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LEARNING-RELATED POSTBURST AHP ALTERATIONS
In pyramidal neurons, the postburst AHP is evoked by a burst of 
action potentials and is defi ned by its three phases: fast, medium 
and slow. As there are many excellent in depth reviews regarding 
the postburst AHP (e.g.: Nicoll, 1988; Storm, 1990; Sah, 1996; Sah 
and Faber, 2002; Wu et al., 2002; Faber and Sah, 2003; Disterhoft 
and Oh, 2006a, 2007), we will focus on the learning and the aging-
related alterations for each of the phases in this review.

FAST AFTERHYPERPOLARIZATION (fAHP)
The fAHP, which lasts 2–5 ms, is a signifi cant part of the repolari-
zation process following an action potential in neurons (Storm, 
1987). In hippocampal pyramidal neurons, the fAHP measured 
at the soma is mainly a voltage and calcium-dependent potassium 
current, I

C
, mediated by BK channels (Poolos and Johnston, 1999). 

Recently, Elizabeth Matthews in our laboratory demonstrated that 
the BK mediated fAHP is signifi cantly reduced in CA1 pyramidal 
neurons following successful trace eyeblink conditioning task in 
young adult (Matthews et al., 2008) and in aging rats (Matthews 
et al., 2009) (Figure 1B). However, there was no signifi cant age-
related difference in the fAHP in these neurons (Matthews et al., 
2009) (Figure 1D).

MEDIUM AND SLOW POSTBURST AFTERHYPERPOLARIZATION 
(mAHP; sAHP)
The burst of action potentials in pyramidal neurons is followed by 
the medium and slow postburst afterhyperpolarization. In most 
pyramidal neurons, the two phases are identifi ed by their sensitivity 
to the bee venom, apamin (Sah, 1996; Sah and Faber, 2002; Stocker, 

INTRODUCTION
There is little question that learning new tasks becomes more dif-
fi cult with normal aging; especially those tasks that rely on the 
hippocampus and related medial temporal lobe structures for 
forming episodic, or declarative, memories. It has even been sug-
gested that age-related cognitive defi cits starts as early as 20-years 
old in humans (Salthouse, 2009). As this special issue of Frontiers 
in Aging Neuroscience can attest, there are many potential con-
tributing factors and targets to systematically evaluate in order to 
understand the cellular alterations that accompany normal aging 
and the aging-related learning and memory impairments. Given 
the importance of the hippocampus in forming new memories, the 
hippocampus has been, and continues to be, a brain region that is 
extensively studied.

In this review, we will focus on data gathered from both in vitro 
and in vivo experiments that demonstrate changes in the neural 
circuitry of hippocampal CA1 region that occurs with learning 
and normal aging. Specifi cally, we will relate the alterations in 
intrinsic excitability (as refl ected by the postburst afterhyperpo-
larization, AHP) measured in vitro to the dynamic in vivo neuronal 
changes observed in CA1 pyramidal neurons that are necessary 
for successful learning. We will discuss other brain regions that 
also undergo similar intrinsic excitability changes (in the post-
burst AHP) with learning and aging. In addition, we will review 
potential cellular mechanisms that are involved in establishing the 
 learning-related postburst AHP alteration observed in hippocam-
pal pyramidal neurons as well as how these cellular mechanisms 
may be altered with normal aging and lead to learning and memory 
impairments.
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2004; Disterhoft and Oh, 2006a). The mAHP typically lasts for 
hundreds of milliseconds (Sah and Faber, 2002) and is blocked by 
apamin (Sah, 1996; Stocker et al., 1999; Oh et al., 2000; Sah and 
Faber, 2002; Sailer et al., 2002; Stocker, 2004). Thus, the channel 
that underlies the mAHP is generally considered to be the apamin-
 sensitive SK channel which mediates this calcium-dependent potas-
sium current (Sah and Faber, 2002; Stocker, 2004). However, there 
is also evidence that I

M
 and I

h
, and not apamin-sensitive SK chan-

nels, may mediate the mAHP in CA1 pyramidal neurons (Gu et al., 
2005). The sAHP is not affected by apamin and is mediated by a 
calcium-dependent potassium current that lasts for seconds, but 
the channel that underlies this current has yet to be identifi ed (Sah 
and Faber, 2002; Disterhoft and Oh, 2006a). Although the channel 
identity of the sAHP is unknown, the sAHP channels have been 
shown to be localized on the proximal dendrites and/or soma of 
CA1 neurons (Sah and Bekkers, 1996; Bekkers, 2000). Since both 
the mAHP and sAHP are observed after a burst of action potentials 
and undergo similar learning and aging-related changes, we will 
refer to both of them throughout our manuscript as the postburst 
AHP, unless specifi ed.

