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Depressive symptoms are prevalent in individuals with Parkinson’s disease. Previous 
research has demonstrated a significant association between the triglyceride 
glucose (TyG) index and depression. Leveraging multicenter clinical data, the 
present study evaluates the predictive capacity of the TyG index for depressive 
symptoms in PD patients, aiming to establish its potential role in identifying 
individuals at risk for depression. A comparative analysis of multiple machine 
learning models was conducted to predict depression in PD patients, ultimately 
selecting the most effective model. Key predictive variables, including diabetes 
status, sex, cholesterol levels, triglycerides, blood glucose, and sleep disturbances, 
were incorporated into a support vector machine (SVM)-based nomogram to 
assess depression risk in PD patients. Additionally, a genome-wide association 
study (GWAS) utilizing external databases confirmed a causal relationship between 
the TyG index and depression. Furthermore, this study explores the biological 
functions and molecular mechanisms underlying shared transcriptomic proteins 
between PD and depression, providing insights into potential pathophysiological 
links between the two conditions.
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1 Introduction

Motor impairments in Parkinson’s disease (PD) significantly restrict patient mobility, and 
the resultant slowing of daily activities has a profound impact, particularly on younger 
individuals with occupational responsibilities. These motor limitations, coupled with reduced 
physical activity, contribute to an increasing burden of emotional and psychological symptoms, 
which necessitate growing clinical attention (Xiang et al., 2024). Classical pathways involving 
dopaminergic, serotonergic, and noradrenergic dysfunctions are implicated in the disruption 
of neurotransmitters associated with depression (Fu et al., 2020). Interestingly, depression is 
both a common comorbidity of motor symptoms and may exacerbate these symptoms, but it 
can also precede the onset of motor dysfunction (DeBroff et  al., 2023). Certain genetic 
mutations in PD, such as those in LRRK2 and GBA, have been shown to increase the likelihood 
of developing depressive symptoms (Hasuike et  al., 2020; Hurh et  al., 2022). Thus, 
understanding the relationship between depression and PD is of significant clinical value for 
predicting disease progression.

Previous studies have demonstrated that severe depressive symptoms in PD patients are often 
accompanied by disturbances in glucose and lipid metabolism. Specifically, fasting plasma glucose 
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(FPG) levels have been found to be associated with depression in PD 
patients (Kalyanaraman et  al., 2024). Elevated blood lipid levels, 
conversely, may be linked to an increased risk of PD. This association 
could be due to the neuroprotective role of cholesterol precursors in 
substantia nigra neurons (Jeong et al., 2021; Al-kuraishy et al., 2023; 
Kwon et al., 2023; Lawlor, 2003; Byeon, 2020). Coenzyme Q10 has also 
been suggested to exert neuroprotective effects by reducing cholesterol 
levels, mitigating oxidative stress and inflammation, and regulating 
cholinergic function (Behnoush et al., 2024). Moreover, overexpression 
of phospholipid metabolism has been observed in PD patients. In terms 
of pharmacological interventions, statins, which have anti-inflammatory 
effects, may offer protection to dopaminergic neurons; however, their 
lipid-lowering effects may simultaneously increase the risk of PD (Laux, 
2022; Sun et al., 2025). Additionally, hyperglycemia and insulin resistance 
have been associated with a higher incidence of depression (Wan and Yu, 
2024; Graham et  al., 2017). Genetic correlations between lipid 
metabolism and depression have been reported, and insulin resistance, 
as reflected by the triglyceride-glucose (TyG) index, has gained increased 
attention in recent years for its role in various diseases (Khan et al., 2023). 
Insulin resistance, as indicated by the TyG index, has been inversely 
correlated with depression (Borgonovo et al., 2017; Teng et al., 2022; 
Antar et al., 2021). However, findings regarding gender differences in this 
relationship remain inconsistent, the aim of this study is to investigate 
whether the TyG index is associated with depressive symptoms in PD 
patients and to explore its potential as a predictive marker for both 
depression and PD risk.

