

Corrigendum: In Vivo Pooled Screening: A Scalable Tool to Study the Complexity of Aging and **Age-Related Disease**

Martin Borch Jensen¹* and Adam Marblestone^{2,3}*

¹Gordian Biotechnology, San Francisco, CA, United States, ²Astera Institute, San Francisco, CA, United States, ³Federation of American Scientists, Washington D.C., CA, United States

Keywords: in vivo, pooled screening, direct in vivo screening, aging models, animal models, gene therapy, single cell sequencing, barcoding

A corrigendum on

In Vivo Pooled Screening: A Scalable Tool to Study the Complexity of Aging and Age-Related Disease

by Borch Jensen, M., and Marblestone, A. (2021). Front. Aging 2:714926. doi:10.3389/fragi.2021.714926

In the original article, there was a mistake in Table 1 as published. A typo caused the entry for "Optimal payload size" for AAV to be listed as 3-4.5 kb, rather than the intended 4-4.5 kb. The corrected Table 1 appears below.

The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.

OPEN ACCESS

Edited and reviewed by:

Christian G. Riedel. Karolinska Institutet (KI), Sweden

*Correspondence:

Martin Borch Jensen martin@gordian.bio Adam Marblestone adam@astera.org

Specialty section:

This article was submitted to Interventions in Aging, a section of the journal Frontiers in Aaina

Received: 29 October 2021 Accepted: 17 November 2021 Published: 03 December 2021

Borch Jensen M and Marblestone A (2021) Corrigendum: In Vivo Pooled Screening: A Scalable Tool to Study the Complexity of Aging and Age-Related Disease. Front. Aging 2:804856.

doi: 10.3389/fragi.2021.804856

TABLE 1 | Delivery modalities for in vivo pooled screening

	AAV	Lentivirus	Adenovirus	Lipid nanoparticle (with mRNA/siRNA)	siRNA/antisense oligos
Targetable tissues and cell types	Many (liver, muscle, brain, eye, lung, heart, and more)	Many	Many	Mainly hepatocytes, vasculature reported	Mainly liver and kidney, neurons with direct injection
Inter- and intra- tissue spread	Medium-high	Low	Low	Medium	High
Duration of treatment possible	Stable episomal expression in non- dividing cells for months+	Stable integration in dividing and non-dividing	Stable episomal expression in non- dividing cells for months+	Days to weeks, unless gene editing modalities delivered	Days to weeks
Optimal payload size	4-4.5 kb	7–8 kb	8–30 kb	Any	<100 bp
Payload vector construction	Moderate	Moderate	Hard	Easy	Easy but expensive
Immunogenicity	Low	Medium	High	Low	Low-High

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Borch Jensen and Marblestone. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

1