We and others have repeatedly demonstrated that the  postburst 
AHP is signifi cantly reduced in hippocampal pyramidal neurons 
from animals that have successfully learned an associative task. 
For example, the postburst AHP is signifi cantly reduced in CA1 
and CA3 pyramidal neurons following trace eyeblink condi-
tioning (Figure 1A) (Moyer et al., 1996, 2000; Thompson et al., 
1996a; Kuo et al., 2008; Matthews et al., 2008, 2009; Oh et al., 
2009), spatial water maze learning (Oh et al., 2003), and olfac-
tory discrimination learning (Zelcer et al., 2006). Recently, the 
postburst AHP has been shown to be signifi cantly reduced in 
CA1 pyramidal neurons following contextual and trace fear con-
ditioning (Kaczorowski and Disterhoft, 2009; McKay et al., 2009). 
Additionally, successful olfactory rule learning has been shown 
to signifi cantly reduce the postburst AHP of piriform cortical 
neurons (Saar et al., 1998; Saar and Barkai, 2003). The functional 
consequence of the learning-related postburst AHP reduction 
in these hippocampal pyramidal and piriform cortical neurons 
is that these neurons are able to fi re signifi cantly more action 
potentials to a prolonged depolarizing stimulus: i.e., the intrinsic 
neuronal excitability of these neurons is increased by the reduced 
postburst AHP.

In accordance with the role of the hippocampus for memory 
formation, the learning-related postburst AHP reduction in hip-
pocampal pyramidal neurons is also transient. Numerous lesion 
studies have demonstrated that an intact hippocampus is nec-
essary for successful learning, but the hippocampus is not the 
storage site of memory. For example, an elegant study by Richard 
Thompson and colleagues (Kim et al., 1995) demonstrated that 
bilateral hippocampal lesions 1 day after rabbits had learned the 
trace eyeblink conditioning task abolished the memory of the 
learned conditioned eyeblink responses in these rabbits. However, 
if the same bilateral hippocampal lesions were performed a month 
after the rabbits had learned the trace eyeblink conditioning task, 
there was no defi cit in recall of the learned conditioned response. 
This effect was presumably due to the fact that the memory of the 
learned association had been transferred to the neocortex from the 
hippocampus. These data are in full agreement with the in vitro 
biophysical studies by Disterhoft and colleagues (Moyer et al., 
1996; Thompson et al., 1996a) who demonstrated that the learn-
ing-related postburst AHP reduction in hippocampal pyramidal 
neurons are maximal 1 day after the rabbits have learned the 
trace eyeblink conditioning task and subsequently returned to 
the basal, naïve state within a week after the rabbits have learned 
the task. Thus, these studies together suggest that the learning-
related increased intrinsic excitability of hippocampal pyramidal 
neurons (via a postburst AHP reduction) observed immediately 
after successful learning is essential for transfer of the learned 
memory to neocortical regions where consolidation of the learned 
association takes place.

The postburst AHP has been demonstrated to be signifi cantly 
larger in CA1 pyramidal neurons with normal aging (Landfi eld 
and Pitler, 1984; Kumar and Foster, 2002, 2007; Disterhoft and 
Oh, 2007; Gant and Thibault, 2009). The functional consequence 
of this age-related postburst AHP enlargement is that these CA1 
neurons fi re fewer action potentials to a prolonged depolarizing 
stimulus: i.e., the intrinsic neuronal excitability of these neu-
rons is reduced by the larger postburst AHP. This age-related 