2 Methods and methods

2.1 Study population

This study was conducted in three parts. The first part comprised 
a cross-sectional clinical investigation, utilizing retrospective clinical 
and laboratory data from two cohorts: the Haizhu cohort from 
Guangdong Second Provincial General Hospital and the Baoan cohort 
from Shenzhen Baoan People’s Hospital. A total of 300 and 271 
complete cases, respectively, were included, comprising PD patients 
diagnosed between 2013 and 2023. To ensure sufficient statistical 
power, sample size estimation and power analysis were performed. 
Based on prior research data, we hypothesized a mean difference of 
0.3  in the TyG index between the depression and non-depression 
groups, with a standard deviation of 0.6. The statistical power was set 
at 0.8, and the significance level (α) was set at 0.05. Using G*Power 
software, the minimum required sample size to detect this effect size 
was determined to be 260 patients. The retrospective analysis focused 
on demographic characteristics, medical history, and laboratory 
findings, with particular emphasis on blood lipid levels, fasting blood 
glucose, and the TyG index, which was calculated using established 
formulas (Haure-Mirande et al., 2019). Depression was assessed using 
the Hamilton Depression Rating Scale (HAMD), with a score > 10 
indicating depression. Based on this threshold, PD patients were 
categorized into depression (HAMD >10) and non-depression 
(HAMD ≤10) groups. Sleep disorders were evaluated using the 
Pittsburgh Sleep Quality Index (PSQI), with a score > 8 serving as the 
diagnostic criterion (Mollayeva et al., 2016).

The second and third parts of the study employed publicly 
available datasets to investigate the association between PD and 
depression using Mendelian randomization (MR) analysis. The 

exposure variables for the MR analysis included 192 single-nucleotide 
polymorphisms (SNPs) significantly associated with the TyG index 
(p < 5 × 10^−8) from prior studies, while the outcome variables were 
derived from depression-related data in the UK Biobank. Covariates 
included age, sex, stroke, diabetes, sleep disorders, triglycerides (TG), 
and blood glucose. Furthermore, to assess and control for the potential 
influence of horizontal pleiotropy on causal inference, we conducted 
sensitivity analyses using MR-Egger regression, weighted median 
estimation, and MR-PRESSO. These methods were employed to 
ensure that the instrumental variable influenced depression exclusively 
through the TyG index, rather than through alternative pathways. 
Data with continuous imbalance were excluded, and a two-sample 
Inverse variance weighted regression analysis was performed.

Furthermore, differential expression analyses of transcriptional RNA 
in peripheral plasma samples from patients with PD and depression were 
performed using the datasets GSE160299 and GSE39653. This analysis 
identified 28 overlapping genes. These shared proteins were subsequently 
subjected to functional enrichment analyses, including STRING 
protein–protein interaction networks, as well as KEGG and GO pathway 
analyses, to elucidate common molecular mechanisms underlying both 
conditions. All data were obtained from publicly available databases, 
with detailed sources of GWAS data provided in Supplementary Table 1 
(The flowchart is shown in Figure 1).

2.2 Statistical analysis

Categorical variables were compared using chi-square tests, while 
continuous variables were compared with the Mann–Whitney U test. To 
minimize potential confounding effects and ensure comparability 
between groups, propensity score matching (PSM) was applied for 
baseline data adjustment. Logistic regression analysis was conducted to 
identify potential factors associated with depressive outcomes, and 
subgroup analyses were conducted to evaluate the impact of the TyG 
index across different patient subpopulations. To enhance predictive 
accuracy, multiple machine learning models were employed, including 
logistic regression, random forest, support vector machine (SVM), and 
extreme gradient boosting (XGBoost). Model performance was assessed 
using key evaluation metrics, including accuracy, precision, recall, 
F1-score, and the area under the receiver operating characteristic curve 
(AUC), allowing for a comprehensive comparison of their effectiveness 
in predicting depression risk in PD patients. In addition, a clinical 
prediction nomogram was constructed using various selected variables, 
and receiver operating characteristic (ROC) curves were plotted to 
compare the AUC values of different models. Causal MR analysis of the 
TyG index and depression was performed using odds ratios (OR) and 
95% confidence intervals (CI), with heterogeneity considered and 
sensitivity analyses conducted to adjust for potential confounding 
factors. Differentially expressed genes identified between PD, depression, 
and control groups were further analyzed to identify overlapping 
miRNAs as potential key regulators. Protein–protein interactions were 
explored using the STRING online tool and Cytoscape. All other 
statistical analyses were carried out using R version 4.4.2.

