
proof-of-principle study demonstrating that lipid composition
can be used to infer biological age in a similar way as can DNA
methylation or transcriptional changes. The LipidClock consists
of the application of Principal Component Analysis to transform
(rotate) coordinates in feature space, followed by Elastic Net
Regression. Applied to the nematode C. elegans and trained on
ageing changes in the lipid composition ofWT animals, yielding a
Mean Absolute Error of 1.45 days in WT animals. Furthermore,
this approach successfully infers biological age of the two long-
lived mutant strains, although the model over-estimates ageing in
the fast ageing mev-1 strain.

Using these predicted aging rates for mutant strains to simulate
survival curves, we find that the predicted survival curves qualitatively
align with empirical survival for the same strains. This analysis shows
that information on the aging rate of C. elegans is encoded in the
lipidome and that key aspects of these lipid-encoded ageing patterns
are conserved betweenWT animals and mutant strains, even though
these mutants experience substantially different lifespans. Using the
same approach, LipidClocks could be developed for other organisms,
including other invertebrate models, mammals or (based e.g., on
blood lipids) humans. In addition to their potential use as age-
classifiers, such clocks might provide insight in lipid related
mechanisms of ageing. While we did not carry out in-depth
analysis in terms of specific lipid classes, lipid species or
mechanisms, such information is encoded in the rotation matrix
of the PC analysis and in the weights in the clock classifier. These data
could be used as basis for “lipid-set enrichment” or pathway analysis
in a similar fashion to gene-set and pathway enrichment analysis in
the context of transcriptional data, although the relevant tools are not
yet as well developed for lipid analysis. Fundamentally, as other have
pointed out, it is likely that similar “omics clock” approaches can be
fruitfully applied to many different types of high-dimensional
ageing data.
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