FIGURE 1 | Learning and aging-related alterations in the fast, medium 

and slow afterhyperpolarizations. Illustrated are examples of the postburst 
AHPs evoked with a 50Hz train of action potentials from young adult (3–4 mo) 
and aging (29–31 mo) rats. The action potentials are truncated for illustrative 
purposes. The fast AHP was measured from individual action potentials that 
were elicited by an 800 ms depolarizing current step suffi cient to elicit a 
minimum of 4 action potentials. The fast (B), medium and slow (A) 
afterhyperpolarizations (AHP) are signifi cantly reduced in CA1 pyramidal 
neurons from both young and aging rats that successfully learned the 
hippocampus-dependent trace eyeblink conditioning task. (C) The medium 
and slow AHPs are signifi cantly larger in CA1 neurons from behaviorally naïve 
aged rats as compared to those from young adults. (D) However, the fast AHP 
is not altered with aging in behaviorally naïve rats. These data suggest 
potentially different cellular mechanisms are involved in modulating learning-
related AHP reductions from those that are involved in aging-related 
alterations in the medium and slow AHPs. Reprinted with permission from 
Matthews et al. (2009) © by the Society for Neuroscience.
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postburst AHP increase in CA1 pyramidal neurons has been 
 postulated to be a factor in the age-related learning impairments 
(Disterhoft and Oh, 2006a, 2007; Foster, 2007) as nearly half of 
the aging animals failed to learn the trace eyeblink conditioning 
task (Thompson et al., 1996b; Knuttinen et al., 2001) and com-
pounds (e.g., cholinesterase inhibitors) that reduced the postburst 
AHP in CA1 pyramidal neurons from aged animals ameliorated 
the age-related learning defi cit (Disterhoft and Oh, 2006b). An 
important fi nding is that those aging animals that successfully 
learn the trace eyeblink conditioning task have neurons with 
signifi cantly reduced postburst AHPs that are nearly identical 
to those in CA1 neurons from young adult animals that learned 
(Moyer et al., 2000) (Figure 1C). Furthermore, those aged rats 
with smaller, young-like postburst AHP measures comprised the 
cognitively aged-unimpaired group that were able to successfully 
learn the spatial water maze task (Tombaugh et al., 2005). Taken 
as a whole, these data suggest that the large postburst AHP in 
aging CA1 neurons prevent these neurons from participating in 
the neural network necessary for successful learning of hippoc-
ampus-dependent tasks. However, if these aging CA1 neurons are 
restored to a young-like state with pharmacological compounds 
(Disterhoft and Oh, 2006b, 2007) or remain in a young-like state 
(Tombaugh et al., 2005), then these aging CA1 neurons can suc-
cessful be integrated into the neural network that is required for 
hippocampus-dependent learning to occur.

LEARNING AND AGING-RELATED ALTERATIONS IN VIVO

The in vitro AHP data strongly suggest that the intrinsic neuro-
nal excitability change is a critical factor for successful learning. 
However, they do not address causality or the relationship between 
the  learning-related AHP changes and successful learning. To shed 
light on this question, we have extended the original experiments 
of Berger et al. (1976) [who demonstrated hippocampal unit 
changes during delay (a non-hippocampus dependent) eyeblink 
conditioning in rabbits] by performing a series of in vivo record-
ings in the CA1 region as subjects were trained on the hippoc-
ampus-dependent trace eyeblink conditioning task (reviewed in: 
Disterhoft and Oh, 2006a).

The activity of CA1 pyramidal neurons in vivo is  dramatically 
increased prior to initial expression of a conditioned eyeblink 
response (McEchron and Disterhoft, 1997), or the “ah-ha” 
moment. After the learned response becomes consistent and 
even overlearned, the neuronal activity of many CA1 pyramidal 
neurons is suppressed/inhibited during training trials (McEchron 
and Disterhoft, 1997). These data suggest that initially acquiring 
a hippocampus-dependent task requires an increase in neuronal 
activity in the CA1 region which can be provided by the learning-
related reduction of the postburst AHP. But during overtraining, 
active inhibition may be necessary for persistence of memory and 
to insure that only stimuli relevant to expression of the learned 
response pass through the hippocampal circuit. This active inhi-
bition may also be a protective cellular mechanism to prevent 
over excitation of the neural circuit that may lead to pathologi-
cal conditions, such as infl ammation and apoptosis. But how is 
this inhibition achieved? Recent in vitro data gathered by Bridget 
McKay in our laboratory indicate that synaptically mediated inhi-
bition onto CA1 pyramidal neurons is increased while the synaptic 

and somatically evoked postburst AHP is reduced in hippocampal 
slices from rats that have successfully learned the trace eyeblink 
conditioning task (McKay and Disterhoft, 2008). Thus, these con-
gruent in vivo and in vitro data suggest that the learning-related 
postburst AHP reduction may well precede the expression of the 
learned response.

In addition to the learning-related alterations in fi ring rate in 
vivo, the basal fi ring rate of CA1 pyramidal neurons may be directly 
correlated with the postburst AHP. As stated previously, there are 
two distinct populations in the aging group: those that are able 
to successfully learn and those that fail (Thompson et al., 1996b; 
Knuttinen et al., 2001; Tombaugh et al., 2005). Notably, aging ani-
mals that are able to learn have postburst AHPs that are similar to 
that observed in young adults (Moyer et al., 2000; Tombaugh et al., 
2005) and have in vivo basal fi ring rates that are also similar to that 
observed in young adults (McEchron et al., 2001). Those aging 
animals that fail to learn have signifi cantly larger postburst AHPs 
(Moyer et al., 2000; Tombaugh et al., 2005) and have signifi cantly 
lower in vivo basal fi ring rates than young adults (McEchron et al., 
2001). However, the in vivo basal fi ring rate of CA1 neurons from 
aging animals can be elevated by pharmacological compounds that 
also reduce the postburst AHP in vitro and ameliorate the age-
related learning impairments (Thompson et al., 1990) (Figure 2). 
Therefore, modulation of intrinsic neuronal excitability of hip-
pocampal pyramidal neurons has a direct impact on the neuronal 
network activity.