3 Results

In this study, 300 PD patients from the Haizhu cohort and 271 
from the Baoan cohort were included. In the Haizhu cohort, 75 patients 
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were diagnosed with depression, while 225 did not have depression. In 
the Baoan cohort, 87 patients were in the depression group, and 184 
were in the non-depression group. Before propensity score matching, 
the depression group showed a higher prevalence of diabetes, female 

sex, sleep disorders, and hyperlipidemia. After matching, clinical and 
laboratory variables were better balanced between the two groups. 
However, the depression group still exhibited a significantly higher 
TyG index (Table 1). Regression analysis revealed that the TyG index 

FIGURE 1

Flowchart of this study. CAD, Coronary artery disease; PD, Parkinson’s disease; HAMD, Hamilton Depression Rating Scale; FPG, Fasting plasma glucose; 
KEGG, Kyoto encyclopedia of genes and genomes; GO, Gene ontology; IVW, Inverse variance weighted.
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TABLE 1 Baseline characteristics of patients with and without depression among participants in the Haizhu and Baoan cohorts, before and after 
propensity score matching (PSM).

Haizhu cohort Original data Propensity score matching

Characteristic No-depression 
(n = 225)

Depression 
(n = 75)

p value No-depression 
(n = 75)

Depression 
(n = 75)

p value

Demographics

Age (years) 79 [72, 86] 77 [73, 85] 0.718 79.11 ± 10.92 78.85 ± 8.55 0.875

Gender (Male) 140 (62.2%) 34 (45.3%) 0.015 36 (48%) 34 (45%) 0.870

Medical history

Hypertension, n (%) 161 (71.6%) 55 (73.3%) 0.882 55 (73%) 55 (73%) 1.000

CAD, n (%) 50 (22.3%) 19 (25.3%) 0.635 26 (35%) 19 (25%) 0.285

Stroke, n (%) 136 (60.4%) 52 (69.3%) 0.215 49 (65%) 52 (69%) 0.728

Diabetes, n (%) 50 (22.2%) 33 (44%) < 0.001 24 (32%) 33 (44%) 0.178

Dementia, n (%) 32 (14.6%) 16 (21.3%) 0.203 11 (15%) 11 (15%) 1.000

Laboratory tests

Cholesterol (mmol/L) 3.97 [3.33, 4.67] 4.3 [3.66, 5.12] 0.005 3.91 [3.5, 4.33] 4.3 [3.66, 5.12] 0.002

HDL-C (mmol/L) 1.1 [0.93, 1.33] 1.14 [0.95, 1.52] 0.145 1.15 [0.96, 1.31] 1.25 [0.98, 1.42] 0.197

LDL-C (mmol/L) 2.25 [1.64,2.9] 2.63 [1.863,3.22] 0.017 2.22 [1.75, 2.7] 2.63 [1.88, 3.15] 0.015

Triglycerides (mmol/L) 0.93 [0.73, 1.31] 1.31 [0.87, 1.73] < 0.001 0.89 [0.74, 1.29] 1.31 [0.87, 1.73] 0.004

FPG (mmol/L) 5.17 [4.56, 6.03] 6.65 [5.29, 8.39] < 0.001 5.65 [4.86, 6.43] 6.65 [5.29, 8.39] 0.001

TyG 8.27 [7.97, 8.73] 8.91 [8.48, 9.21] < 0.001 8.41 ± 0.61 8.81 ± 0.71 < 0.001

Uric acid (umol/L) 335 [261, 395] 341 [263, 395.5] 0.707 327 [254.5, 392.5] 341 [263, 395.5] 0.409

WBC (109/L) 7.2 [5.79, 8.98] 6.73 [5.67, 8.61] 0.289 7.84 [6.48, 8.73] 7.67 [6.06, 7.94] 0.052

Platelets (109/L) 224.5 [190.75, 268.25] 243 [206, 282.25] 0.054 232.5 [208.5, 257.5] 253.2 [213, 276.5] 0.111

Baoan Cohort Original data Propensity score matching

Characteristic No-depression 
(n = 184)

Depression 
(n = 87)

P value No-depression 
(n = 87)

Depression 
(n = 87)

