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Introduction: Alzheimer’s disease (AD) affects 50 million individuals worldwide,

a number projected to triple by 2050. Due to discomfort through electrical and

magnetic neuromodulation technologies, this is the first study to propose the

potential of auditory binaural beat (BB) stimulation at an alpha frequency (10 Hz)

for enhancing cognitive and neurological outcomes in AD patients.

Methods: Twenty-five patients were divided into the experimental-Group

(n = 15) and control-Group (n = 10). Psychometric and neurological

assessments were conducted Pre-Treatment (Day 1) and Post-Treatment (Day

14) following consecutive days of binaural beats (BB) or auditory tone stimulation

administered from Day 2 to Day 13.

Results: A two-way ANOVA revealed a significant main effect of group (F =

6.087, p = 0.016) and session (F = 3.859, p = 0.024) on MMSE scores, with

the experimental group showing significant improvement in MMSE scores (t =

7.33, p = 0.00000012) compared to the control group (p = 0.2306). Paired t-

tests revealed a significant reduction in depression scores (DASS-21, t = 1.701,

p = 0.0253) in the experimental group, while no significant improvements were

noted in the control group. EEG recordings revealed significant changes in α-

band, β-band, and γ-band power (p < 0.05). Moreover, The correlation between

EEG bands and MMSE subparts showed that increased θ-band power in the

experimental group was positively correlated (p < 0.05) with the frontal region

during language tasks and in the frontal and central regions during registration

and orientation tasks, indicating potential neurocognitive benefits.

Discussion: The results of this research imply that BB stimulation has untapped

potential as a non-invasive therapy for patients with AD, hence there is the need

for further studies to manage the dementia epidemic.
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1 Introduction

Alzheimer’s disease (AD) is a neurological disorder
that progressively impairs cognition, attention span, and
memory and hinders the ability to perform everyday
activities (Okabe et al., 2020; Ott et al., 1996; Parasuraman
and Haxby, 1993). Behavioral and neurological symptoms
of AD are associated with aging, as it is more prevalent
in the elderly (Galasko et al., 1990; Turner et al., 2012).
This condition progresses through three stages starting with
memory loss in the early phase and learning difficulties in
the intermediate stage and ultimately leading to complete
debilitation in the severe stage (Agrawal et al., 2020;
Galasko et al., 2005). According to the World Health
Organization (WHO), around 50 million individuals
worldwide are currently affected by AD and related dementia
issues and this number is expected to triple by 2050
(World Health Organization, 2021).

Dementia in AD patients is a leading cause of dependency
on professional caregivers for performing everyday activities (Bell
et al., 2001; Galasko et al., 2005; González-Salvador et al., 1999).
This dependency and inability to execute tasks on their own
may have negative psychological effects on AD patients in the
long term and thus lead to serious mental health issues such
as anxiety, stress, and depression (Botto et al., 2022; Gallagher
et al., 2011). According to previous studies, the Depression
Anxiety Stress Scale (DASS-21) serves as a neuropsychological
assessment tool to screen AD patients for signs of depression,
stress, and anxiety (Ali et al., 2022). Effective assessment techniques
for diagnosing the severity of AD include the Mini-Mental
State Examination (MMSE) (Arevalo-Rodriguez et al., 2015),
the Clinical Dementia Rating (CDR) (Morris et al., 2001),
the Sum of Boxes (CDR-SB) (Williams et al., 2013), and the
CDR orientation score (Kim et al., 2017). MMSE assesses a
person’s cognitive abilities, specifically orientation, attention and
recall, registration, calculation, language, and visual construction
(MacKenzie et al., 1996; Sposito et al., 2015).

Aside from behavioral and neuropsychological assessments
of AD patients, recent studies have also utilized neuroimaging
techniques to investigate neurological changes. These include
Positron Emission Tomography scan (Nordberg et al.,
2010), Magnetic Resonance Imaging (Teipel et al., 2013),
functional Magnetic Resonance Imaging (Machulda et al.,
2003), Computed Tomography-scan (Cuttler et al., 2016), and
electroencephalography (EEG) (Bennys et al., 2001). EEG provides
frequency-specific changes in the cortex (García Domínguez et al.,
2013; Soininen et al., 2020). Power spectrum density (PSD) is
one of the features of EEG that may be used to compare the
neurological changes that occur in AD (Liu et al., 2016; Wang
et al., 2015). Increased θ-band power while decreasing α- and
β-bands power is mainly reported specifically in the temporal
and posterior/occipital brain regions (Azami et al., 2023; Babiloni
et al., 2021; Bruña et al., 2023; Cassani et al., 2018; Horvath et al.,
2018; López-Sanz et al., 2016; López-Sanz et al., 2019; Maestú
and Fernández, 2020; Moretti et al., 2004; Musaeus et al., 2018;
Roh et al., 2011).