LEARNING-RELATED POSTBURST AHP ALTERATIONS IN 
OTHER BRAIN REGIONS
Work by Edi Barkai and colleagues has demonstrated that piriform 
cortical neurons undergo similar learning-related postburst AHP 
reductions as those observed in hippocampal pyramidal neurons 
(Saar et al., 1998; Saar and Barkai, 2003). Given the similarities in 
the learning-related postburst AHP reductions between the piri-
form cortical neurons and the hippocampal pyramidal neurons, it 
would seem logical to assume that reduction in the postburst AHP 
is a cellular mechanism of learning and even perhaps memory in all 
pyramidal neurons. However, this is apparently not the case. Rather, 
it is the proper modulation of the postburst AHP of the pyramidal 
neurons in a particular brain region that is the key.

Recent work by Porter and colleagues demonstrate the point 
regarding optimal modulation, for neurons in prefrontal cortex 
(Santini et al., 2008). The infralimbic prefrontal pyramidal neurons 
have been shown to be involved in learning to extinguish the learned 
fear response (Quirk et al., 2003; Pare et al., 2004). However, it has 
also been suggested that tonic activity of these infralimbic neurons 
contributes to the suppression of the fear response (Santini et al., 
2008). Thus, the intrinsic excitability of these infralimbic neurons 
is reduced (via increase in the postburst AHP, resulting in stronger 
spike-frequency adaptation) after a rat has learned fear condition-
ing (Santini et al., 2008). Furthermore, the postburst AHPs of these 
infralimbic neurons are restored to the pre-fear conditioned state after 
extinction training sessions (Santini et al., 2008). Thus, the proper 
modulation of the postburst AHP in these infralimbic neurons is the 
converse of the changes seen in hippocampal and piriform cortical 
pyramidal neurons and is an essential part of the neural network to 
allow both the formation and extinction of the fear memory.
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In addition to the learning-related postburst AHP modula-
tion, the pharmacological modulation of the postburst AHP also 
needs to be appropriate for the relevant brain region. In the hip-
pocampal pyramidal neurons, pharmacological compounds that 
reduce the postburst AHP have been shown to be benefi cial in 
reversing the age-related learning impairments (reviewed in: Wu 
et al., 2002; Disterhoft and Oh, 2006b, 2007). In the infralimbic 
pyramidal neurons, activation of PKA has been shown to reduce 
the postburst AHP and increase the excitability of these neurons 
(Mueller et al., 2008) which is an essential component of extinc-
tion learning (Santini et al., 2008). However, for normal working 
memory tasks, over excitation of prefrontal pyramidal neurons (i.e., 
postburst AHP reductions) with pharmacological compounds that 
activate protein kinases has been shown to be detrimental in both 
young and aging subjects (Taylor et al., 1999; Ramos et al., 2003; 
Birnbaum et al., 2004; Arnsten et al., 2005; Brennan et al., 2009). 
Luebke and colleagues found that increased fi ring in layer 2–3 pre-
frontal pyramidal neurons is correlated with poor performance 
on the delayed non-matching to sample task (Chang et al., 2005). 
Therefore, successful learning is reliant on the proper modulation 
of the intrinsic excitability of pyramidal neurons (via modulating 
the postburst AHP) within the particular cortical region that is 
engaged during learning.

PROTEIN KINASE A, LEARNING AND NORMAL AGING IN THE 
HIPPOCAMPUS
Protein kinase A (PKA) is not the sole protein kinase that impacts 
the postburst AHP. Other kinases, such as protein kinase C and 
α-calcium/calmodulin-dependent kinase II, are also capable of 
modulating the postburst AHP (Nicoll, 1988; Wu et al., 2002; 
Disterhoft and Oh, 2006a). There is also evidence that the post-
burst AHP is maintained by a balance in the activity of protein 
kinases and phosphatases (Pedarzani et al., 1998). However, 
the importance of PKA in contributing to the learning-related 