P value

Demographics

Age (years) 74 [67, 81] 72 [64, 76.5] 0.059 75 [67, 81] 72 [64, 76.75] 0.082

Gender (Male) 114 (61.9%) 37 (42.3%) 0.004 54 (62%) 38 (44%) 0.023

Habits

Drinking, n (%) 11 (6.0%) 0 (0) 0.067 5 (6%) 1 (1%) 0.211

Smoking, n (%) 8 (4.3%) 1 (1.1%) 0.279 4 (5%) 1 (1%) 0.368

Medical history

Hypertension, n (%) 101 (54.9%) 53 (60.9%) 0.421 54 (62%) 53 (61%) 0.923

CAD, n (%) 19 (10.3%) 11 (12.6%) 0.621 14 (16%) 12 (14%) 0.832

Stroke, n (%) 65 (35.3%) 36 (41.4%) 0.408 37 (43%) 36 (41%) 0.945

Diabetes, n (%) 50 (27.2%) 35 (40.2%) 0.043 25 (29%) 35 (40%) 0.151

Hyperlipidemia, n (%) 35 (19.0%) 32 (36.8%) 0.003 22 (25%) 30 (34%) 0.246

Sleep disorders, n (%) 10 (5.4%) 12 (13.8%) 0.035 4 (5%) 12 (14%) 0.066

Laboratory tests

Cholesterol, (mmol/L) 3.86 [3.18, 4.63] 4.14 [3.56,4,9] 0.067 4.01 ± 1.02 4.2 ± 1.14 0.252

HDL, (mmol/L) 1.16 [0.97, 1.38] 1.24 [1.07, 1.45] 0.062 1.21 ± 0.32 1.27 ± 0.34 0.221

LDL, (mmol/L) 2.390 [1.803, 3.06] 2.690 [2.14, 3.204] 0.015 2.44 ± 0.95 2.71 ± 0.91 0.061

Triglycerides, (mmol/L) 0.88 [0.7, 1.27] 1.1 [0.81, 1.56] 0.002 0.91 [0.71, 1.31] 1.1 [0.81, 1.56] 0.030

FPG, (mmol/L) 5.19 [4.64, 6.28] 5.36 [4.66, 6.47] 0.675 5.09 [4.64, 6.14] 5.36 [4.66, 6.47] 0.555

(Continued)
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was a key predictor of depressive symptoms in both cohorts. 
Multivariate analysis, which adjusted for diabetes, sex, cholesterol, 
triglycerides, blood glucose, and sleep disorders, confirmed that these 
factors were independent risk factors for depression (Table 2). Machine 
learning model comparisons (Supplementary Table 1) revealed that 
XGBoost outperformed other models across both cohorts, achieving 
the highest accuracy, F1-score, and recall. Random forest also 
demonstrated strong predictive performance, albeit slightly inferior to 
XGBoost, but exhibited greater stability compared to logistic regression 
and support vector machine (SVM). To mitigate the risk of overfitting, 
random forest was selected for constructing the nomogram, which 
demonstrated moderate predictive performance with an area under the 
curve (AUC) ranging from 0.75 to 0.78. Based on these findings, a 
nomogram incorporating these predictive variables was developed to 
assess the risk of depressive symptoms in PD patients (Figure  2). 
Furthermore, subgroup analyses were conducted based on gender, age, 
coronary artery disease (CAD), diabetes, stroke, hypertension, 
cognitive impairment, smoking status, sleep disorders, and 
hyperlipidemia history. The interactions between the TyG index and 
depression risk, as well as between the TyG index and various 
phenotypes, were consistent across all subgroups (Figure 3).

Bidirectional MR analyses revealed a significant association 
between the TyG index and depression (Beta = 0.011, p < 0.001, OR = 
1.011). In multivariable MR analysis, after adjusting for potential 
confounders including age, sex, stroke, diabetes, sleep disorders, 
cholesterol levels, triglycerides, and FPG, the association between the 
TyG index and depression remained significant, with the OR ranging 
from 1.006 to 1.031. Further adjustment for all covariates continued to 
show a significant association (Beta = 0.015, OR = 1.015, p < 0.001) 
(Table 3). In addition, a total of 833 upregulated genes associated with 
PD were identified from the GSE160299 dataset, while 566 differentially 
expressed genes were extracted from the depression-related dataset 
GSE39653. Intersection analysis of these two datasets, followed by 
KEGG pathway analysis, revealed that these genes were significantly 
enriched in pathways related to “gut immune network for IgA 
production” and “cholesterol metabolism.” Gene Ontology (GO) 
biological process (BP) analysis indicated substantial enrichment in 
pathways involved in “chemical signal regulation,” “endocrine 
processes,” and “interleukin signaling.” Regarding cellular components 
(CC), the genes were primarily associated with the “secretory granule 
membrane.” A Protein–Protein Interaction (PPI) network consisting of 
28 differentially expressed genes (28 nodes and 136 edges) was 
constructed, identifying key genes, including TYROBP, SPI1, FCER1G, 
ITGB2, and CSF1R, which play central roles in the shared molecular 
mechanisms of depression and Parkinson’s disease (Figure 4).