Electrical and magnetic neuromodulation have been clinically
proven as an effective means of treatment for the improvement of

AD symptoms (Bentwich et al., 2011; Gangemi et al., 2021; Rajji,
2019; Scherder et al., 1995). Several studies have demonstrated,
improved cognitive scores measured with MMSE following two to
four weeks of neuromodulation with rTMS and tDCS (Im et al.,
2019; Wei et al., 2022). In addition to potential risks to body
tissues and feelings of discomfort, trained personnel are required to
operate these neuromodulation techniques (Johnson, 2001; Nikolin
et al., 2018; Russo et al., 2013). Therefore, it is impractical for family
caregivers to provide these stimulations at home.

Auditory stimulation such as binaural beat (BB) is cost-effective
and easy to use (Parodi et al., 2021; Tani et al., 2022). BB
stimulation is provided through earphones with slightly different
frequencies presented separately to each ear. The brain perceives a
sound with a frequency corresponding to the difference between
these two frequencies. Its origin is subcortical, specifically in
the pons, within the medial nucleus of the superior olivary
complex (Sadeghijam et al., 2023). BB stimulation has been
shown to modulate brain activity and improve cognitive functions
such as working memory and attention (Beauchene et al., 2017;
Mujib et al., 2021). Several studies have explored the effects
of binaural beats (BB) stimulation on memory and cognitive
function in both healthy and clinical populations. Research suggests
that BB stimulation enhances episodic and working memory by
modulating neural oscillations (Jirakittayakorn and Wongsawat,
2017; Reedijk et al., 2015). For instance, Jirakittayakorn and
Wongsawat (2017) demonstrated that BB increased theta power
in EEG recordings, which correlated with improved working
memory performance. Similarly, alpha-frequency BB has been
associated with increased alpha power, promoting attentional focus
and relaxation, which may be beneficial for AD patients (Crespo
et al., 2013; Park et al., 2018). Reedijk et al. found that alpha-
frequency BB improved sustained attention and task performance,
likely by enhancing alpha synchronization (Gao et al., 2014;
Reedijk et al., 2015). Research also indicates that BB may play
a role in cognitive enhancement by promoting neural synchrony
(Park et al., 2018). Garcia-Argibay et al. (2019) suggested that
BB stimulation could enhance cognitive flexibility and executive
function.

However, some studies report no significant cognitive
improvements following BB exposure, attributing the discrepancies
to variations in individual variability, stimulation frequency,
and differences in study design, including variations in EEG
recording protocols, cognitive assessment tools, stimulation
duration, and control conditions (Chaieb et al., 2015; Vernon
et al., 2014). For instance, Goodin et al. (2019) reported no
significant effects of BB stimulation on cognitive function,
highlighting the need for standardized methodologies in future
research. Despite limited research, some preliminary studies
suggest that binaural beats BB may influence EEG-derived
biomarkers of cognitive decline, such as changes in theta and
alpha power, in Alzheimer’s disease (AD) patients. However,
the long-term effects and underlying mechanisms of BB in AD
remain underexplored (Garcia-Argibay et al., 2019; McMurray,
2006). By employing strict inclusion criteria to ensure participant
homogeneity, we hypothesized that BB-induced neurological
changes, as measured through EEG analysis, would correlate
with significant improvements in cognitive performance in AD
patients.
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2 Materials and methods

The study was conducted at two locations: Dar-ul-Sakoon and
Gills Shelter Center. The consent was achieved before the trial
from both the administrations of the two facilities. Dar-ul-Sakoon
and Gills Shelter Center directed all the related information to
their in-charge officials and they were able to assess before and
after the experiment which was in line with our ethics guidelines.
This approach proactively sought to build on a foundation of
collaboration, integrity, and safety by prioritizing the stakeholders’
welfare and success during the research process. The research was
approved by the “Research Ethics Committee” at NED University
of Engineering & Technology.