postburst AHP reduction has recently been demonstrated in rat 
CA1 pyramidal neurons after trace eyeblink conditioning (Oh 
et al., 2009). Activation of PKA has been shown to signifi cantly 
reduce the postburst AHP in hippocampal pyramidal neurons 
from behaviorally naïve (Pedarzani and Storm, 1993, 1996; Wu 
et al., 2002; Disterhoft and Oh, 2006a; Oh et al., 2009) and pseu-
doconditioned (Oh et al., 2009) subjects. However, the postburst 
AHP in CA1 neurons from animals that successfully learned 
the trace eyeblink conditioning task was not reduced by PKA 
activation: i.e., the effect of PKA on the postburst AHP from 
trained animals was occluded (Oh et al., 2009) (Figure 3). PKA 
has been extensively studied in regards to its activity in long-
term synaptic potentiation and in the CREB signaling cascade 
(Impey et al., 1999; Bailey et al., 2000; Kandel, 2001). It has also 
been shown that activation of CREB can signifi cantly reduce the 
postburst AHP in CA1 pyramidal neurons (Lopez de Armentia 
et al., 2007). Thus, the cellular signaling molecule that mediates 
long-term synaptic changes and activates the protein synthe-
sis cascade (PKA) is also involved in mediating the learning-
related postburst AHP reduction. Studies are underway in our 
laboratory to determine if the same signaling molecules and 
pathways are activated to maintain the learning-related intrinsic 
excitability changes.

Alteration in PKA activity, in addition to the age-related enlarge-
ment of the postburst AHP in hippocampal pyramidal neurons, 
may contribute to the normal aging-related learning impairments 
(Disterhoft and Oh, 2006a, 2007; Gant and Thibault, 2009). Age-
related adenylyl cyclase (AC) 1 and 9 mRNA reductions in the 
hippocampus have been suggested to be a factor in the age-related 
spatial learning impairments (Mons et al., 2004). Notably, com-
pounds that enhance cAMP/PKA signaling in the hippocampus 
have been shown to ameliorate this age-related spatial learning 
defi cit (Bach et al., 1999). Furthermore, alterations in PKA activ-
ity have been linked to Alzheimer’s disease; as β-amyloid has been 

FIGURE 2 | Baseline in vivo fi ring rate of CA1 pyramidal neurons is 

signifi cantly enhanced with L-type calcium channel blocker nimodipine. 

(A) Single-unit discrimination (fi ring neurons) using the spike separation algorithms 
is illustrated. The top left trace shows 1 s of a typical multi-unit signal recorded 
midway through stratum pyramidale of fi eld CAl in the dorsal hippocampus with 
clear theta frequency (4–8 Hz) modulation of the fi ring of many cells. The lower left 
trace shows 5 s of a classic “single-unit” signal (pyramidal neuron) recorded in the 

same rabbit. Simple window discrimination of this “unitary” signal (possessing 
fairly uniform peak-to-peak spike amplitude) would yield a frequency estimation of 
2.0 ± 0.3 Hz. (B) Intravenous infusion of nimodipine signifi cantly increased the 
spontaneous activity of CA1 pyramidal neurons (fi lled circles) while reducing the 
spontaneous activity of theta (interneuron) cells (open box) recorded from the 
dorsal hippocampus of aging rabbits. Reprinted with permission from Thompson 
et al. (1990) © Elsevier Science Publishers B. V. (Biomedical Division).
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shown to inactivate PKA in hippocampal neurons (Vitolo et al., 
2002) and AC type 1 has also been shown to be reduced in hippoc-
ampus of Alzheimer’s disease patients (Yamamoto et al., 2000). It is 
also been demonstrated that the activity of calcineurin (a protein 
phosphatase) is increased in the CA1 region with normal aging 
(Foster et al., 2001; Monti et al., 2005). Calcineurin activity has 
been shown to reduce CREB activation (Bito et al., 1996; Winder 
and Sweatt, 2001). Notably, the increased calcineurin activity has 
been correlated with learning defi cits on the spatial water maze 
task and reduced CREB activity in aging subjects (Foster et al., 
2001). Thus, the cellular mechanism that is important for suc-
cessful learning and protein synthesis may be compromised with 
normal aging that leads to learning impairments and subsequent 
pathology of aging.