4 Discussion

This study, utilizing retrospective clinical data from a two-center 
cohort, investigates the role of the TyG index in predicting depressive 
symptoms in PD. A clinical prediction model was developed 
incorporating factors such as gender, age, history of diabetes, and 
other relevant variables. Subgroup analysis revealed the impact of 
confounding factors on the relationship between the TyG index and 
depressive symptoms in PD. MR analysis further confirmed that an 
elevated TyG index increases the risk of depression. Moreover, the 
identification of peripheral blood plasma proteins involved in shared 
molecular pathways for PD and depression provides valuable 
insights into potential signaling mechanisms. Despite the 
implementation of bidirectional and sensitivity MR analyses, several 
limitations must be  considered, including potential population 
stratification bias, gene–environment interactions, and the influence 
of lifestyle factors on the relationship between the TyG index and 
depression risk.

4.1 Predictive role of the TyG index in 
PD-associated depression

The positive association between the TyG index and depression 
risk has been corroborated by several studies, consistently observed 
across different age groups, genders, and individuals with other 
chronic conditions (Hong et al., 2021; Meng et al., 2020; Jiang et al., 
2024). The effect of diabetes on the TyG index is multifactorial, 
extending beyond insulin resistance. For instance, antidiabetic 
medications such as SGLT2 inhibitors have been shown to influence 
the TyG index (Shi et al., 2021; Shimoda et al., 2023; Wan and Yu, 
2024). In our study, the predictive value of the TyG index for 
depression was notably reduced in the diabetic subgroup, likely due to 
the influence of pharmacological interventions. Furthermore, older 
individuals with more severe depressive symptoms are at a higher risk 
of developing diabetes (Graham et al., 2017), which aligns with our 
finding of a higher proportion of diabetic patients among those 
with depression.

Our study population comprised PD patients, particularly older 
cohorts, making age a potentially significant factor influencing the 
results. Research suggests that the TyG index may be involved in the 
physiological processes of diabetes and vitamin D deficiency in the 
elderly (Xiang et al., 2024), potentially exacerbating the burden of 
cognitive impairment (Teng et  al., 2022), with vitamin D 
supplementation being linked to the alleviation of depressive 

TABLE 1 (Continued)

Baoan Cohort Original data Propensity score matching

Characteristic No-depression 
(n = 184)

Depression 
(n = 87)

P value No-depression 
(n = 87)

Depression 
(n = 87)

P value

TyG 8.22 [7.95, 8.63] 8.52 [8.18, 8.79] < 0.001 8.23 [8, 8.64] 8.52 [8.18, 8.79] 0.006

Uric acid (umol/L) 303.4 [235.5, 373.68] 286.8 [228.4, 360.85] 0.731 315.06 ± 110.13 304.32 ± 104.18 0.510

WBC (109/L) 6.49 [5.51, 8.13] 6.4 [5.56, 7.67] 0.695 6.79 [5.62, 7.97] 6.4 [5.56, 7.67] 0.599

Platelets (109/L) 212.0 [179, 262] 220.0 [177, 264.3] 0.87 221 [176.5, 272.5] 225 [181, 261.5] 0.971

For continuous variable “[],” the values represent quartiles, and for categorical variables “()” indicate percentages. CAD, Coronary artery disease; HDL, High-density lipoprotein; LDL, Low-
density lipoprotein; FPG, Fasting plasma glucose; TyG, Triglyceride-glucose Index; BMI, Body mass index; WBC, White blood cells.
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TABLE 2 Univariate and multivariate logistic regression analyses for predicting depressive symptoms in Parkinson’s disease patients from the Haizhu 
and Baoan cohorts.

Haizhu Cohort

Variable Univariate analysis Multivariate Analysis

Model 1a Model 2b

OR (95% CI) P value OR 95% CI P value OR (95% CI) P value

Demographics

Age (years) 1 (0.97–1.02) 0.84

Gender (Male) 0.56 (0.33–0.95) 0.031 0.595 (0.321–1.103) 0.099 0.543 (0.299–0.986) 0.045

Medical history

Hypertension 0.94 (0.53–1.69) 0.831

CAD 0.85 (0.45–1.53) 0.595

Stroke 0.72 (0.43–1.23) 0.232

Diabetes 3.98 (2.29–6.97) <0.001 2.894 (1.556–5.383) 0.001 2.882 (1.551–5.357) 0.001