2.1 Participants

A total of 107 Alzheimer’s disease (AD) patients at Dar-ul-
Sukun, Karachi, Pakistan and Gill Shelter Center, Karachi, Pakistan
were initially screened for potential inclusion in the study. The
experimental procedures were thoroughly explained to all patients
by the administration at both centers, along with our research
team. The inclusion criteria for the study included a diagnosis of
Alzheimer’s disease based on the National Institute of Neurological
and Communicative Disorders and Stroke–Alzheimer’s Disease
and Related Disorders Association (NINCDS-ADRDA) criteria and
the Diagnostic and Statistical Manual of Mental Disorders, Fourth
Edition DSM-IV, age 60 years or older, a history of Alzheimer’s
disease for at least 5 years, Mini-Mental State Examination
(MMSE) scores between 10 and 24 or Clinical Dementia Rating
(CDR) scores between 1 and 2, and the ability to provide
informed consent, or consent obtained from a legal guardian if the
participant was unable.

Exclusion criteria included a diagnosis of other neurological
or psychiatric disorders, severe auditory impairments that could
interfere with participation in auditory stimulation, the use of
medications or therapies that could significantly affect cognitive
function, such as nootropic drugs, a history of epilepsy or
other seizure disorders, and a lack of interest or refusal to
participate in the study.

The participant selection criteria for the study are shown in
Figure 1. Of the initial 107 patients, 67 were excluded based on the
above criteria, including a lack of interest in participating, having
an AD history of less than five years, or the presence of other
neurological disorders. The remaining patients were then evaluated
using the NINCDS-ADRDA criteria (McKhann et al., 1984) and
the DSM-IV (American Psychiatric Association, 1994). Following
this evaluation, 30 patients met the inclusion criteria; however, 5
of these were further excluded based on their Mini-Mental State
Examination (MMSE) or Clinical Dementia Rating (CDR) scores.
Ultimately, 25 patients were selected to participate in the study.

Participants were randomly allocated to the experimental and
control groups prior to administering the MMSE for unbiased
distribution. The MMSE was then conducted to assess baseline
cognitive function. The inclusion/exclusion criteria were pre-
defined, as given in Figure 1, to ensure that all participants
met the cognitive baseline required for meaningful comparisons
and validity of results. A modified minimization approach was

employed to allocate participants to either the Experimental or
Control group.

The study’s sample size was determined using an interim
analysis conducted on the first six participants in each group
(12 total), resulting in high effect size (d = 1.72) and statistical
power (SP = 90%) for significant changes in MMSE scores. The
Experimental Group exhibited significant improvements in MMSE
scores (Pre-MMSE mean score = 11.57 ± 3.25, Post-MMSE
mean score = 17.10 ± 3.18), highlighting the effectiveness of the
intervention. Based on these promising results, a maximum sample
size of 11 participants per group (total of 22) was calculated to
achieve p < 0.025 and SP = 80%, ensuring a balance between
precision and feasibility.

The interim analysis approach allowed for adaptive refinement
of the sample size, optimizing resource utilization while
maintaining high statistical rigor. By employing a stricter
significance threshold of p < 0.025 instead of the conventional
p < 0.05, the robustness and reliability of the findings were
further enhanced, effectively mitigating the potential for false
positives. Five participants from the control group did not meet
the minimum MMSE qualification criteria necessary for inclusion
in the study and were thus excluded thereafter. Despite these
exclusions resulting in slightly unequal sample sizes, the study
design maintained its robustness due to the randomized allocation
process and high statistical power for the sample size. The integrity
of the analysis was preserved by adhering strictly to the inclusion
and exclusion criteria, ensuring that the findings are both valid
and generalizable.

The included 25 AD patients were randomly assigned to either
the Experimental-Group (n = 15) or the Control-Group (n = 10).
The Experimental-Group was provided alpha BB stimulation of
10 Hz difference (Left ear: 400 Hz and Right ear: 410 Hz) whereas
Control-Group received a created tone comprising the frequency
of 400 Hz in both left and right ears. Although the researchers
were aware of the group assignments, the administration and the
participants in both centers were blinded to their allocation to
prevent any bias in their responses.

There were 16 males and 9 females, with an average age
of 69.96 ± 8.67 years and an average history of AD of
6.36 ± 1.35 years. The males had a mean age of 71.19 ± 8.28 years
and an average history of AD of 6.34± 1.52 years, while the female
AD patients had mean age of 67.78 ± 9.40 years and an average
history of AD of 6.39± 1.05 years.