CALCIUM, LEARNING AND AGING
As the postburst AHP is mainly mediated by calcium-dependent 
potassium currents, compounds that block voltage-gated cal-
cium channels (VGCCs) have been suggested to facilitate learn-
ing. Specifi cally, L-type VGCCs have received much attention 
since these channels have been linked to the slow AHP current 
(Marrion and Tavalin, 1998), are found predominantly on the 
soma and proximal dendrites (Westenbroek et al., 1990; Hell 
et al., 1993; Christie et al., 1995; Magee and Johnston, 1995a), 

and contribute signifi cantly to the slow AHP (Norris et al., 1998; 
Thibault et al., 2001; Power et al., 2002). L-type VGCC blockers 
have been shown to facilitate reversal learning (McMonagle-
Strucko and Fanelli, 1993) and enhance inhibitory avoidance 
learning (Quevedo et al., 1998) in normal young adults. Recently, 
we have found that protein levels of L-type VGCC subunits 
(Ca

V
1.2 and Ca

V
1.3) are signifi cantly reduced in the CA1 region 

from young adult rats that have  successfully learned the trace 
eyeblink conditioning task (Oh et al., 2008; Nunez-Santana et al., 
2009). Thus, alteration of VGCCs may contribute to the  learning-
related postburst AHP reduction in CA1 pyramidal neurons and 
to successful learning.

The “Calcium Hypothesis of Brain Aging” (Gibson and Peterson, 
1987; Landfi eld, 1987; Khachaturian, 1989, 1994; Khachaturian 
et al., 1989; Disterhoft et al., 1994) has been a major inspiration 
of research into examining alterations of calcium with normal 
aging. The L-type VGCCs have been a focus of attention as numer-
ous studies have shown age-related increases in L-type VGCCs 
in CA1 hippocampal neurons resulted in enhanced calcium cur-
rent and postburst AHP (Landfi eld and Pitler, 1984; Moyer et al., 
1992; Moyer and Disterhoft, 1994; Thibault and Landfi eld, 1996; 
Norris et al., 1998; Power et al., 2002; Veng and Browning, 2002). 
Blockade of L-type VGCCs with nimodipine has been shown to 
be benefi cial in reversing the age-related learning impairments 
in trace eyeblink conditioning (Deyo et al., 1989), in increasing 
the basal fi ring rate of CA1 neurons in vivo (Thompson et al., 
1990), and in signifi cantly increasing intrinsic excitability of 
CA1 neurons in vitro by reducing the postburst AHP (Moyer 
et al., 1992; Campbell et al., 1996; Norris et al., 1998; Kumar and 
Foster, 2002; Power et al., 2002). However, the postburst AHP 
can still be evoked in young and aging neurons after complete 
L-type VGCC blockade, indicating that other calcium sources and 
mechanisms contribute to the postburst AHP (Power et al., 2002). 
This notion is further supported by experiments that utilized 
knockout mice which lacked either the L-type VGCC Ca

V
1.2 or 

Ca
V
1.3 and found that only deletion of Ca

V
1.3 reduced the slow 

AHP by approximately 40% (Gamelli et al., 2009). Importantly, 
the relative inhibition by the L-type blocker nimodipine reduced 
the currents underlying the AHP by a similar degree in young and 
aged neurons, suggesting that the L-type VGCC may not be the 
sole determinant of the AHP difference during the aging process 
(Power et al., 2002).

Other VGCCs can potentially contribute to the age-related 
postburst AHP enhancement. Studies have shown that VGCCs 
are non-uniformly distributed on CA1 pyramidal cells: L and N-
type VGCCs are found predominantly on the soma and proximal 
dendrites; T and R-type VGCCs are found predominantly on the 
apical dendrites (Westenbroek et al., 1990, 1992, 1995; Christie 
et al., 1995, 1996; Magee et al., 1995; Magee and Johnston, 1995a,b; 
Magee and Carruth, 1999). This pattern of distribution could dif-
ferentially impact the stimulus arriving on the soma and proximal 
dendrites from distal dendrites, given that VGCCs have dissimi-
lar biophysical kinetic properties (Hille, 2001). Takahashi et al. 
(1989) showed that low voltage-activated calcium currents are not 
different from neonatal, young and aged CA1 neurons; however 
these measurements were taken in the somatic region and T-type 
VGCCs are found predominantly on the dendrites. On the other 

FIGURE 3 | Learning occluded the PKA mediated AHP reduction. Examples 
of 1µM isoproterenol’s effect on a CA1 neuron from a naïve (A) and a trace 
EBC (B) rat are illustrated. Note that isoproterenol reduced the postburst AHP 
without abolishing it in the CA1 neuron from the naïve animal (A), whereas, 
isoproterenol had minimal effect on the CA1 neuron from a trained rat (B). The 
APs have been truncated for illustration purposes. Reprinted with permission 
from Oh et al. (2009) © by the National Academy of Sciences.
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hand, Hemond and Jaffe (2005) have reported age-related increase 
in calcium transients evoked with a train of action potentials in 
CA1 pyramidal dendrites, using calcium imaging techniques. The 
distribution of VGCCs still needs to be studied in normal aging. 
Nonetheless, these data strongly suggest that calcium signaling 
is different from soma to dendrites and this may result in physi-
ological events being modulated in many diverse ways; e.g., the 
potential source(s) of calcium for the postburst AHP may be dif-
ferent in neurons from aging as compared to young animals based 
on changes in the distribution of VGCCs.