Dementia 0.65 (0.1–2.58) 0.581

Laboratory tests

Cholesterol (mmol/L) 1.39 (1.1–1.77) 0.006 1.188 (0.883–1.599) 0.255

Triglycerides (mmol/L) 2.15 (1.5–3.19) <0.001 0.435 (0.138–1.373) 0.156 0.438 (0.143–1.342) 0.149

FPG (mmol/L) 1.39 (1.23–1.6) <0.001 1.132 (0.87–1.471) 0.356 1.118 (0.869–1.440) 0.385

TyG 4.08 (2.59–6.66) <0.001 4.842 (0.881–26.594) 0.070 5.415 (1.039–28.231) 0.045

Uric acid (umol/L) 1.01 (0.99–1.01) 0.277

Baoan cohort

Variable

Univariate analysis

Multivariate analysis

Model 1c Model 2d

OR 95% CI P value OR 95% CI P value OR 95% CI P value

Demographics

Age (years) 0.97 (0.95–0.99) 0.015

Gender (Male) 0.45 (0.27–0.76) 0.003 0.488 (0.272–0.876) 0.016 0.470 (0.263–0.840) 0.011

Habits

Drinking 0.17 (0.01–0.87) 0.087

Smoking 0.26 (0.01–1.43) 0.202

Medical history

Hypertension 1.48 (0.88–2.51) 0.145

CAD 1.12 (0.5–2.41) 0.77

Stroke 1.49 (0.88–2.51) 0.134

Diabetes 2.26 (1.32–3.88) 0.003 1.382 (0.739–2.587) 0.311 1.327 (0.715–2.466) 0.370

Hyperlipidemia 2.48 (1.4–4.39) 0.002 1.567 (0.810–3.033) 0.182

Sleep disorders 2.78 (1.15–6.87) 0.023 1.201 (0.399–3.620) 0.745 1.280 (0.430–3.812) 0.657

Laboratory tests

Cholesterol (mmol/L) 1.26 (1–1.61) 0.056 0.951 (0.720–1.256) 0.723 0.978 (0.743–1.287) 0.873

Triglycerides (mmol/L) 3.95 (2.36–4.5) <0.001

FPG (mmol/L) 1.09 (1–1.2) 0.067

TyG 4.44 (2.67–7.75) <0.001 3.592 (1.953–6.607) <0.001 3.899 (2.140–7.106) <0.001

Uric acid (umol/L) 1.1 (1–1.3) 0.737

aModel 1 (Haizhu cohort): Adjusted for gender, diabetes, cholesterol, FPG, triglycerides and TyG index; bModel 2 (Haizhu cohort): Adjusted for gender, diabetes, FPG, triglycerides and TyG 
index; cModel 1 (Baoan cohort): Adjusted for hyperlipidemia, gender, diabetes, cholesterol, sleepdisorders and TyG index; dModel 2 (Baoan cohort): Adjusted for gender, diabetes, cholesterol, 
sleepdisorders and TyG index. TyG index. CAD, Coronary artery disease; FPG, Fasting plasma glucose; TyG, Triglyceride-glucose index.
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FIGURE 2

Clinical prediction model diagram. (A,B) Nomograms of Model 1 for predicting depression occurrence in the Haizhu and Baoan cohorts. (C,D) ROC 
curves of Models 1 and 2 for predicting depression in the Haizhu and Baoan cohorts.

symptoms (Casseb et al., 2019). In the Haizhu cohort, we did not find 
significant differences in cognitive impairment between depressed and 
non-depressed PD patients, although studies have shown that PD 
patients with apathy and anhedonia may exhibit more severe cognitive 
impairment (Santangelo et al., 2009). Additionally, patients with more 
severe cognitive deficits may be  at increased risk of developing 
depression or worsening depressive symptoms (Koros et al., 2023). 
Zheng et al.’s study, which included middle-aged and elderly patients 
with a mean age of 58, supported the TyG index as an independent 
factor influencing depression (Zheng et al., 2023). However, there is 
currently insufficient evidence to suggest that the TyG index can 
independently affect depressive symptoms in elderly patients. 
Therefore, when considering depressive symptoms in elderly PD 
patients, a comprehensive assessment of the TyG index in conjunction 
with other factors, such as pharmacological interventions, vitamin D 
levels, cognitive function status, and other potential biomarkers, is 
necessary to fully understand the complexity of depression.

4.2 Clinical predictive assessment

Compared to previous predictive models, which primarily relied 
on psychological scales (Camerucci et al., 2024; Byeon, 2020), serum 
and cerebrospinal fluid neurofilament light chain (NfL) levels (Li et al., 
2021; Urso et  al., 2023), and radiomics-based approaches for 
predicting depressive symptoms and other non-motor symptoms in 
PD (Antar et al., 2021), this study introduces a novel approach by 
incorporating diabetes- and lipid-related clinical variables. 