2.2 Experimental procedure

As shown in Figure 2, the experimental procedure involved
a 12-day treatment period with assessments conducted at three
key stages: Pre-Treatment (Day 1), Post-Treatment (Day 14),
and follow-up session. The Pre-Treatment assessment was carried
out one day prior to the start of the treatment, while the Post-
Treatment assessment took place one day after the treatment
concluded. The follow-up assessment was conducted two weeks
later to evaluate the patients’ cognitive progress using the MMSE.

During the treatment period (from Day 2 to Day 13), both
groups underwent half-hour daily stimulation sessions. At the
Pre-Treatment (Day 1) and Post-Treatment (Day 14) phases,
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FIGURE 1

Participant selection criteria for the study.

both neurological assessments (EEG recordings) and psychometric
assessments (MMSE and Depression Anxiety Stress Scales-21
[DASS-21]) (Al-Shargie and Goh, 2019; Coker et al., 2018; Insel
et al., 2006; Pillai et al., 2014; Shigemori et al., 2010; Tierney
et al., 2000) were performed. The follow-up session focused solely
on MMSE scores. Additionally, participants were asked general
questions about their health, daily routine, sleep schedule, activities,
and diet to conduct a thorough behavioral and psychometric
analysis. These assessments were designed to establish a baseline
for each participant’s cognitive and emotional state at the study’s
outset.

2.3 Implementation steps for
intervention

Some challenges were encountered when preparing and
attending to most elderly patients, particularly their resistance and

anxiety toward the experimental procedures. To address this, we
made multiple efforts to build trust and provide reassurance before
beginning the experiment. We prioritized clear communication,
taking time to thoroughly explain the procedures and address
any concerns to ensure the patients felt comfortable and ready
to participate. This approach was crucial in upholding ethical
considerations and ensuring the patient’s willingness to engage in
the study. Throughout the experiment, participants adhered strictly
to the protocol under the supervision of qualified neurologists,
psychologists, and the nursing staff.

During the test, each participant’s hearing threshold was
assessed in a soundproof room using calibrated stereo headphones.
The procedure involved presenting pure tones (400 Hz and 410 Hz)
at low-intensity levels, starting below the expected threshold (e.g.,
0–10 dB), and gradually increasing the intensity in 5 dB increments
until the participant could reliably detect the sound. The lowest
intensity level at which the participant could detect the tone 50% of
the time was recorded as their hearing threshold for that frequency.
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FIGURE 2

Experiment protocol for experimental- and control groups of AD patients. Pre-Treatment represents psychometric assessments and neurological
recording on day 1, During treatment represents BB stimulation days from day 2 to 13 and Post-Treatment represents psychometric assessments and
neurological recording on day 14. A follow-up session was taken after two weeks of Post-Treatment, focusing solely on psychometric assessments
(MMSE scores).

The device threshold was calibrated to present the stimuli at a
level 50 dB above the hearing threshold. For instance, if the given
criteria for 400 Hz for a particular subject was 15 dB, the sound
was produced at 65 dB (15+50). Subsequent changes were made to
both amplification levels based on participant input to maintain the
volume at a loud but comfortable level. This process ensures that
the auditory stimuli were both detectable and comfortably loud,
tailored to each participant’s auditory sensitivity. This auditory test
was conducted on Day 1.

2.4 Generation of BB/standard auditory
tone stimulation

BB is created by presenting two slightly different-frequency
sound waves to each ear separately. The brain then perceives a
third sound, which is the difference between the two frequencies.
For example, if one ear hears a 400 Hz tone and the other ear
hears a 410 Hz tone, the brain perceives a beat at a frequency of
10 Hz (Mujib et al., 2021; Sadeghijam et al., 2023). Both types of
stimulation tones (BB/Standard auditory tone stimulation) were
created using Adobe Audition v3.0 (Tierney et al., 2000). The
stimuli were presented at a minimum intensity of 50 dB above each
participant’s hearing threshold, determined through standardized
pure-tone audiometry (Goodin et al., 2019).