There are other potential sources that can impact the calcium 
levels with aging. Calcium released from calcium-induced calcium 
release (CICR) mechanisms (via ryanodine receptors on the endo-
plasmic reticulum, ER) has been shown to contribute to the post-
burst AHP (Torres et al., 1995, 1996; Shah and Haylett, 2000) and 
has been demonstrated to be a signifi cant source of calcium for the 
postburst AHP in CA1 neurons from aging animals (Kumar and 
Foster, 2004; Gant et al., 2006). In addition to the ryanodine medi-
ated CICR, intracellular calcium level can be elevated via activation 
of inositol-triphosphate receptors (IP3R) on the ER (Ross et al., 
2005; Watanabe et al., 2006; Hong and Ross, 2007; Power and Sah, 
2007). Notably, binding experiments revealed elevation in IP3R in 
several areas, including the CA1 region, in aging animals (Araki 
et al., 1994). Therefore, alterations in VGCCs are not the only route 
that can directly impact the calcium levels in the cytosol of neurons 
with normal aging.

Calcium buffering and clearance mechanisms have also been 
implicated to be altered with normal aging. An increase in cal-
cium buffering capacity, without a change in resting [Ca2+], has 
been reported in dissociated basal forebrain neurons from aged 
animals, using calcium imaging techniques (Murchison and 
Griffi th, 1998, 2007; Murchison et al., 2009). Recently, using 
calcium imaging techniques with both CCD and two-photon 
laser-scanning microscopy, we have found that calcium buffer-
ing capacity is increased and the resting [Ca2+] is reduced in 
CA1 pyramidal neurons from hippocampal slices of aging as 
compared to young animals (Oliveira et al., 2009). There are 
numerous calcium binding proteins of which calbindin-D28K, 
hippocalcin, parvalbumin and calretinin have been most studied. 
Among them, calbindin-D28K and hippocalcin have been shown 
to be reduced in hippocampus of aged animals (Villa et al., 1994; 
de Jong et al., 1996; Krzywkowski et al., 1996; Kishimoto et al., 
1998; Furuta et al., 1999), while no changes in parvalbumin and 
calretinin were found (de Jong et al., 1996; Krzywkowski et al., 
1996; Kishimoto et al., 1998); thus, excluding these calcium bind-
ing proteins as the source of the increase in calcium buffering 
capacity with aging.

There are multiple pathways to remove free calcium from the 
cytosol. On the plasma membrane, the Na+–Ca2+ exchanger and the 
Ca2+-ATPase are the major proteins extruding calcium (Hille, 2001; 
Nicholls, 2009), and both mechanisms have been demonstrated 
to be decreased with aging (Martinez-Serrano et al., 1992; Zaidi 
et al., 1998). Calcium can also be stored within the mitochondria 
(via Ca2+-uniporter) and the ER (via sarcoplasmic endoplasmic 
reticulum Ca2+-ATPase) (Hille, 2001; Nicholls, 2009). It has been 
suggested that the alteration in the Ca2+ uniporter activity is a source 
of reduced mitochondrial function with normal aging (Satrustegui 

et al., 1996). Concurrently, the loading of the ER was shown to be 
drastically reduced in aging neurons, suggesting impairments in 
SERCA activity (Verkhratsky et al., 1994). These data strongly sug-
gest that the altered calcium clearance mechanisms during aging 
may have signifi cant negative impact on neuronal function.

Collectively, these fi ndings clearly show that altered calcium 
signaling can negatively impact neuronal function, in addition to 
impacting the postburst AHPs, with aging. Notably, L-type VGCC 
blockers, like nimodipine, have been shown to reverse the age-
related impairments in synaptic plasticity (Foster, 1999, 2007), to 
reduce the postburst AHP (Moyer et al., 1992; Campbell et al., 1996; 
Norris et al., 1998; Power et al., 2002), to reduce calcium action 
potentials (Moyer and Disterhoft, 1994), to increase baseline activ-
ity of hippocampal pyramidal neurons (Thompson et al., 1990), 
and to rescue learning in age-impaired subjects (Deyo et al., 1989). 
Furthermore, nimodipine has been shown to have clinical benefi ts 
in aging human studies (Ban et al., 1990). Therefore, pharmaco-
logical approaches that are designed to counteract the age-related 
calcium handling changes (e.g., CICR proteins) that also restore 
the calcium-dependent postburst AHPs to a young-like state may 
ultimately be benefi cial in restoring learning and memory capacity 
of aging individuals.