Additionally, previous studies have suggested that REM sleep behavior 
disorder (RBD) and olfactory dysfunction may serve as potential 
longitudinal predictors of PD. A key strength of this study lies in the 
selection of readily accessible clinical variables, enhancing the model’s 
practicality for real-world application. Moreover, the use of 
multicenter data improves the generalizability and interpretability of 
the predictive model. However, there is room for improvement in 
terms of data diversity and the analysis of interactions among 
predictive variables, which could further refine the model’s predictive 
accuracy and robustness.

4.3 Biological mechanisms underlying 
PD-associated depression

This study underscores the intricate relationship between lipid 
metabolism dysregulation, inflammatory signaling, and their roles in 
the pathophysiology of PD and depression. α-Synuclein aggregation 
has been shown to induce abnormal lipid accumulation (Kamano 
et  al., 2024), which subsequently disrupts lipid metabolism and 
further impairs mitochondrial function. Additionally, alterations in 
mitochondrial gene expression, along with damage to mitochondrial 
membrane proteins and lipids, are observed in the central nervous 
system of patients with depression (Khan et al., 2023).

The transcriptomic analysis in this study identified core 
overlapping genes between PD and depression, suggesting the 
presence of shared immune-inflammatory pathways in their 
pathogenesis. Previous research has demonstrated that TYROBP 
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plays a crucial role in microglial inflammatory activation and the 
maintenance of neuronal microenvironment stability, with its 
dysregulated expression potentially contributing to the onset and 
progression of PD (Haure-Mirande et al., 2019). Additionally, SPI1 

has been identified as a shared gene between PD and major depressive 
disorder (Wang et al., 2023), while ITGB2 is upregulated in patients 
with unipolar depression (Dmitrzak-Weglarz et  al., 2021). These 
genes are closely associated with neuroinflammation and immune 
regulation and may influence PD and depression pathogenesis by 
modulating the activation of microglia and peripheral immune cells. 
Enrichment analysis further highlighted the gut immune network for 
IgA production as a potentially critical pathway underlying 
PD-related depression. Alterations in gut microbiota have been 
implicated in various non-motor symptoms of PD, with dysbiosis 
potentially preceding the onset of motor symptoms. Previous studies 
have reported a reduction in IgA-associated microbiota in PD 
patients, which may disrupt gut microbial homeostasis and 
exacerbate neuroinflammation (Brown et al., 2023). Furthermore, 
IgA deficiency could contribute to greater gut microbiota 
dysregulation, leading to the release of pro-inflammatory cytokines 
and potentially playing a role in the neuroinflammatory mechanisms 
underlying inflammation-related depression (Saha et al., 2022; Liu 
et al., 2024). Understanding the relationship between gut microbiota 
and PD-related depression is essential for elucidating the role of the 
neuroimmune-gut axis in the development of depressive symptoms 
in PD. Gut dysbiosis may influence the progression of PD-associated 
depression through multiple mechanisms, including the regulation 
of short-chain fatty acid (SCFA) production, modulation of 
neurotransmitter levels within the gut-brain axis, mediation of 
systemic inflammatory responses, and regulation of intestinal barrier 
function (Kalyanaraman et al., 2024).

The transcriptomic and proteomic associations between the TyG 
index, depression, and PD reflect the intricate interplay between 
glucose-lipid metabolism and immune regulation. An elevated TyG 
index is indicative of insulin resistance, and dysregulation of the 
insulin signaling pathway may contribute to blood–brain barrier 
(BBB) endothelial alterations by affecting tight junction proteins, 
thereby increasing BBB permeability (Rhea and Banks, 2019). Glucose 
metabolism within BBB endothelial cells relies on the highly 
coordinated interactions among endothelial cells, pericytes, and 

TABLE 3 Causal association between the TyG index and depression through bidirectional and multivariable Mendelian randomization analyses.