2.5 Assessments

The study utilized MMSE and DASS-21 questionnaires to
assess the cognitive and psychometric effects of BB and standard
auditory stimulation, respectively. The MMSE is a widely used
screening tool for assessing cognitive characteristics (Al-Shargie
and Goh, 2019; American Psychiatric Association, 1994; Shigemori
et al., 2010) and assessing areas of cognitive functioning including

orientation, language, attention, calculation, registration, recall,
and copying (Pillai et al., 2014; Shigemori et al., 2010; Tierney et al.,
2000). Each task is scored based on the individual’s performance,
with a maximum score of 30 points indicating normal cognitive
function. The MMSE questions were asked orally and the particular
questions involving writing, reading, and drawing were carried out
on paper, with the total duration for each patient ranging from 30
to 40 min. MMSE is categorized into different levels of cognitive
impairment. The scores 21–26 represent mild impairment, 10–20
indicate moderate impairment, 10–14 suggest moderately severe
impairment, and scores below 10 signify severe impairment (Al-
Shargie and Goh, 2019; Pillai et al., 2014; Shigemori et al., 2010;
Tierney et al., 2000). The DASS-21 is a 21-item questionnaire that
measures symptoms associated with depression, anxiety, and stress
(Insel et al., 2006). The predictive validity of the DASS-21 has also
been studied in AD patients (Tierney et al., 2000). This test was
conducted verbally and lasted approximately half an hour. The
degree of application of each statement is indicated by a rating on a
scale from 0 to 3. Scores range from 0 for “not applied” to 3 for
“sometimes applied” (Coker et al., 2018; Insel et al., 2006; Pillai
et al., 2014).

2.6 Binaural beat/auditory device
usability

To explore the usability of the Binaural Beat delivered through
stereo headsets, participants were given the System Usability Scale
(SUS) questionnaire at the end of the evaluation (Marijanović et al.,
2021). The SUS itself, consisting of 10 items with Likert scale
responses ranging from 1 (strongly disagree) to 5 (strongly agree),
was implemented. If the SUS score is 66 there is no reason to
worry because it indicates good usability. To SUS (system usability
scale) rating’s calculation is done by the sum of the odd-numbered
questions rating and then five is subtracted from it. Then the sum of
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TABLE 1 Demographic characteristics of the AD patients.

Alzheimer’s patients

Patient numbers and age (years) 25 (69.96± 8.67 years)

Male Female

16 (71.19± 8.28 years) 9 (67.78± 9.40 years)

Duration of disease—year (SD) 6.36± 1.35 years

Male Female

6.34± 1.52 years 6.39± 1.05 years

Education—year (SD) 13.6± 4.2 years

DASS-21 Stress Anxiety Depression

Total 10.44± 1.2 9.64± 0.9 12.96± 1.14

Experiment group 10.51± 1.4 9.57± 0.92 13.04± 1.14

Control group 10.39± 1.37 9.67± 0.85 12.92± 1.14

MMSE Total 14.02± 3.16

Experiment group 13.94± 5.6

Control group 14.1± 4.2

CDS Level 1 2

n = 21 n = 4

TABLE 2 Change in MMSE scores across sessions for AD patients, showing Pre-Treatment, Post-Treatment, and follow-up.

Experimental-group Control-group

Patient
#

Pre-
Treatment

Post-
Treatment

Follow-up
session

Patient # Pre-
Treatment

Post-
Treatment

Follow-up
session

1 11 19 14 16 16 18 16

2 11 15 13 17 15 16 16

3 19 22 20 18 20 17 19

4 11 16 12 19 11 13 9

5 14 18 16 20 11 12 13

6 11 13 12 21 16 12 13

7 14 16 18 22 17 16 18

8 19 22 20 23 18 21 17

9 19 21 20 24 11 12 12

10 17 19 19 25 11 14 12

11 15 18 16 *26 9 Excluded due to less MMSE (< 10) score

12 11 20 15 *27 9

13 13 19 14 *28 8

14 15 22 16 *29 9

15 17 22 19 *30 7

The patient numbers (#) are given while the ‘*’ indicates the patients who were excluded due to having lower MMSE (<10) score.

the even-numbered questions rating minus twenty-five is taken to
find out the SUS rating. In addition, the total of the first and last SUS
ratings from both odd and even-numbered questions is multiplied
by 2.5 to discover the final SUS composite rating (Eq. 1) (Brooke,
1996; Mujib et al., 2023).