CONCLUDING REMARKS
Since the “calcium hypothesis of brain aging” was formulated nearly 
30 years ago, numerous laboratories have uncovered important 
pieces of information about the workings of the neuron and the 
neural network. We have chosen to focus our efforts on one of the 
few consistent discoveries, the relationship of a cellular biomarker 
of learning and of aging in the hippocampus, the postburst AHP, 
to cognition in aging (Figure 4). The postburst AHP is reduced 
during the learning process in young adults. With normal aging, the 
postburst AHP is increased resulting in a reduced basal activity of 
the hippocampal pyramidal neurons. It is our hypothesis that this 
reduction in the intrinsic excitability is a cause of cognitive impair-
ment with normal aging (Disterhoft and Oh, 2006a). However, in 
those aging animals that are able to successfully learn, the neuronal 
changes in excitability are similar to those seen in young adults. 
Our challenge, then, is to understand how and why the excitability 
changes occur in neurons from aging brains and cause age-associ-
ated learning impairments. After understanding the changes, we 
may be able to formulate strategies for reversing them, thus mak-
ing old neurons function more as they did when they were young. 
The lack of channel identity that underlies the slow postburst AHP 
limits direct examination of the cellular signaling pathway that leads 
to the learning and aging-related alterations of the slow postburst 
AHP. However, given its calcium dependence for activation, studies 
that have examined alterations in sources of calcium with learning 
(Nunez-Santana et al., 2009) and aging (Thibault and Landfi eld, 
1996; Veng and Browning, 2002; Oliveira et al., 2009) have proved 
to be fruitful. Additionally, studies that have examined the signaling 
cascades involved in gene transcription have identifi ed numerous 
potential signaling molecules that may also be involved in regulat-
ing intrinsic excitability (i.e., postburst AHP) of neurons. Thus, the 
future challenge is to use new cutting-edge technologies [e.g., mul-
tiphoton calcium imaging and gene silencing (siRNA) techniques] 
to identify the molecular components and the signaling cascades 
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FIGURE 4 | Highly simplifi ed schematic of cellular signaling mechanisms 

that modulate the intrinsic excitability (i.e., the postburst AHP) of 

hippocampal pyramidal neurons during learning and with aging. The 
postburst AHP is a cellular response mechanism to a burst of action potentials 
that reduces the membrane potential (makes it more hyperpolarized) and to 
prevent the neuron from fi ring more action potentials. The postburst AHP has 
been consistently found to be altered during learning and with aging, making it 
an ideal cellular “biomarker” of intrinsic excitability change. The postburst AHP 
is activated by Ca2+ ions that enter the cell via VGCCs and those that are 
released from the ER via Ca2+-induced Ca2+ release (CICR) mechanisms. We 
have recent evidence that suggests that the protein levels of L-type VGCCs are 
signifi cantly reduced in CA1 region after successful learning (Nunez-Santana 
et al., 2009) which could contribute to the learning-related postburst AHP 
reduction. We also have shown that PKA activity is involved in mediating the 
learning-related postburst AHP reduction (Oh et al., 2009). The postburst AHP 
has also been shown to be reduced by CREB activation (Lopez de Armentia 

et al., 2007). Given that protein synthesis is essential for learning trace eyeblink 
conditioning (Inda et al., 2005) and that CREB activation is necessary for protein 
synthesis (Kandel, 2001), the cellular mediators of PKA and CREB activation 
should also be impacted by learning and modulate the postburst AHP. The 
postburst AHP is signifi cantly increased with normal aging (Disterhoft and Oh, 
2006a, 2007). There are numerous potential factors for this increase, but a few 
of the major factors are (1) increased L-type VGCCs (Moyer et al., 1992; Thibault 
and Landfi eld, 1996; Norris et al., 1998; Power et al., 2002) (2) increased CICR 
(Kumar and Foster, 2004; Gant et al., 2006), and (3) increased calcineurin 
activity and expression (Foster et al., 2001) that leads to reduction in CREB 
activation (Bito et al., 1996; Bach et al., 1999; Winder and Sweatt, 2001; Mons 
et al., 2004). All of these factors can also lead to cognitive defi cits in aging. 
VGCC: voltage-gated calcium channel. AHP: afterhyperpolarization. K+: 
potassium ion. Ca2+: calcium ion. CICR: Ca2+-induced Ca2+ release. ER: 
endoplasmic reticulum. PKA: protein kinase A. CREB: cAMP response 
element binding.
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