Models Method nsnp Beta Se p value OR 95%CI

Crude analysis

  TyG IVW 96 0.011 0.003 <0.001 1.011 (1.005–1.016)

Sensitivity analysis

  Adjusted for age IVW 16 0.028 0.010 0.006 1.028 (1.008–1.048)

  Adjusted for gender IVW 31 0.018 0.008 0.019 1.018 (1.003–1.033)

  Adjusted for stroke IVW 32 0.027 0.006 <0.001 1.027 (1.015–1.039)

  Adjusted for diabetes IVW 22 0.031 0.008 <0.001 1.031 (1.015–1.048)

  Adjusted for sleep disorders IVW 24 0.028 0.008 <0.001 1.029 (1.014–1.044)

  Adjusted for cholesterol IVW 15 0.026 0.009 0.006 1.026 (1.007–1.045)

  Adjusted for triglycerides IVW 14 0.006 0.002 0.008 1.006 (1.002–1.010)

  Adjusted for FPG IVW 13 0.022 0.008 0.005 1.022 (1.006–1.038)

Sensitivity analysis

Adjusted for age, gender, stroke, diabetes, sleep disorders, cholesterol, triglycerides and FPG

TyG IVW 61 0.015 0.003 <0.001 1.015 (1.010–1.021)

FPG, Fasting plasma glucose; TyG, Triglyceride-glucose index.

FIGURE 3

Subgroup analysis of TyG index and depression in PD population. 
(A) Haizhu cohort. (B) Baoan cohort. OR, Odds ratio; CI, Confidence 
interval; CAD, Coronary artery disease.
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FIGURE 4

(A,B) KEGG and GO enrichment analyses showing the top 15 pathways of differentially expressed genes (DEGs), respectively. (C) Protein–protein 
interaction (PPI) network of DEGs, where yellow nodes represent upregulated genes, and blue and purple nodes represent downregulated genes.

astrocytes. When BBB integrity is compromised, immune-related 
signaling pathways are activated, leading to the release of 
pro-inflammatory cytokines (Zhu et  al., 2025), this inflammatory 
cascade exacerbates neuroinflammatory responses in both PD and 
depression, potentially contributing to disease progression.

This study still has several limitations. First, maintaining 
consistency between clinical cross-sectional data and publicly 
available datasets presents a methodological challenge. The 
retrospective clinical data in this study were primarily derived from 
an Asian population, providing a practical and accessible reference 
for individualized risk assessment in PD patients. In contrast, GWAS 
data, predominantly from European populations, emphasize genetic 
risk factors and leverage large sample sizes, allowing for a more 
precise evaluation of depression risk in PD at the genetic level. 
Additionally, transcriptomic data offer insights into RNA expression 
patterns, facilitating the identification of shared gene regulatory 
networks between PD and depression. Despite differences in 
methodology and population sources, these datasets collectively 
contribute to the prediction of depressive symptoms in PD and the 
exploration of underlying pathophysiological mechanisms. Second, 
the cross-sectional design of this study limits its ability to capture 
the temporal dynamics between the TyG index and PD-related 
depression. The lack of control over time-dependent effects and 
potential confounding variables poses challenges in establishing 
causal inferences. Moreover, the absence of longitudinal follow-up 
data restricts a comprehensive understanding of disease progression, 
which may affect the accuracy and generalizability of the predictive 
model. Despite these limitations, the findings highlight the potential 
of the TyG index as a predictive biomarker for depression risk in PD 
patients. Furthermore, variables such as sex and diabetes status have 
been identified as contributing factors to depression susceptibility. 
From a mechanistic perspective, dysregulation in lipid metabolism 
and immune-inflammatory pathways appears to play a central role 
in the pathogenesis and progression of both PD and depression.

4.4 Clinical applications and limitations

The clinical implications of this study suggest that an elevated 
TyG index may indicate a higher risk of depression in patients 
with PD. This finding underscores the importance of psychiatric 
and psychological assessments for PD patients with increased 
TyG levels, enabling early detection of depressive symptoms and 
timely clinical intervention. However, the stability of the TyG 
index may be  influenced by individual metabolic factors, 
including dietary habits, medication use (e.g., lipid-lowering and 
glucose-lowering drugs), age, and lifestyle, which could introduce 
variability in its predictive capacity. Additionally, the predictive 
efficacy of this model requires further validation through large-
scale, multicenter prospective longitudinal studies to ensure its 
broad applicability and specificity in diverse populations. 
Furthermore, interventions for depression in PD should not 
be limited to a single metabolic indicator but should integrate a 
comprehensive, multidimensional approach incorporating 
genomics, neuroimaging, psychological assessments, 
neurobiological markers, and lifestyle modifications. Future 
research should further investigate the biological mechanisms 
underlying the association between the TyG index and depression 
in PD to refine predictive strategies and optimize personalized 
treatment approaches.
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