SUS Rating = [(Sum of odd Questions − 5)+

(25 − Sum of even Questions)] ∗ 2.5 (1)

2.7 EEG recording

To investigate brain activity, this study used an EEG Mitsar-
NVX from 38 scalp locations (FP1, FPZ, FP2, F7, F3, FZ, F4, F8,
FT7, FC3, FCZ, FC4, FT8, T3, TP7, T5, T4, TP8, T6, C3, CZ, C4,
CP3, CPZ, CP4, P3, PZ, P4, P5, PO3, POZ, PO4, P6, PO7, PO8,
O1, OZ, O2) with two reference electrodes (A1, A2) following the
standardized 10–20 international system (Rao and Hasan, 2021).
EEG recordings were obtained during phases on day 1 and 14. The
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TABLE 3 Two-way ANOVA on MMSE score with F-statistic, p-value, and
effect size (h2).

Factors F p-value h2

Groups (experimental- and
control-group)

6.087 0.0161 0.063

Session (Pre-Treatment,
Post-Treatment, follow-up
session)

3.859 0.0249 0.078

Group*session 2.358 0.102 0.049

sampling frequency is set at 500 Hz. The saline liquid is used as an
electrolytic gel to obtain good conductivity. Data is acquired in a
quiet and ventilated room to minimize noise.

2.8 EEG signal processing

Raw EEG data was subjected to detrending to remove a DC
offset and thereby adjust the baseline. A 5th-order Butterworth
band-pass IIR filter (1–45 Hz) was used to eliminate the 50 Hz
artifact. The sampling frequency is set at 500 Hz. By adjusting
the filter order n, frequency range Xa, and filter type ftype, the
MATLAB command “butter (a, Xa, ftype)” was used to calculate the
filter coefficients. The required filtered output was then obtained
using the command “filter (b, c, x),” where b and c are filter
coefficients and x is raw EEG data as input. Based on a visual
inspection, EEG data with eye blinks, ocular movements, and EMG
artifacts were eliminated. The power spectral density of EEG signals
was determined by utilizing Welch’s method carried out in Matlab.
To enhance estimation quality by controlling spectral leakage and
data variance sliding Hanning window of 4 s, with a cross-over
of 2 s, was applied. The relative EEG power was computed by
normalizing the absolute power within each frequency band (θ: 4–
8 Hz, α: 8–12 Hz, β: 13–30 Hz, and γ:30–45 Hz) using the total
absolute power ranging across all channels within 2 to 45 Hz.

2.9 Statistical analysis

The demographic and baseline performance data of all
25 participants which include participants’ age, MMSE score,
and DASS-21 score in Pre-Treatment (Day-1) were compared
between both groups (Experimental- and Control-Group) using
an unpaired t-test (p < 0.05). The Wilcoxon signed-rank test
was applied to compare changes in MMSE score and DASS-21
score between Post-Treatment (Day 14) and Pre-Treatment (Day
1) for both groups (Experimental- and Control-Group). A two-
way ANOVA was conducted to examine the effects of groups
(Experimental- and Control-Group) and Sessions (Pre-Treatment,
Post-Treatment, and follow-up session) on the MMSE score. The
student t-test was applied to SUS scores of Post-Treatment against
the acceptable usability level of 66 for both groups (experimental-
and control groups). However, a paired t-test was applied to
compare the relative EEG power recorded in Pre-Treatment (Day
1) with the power recorded in Post-Treatment (Day 14) in both eyes
opened and eyes closed states.

The Cohens method was applied to find the effect size and
to demonstrate whether the effects of training have practical

importance; ensuring that significant behavioral and neurological
changes in Post-Treatment (Day 14) are not due to false positives
(Homan, 1988). The effect size was calculated for changes in MMSE
scores and EEG relative power. The mean of the two groups were
subtracted and divided with a pooled standard deviation [see Eq.
(2)]. The values of the effect size larger than 0.8 were considered
as large while values between 0.4 and 0.8, and less than 0.4 were
considered as medium and low effect sizes.

cohen d =
X1 − X2√

SD1(n1−1) + SD2(n2−1)
n1+n2−2

(2)

Where x are mean values, {SD}1,2 are standard deviations, and
n1,2 are sample sizes of two variables.

Statistical Pearson correlation tests were computed to examine
the correlation between MMSE Components (orientation,
language, attention, calculation, registration, recall, and copying)
and PSD of each EEG channel for four frequency (θ, α, β, and γ)
bands using Eq. 3, for both Experimental- and Control-Groups.
Statistical significance was set at p < 0.05 for all tests, and multiple
comparisons were corrected to control the expected proportion of
false positives using the False Discovery Rate (FDR) method. All
the statistical analyses were carried out in MATLAB software.

r =
∑

(Xi− X′)(Yi− Y ′)√∑
(Xi− X′)2(Yi− Y ′)2

(3)

Where, r represents the correlation coefficient, Xi and Yi
are individual data points, and X‘ and Y‘ are means of X and
Y, respectively.

3 Results

The baseline demographic data (age, MMSE, and DASS-
21 scores) of both the Experimental and Control groups were
compared using an unpaired t-test (p < 0.05) to confirm no
significant differences at the start of the study. This ensures that
any observed effects can be attributed to the treatment rather than
pre-existing group differences.

Table 1 shows a comprehensive analysis of the demographic
characteristics of the AD patients’ cohort, including age, gender
distribution, and duration of AD. Table 2 presents the MMSE scores
for participants in both the experimental group (patients # 1 to 15)
and Control-Group (patients # 16 to 25) across three time points;
Pre-Treatment, Post-Treatment, and follow-up sessions. Patients
# 26 to 30 were assessed but did not qualify to receive further
interventions (stimulation) due to their low baseline scores, which
excluded them from subsequent sessions.

3.1 Psychological assessments

3.1.1 MMSE
A two-way ANOVA (as shown in Table 3) was conducted

to examine the effects of groups (Experimental- and Control-
Group) and Sessions (Pre-Treatment, Post-Treatment, and follow-
up session) on the MMSE score. The analysis revealed a statistically
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FIGURE 3

Comparison of MMSE total within group scores between Pre- and Post-Treatment phases. Bars represent the mean and SD of Pre-Treatment score
(blue bars), Post-Treatment score (orange bar), and Follow-up score (gray bar). * Indicate the significant difference (p < 0.025) in MMSE score
between the Post-Treatment (Day 14) and follow-up sessions as compared to Pre-Treatment (Day 1) in both groups.

FIGURE 4

Mini-Mental State Exam (MMSE) mean scores of each section (Orientation, Registration, Recall, Attention, Language, and Copying) for Pre- and
Post-Treatment (Day 14) of Experimental- and Control-Group. Bars represent the mean and SD of Pre-Treatment (blue bars), Post-Treatment of the
Experimental-Group (orange bars), and Post-Treatment of Control-Group (gray bars). * Indicate the significant difference (p < 0.025) in MMSE score
between the Post-Treatment (Day 14) as compared to Pre-Treatment (Day 1) in both groups.

significant main effect of the group, F = 6.08, p = 0.016, with a
partial eta-squared (h2) of 0.063 indicating that 6.3% of the variance
in the MMSE score can be attributed to differences between
Experimental and Control-Group. Similarly, there was a significant
main effect of session, F = 3.859, p = 0.024, with partial eta-squared
(h2) of 0.079, accounting for 7.9% of the variance. However, the
interaction between the group and the session was not significant.

Figure 3 displays the total score of MMSE within the group
(for both Experimental- and Control-Group). In the Experimental-
Group, the Post-Treatment MMSE score significantly increased
(p = 0.00000012, t-value = 7.33) as compared to the Pre-Treatment

MMSE score while no significant improvements were noted in the
Control-Group (p = 0.2306). Similarly, Follow-up MMSE scores
in the experimental group (p = 0.00000077, t = 7.27) significantly
increased compared to Pre-Treatment scores, with no significant
improvement observed in the control group (p = 0.4236).

Figure 4 shows a comparison of MMSE mean scores of
both groups (Experimental- and Control groups) with the
Pre-Treatment session for all MMSE sections (Orientation,
Registration, Recall, Attention, Language, and Copying). In the
experimental group, significant improvement was observed in the
patients’ orientation (p = 0.00015, t-value = 1.687), registration
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FIGURE 5

Comparison of patients’ scores for the DASS-21 questionnaire for all three conditions (Depression, Anxiety, and Stress). The Blue Bar represents
Pre-Treatment, the orange bar represents Post-Treatment (Experimental group) and the Gray bar represents Post-Treatment (Control group). *
Indicates the significant difference (p < 0.05) in DAAS score between Post-Treatment (Day 14) as compared to Pre-Treatment (Day 1) in both groups.

(p = 0.0213, t-value = 1.688), and language (p = 0.0182,
t-value = 1.703). However, other parts of the MMSE, such as
attention, recall, and copy, did not reveal significant improvement
after the BB session. In the control group, a significant decline in
activity was observed only in the patients’ registration (p = 0.04122,
t-value = −1.705) but, no significant changes were observed in
other sections.

3.1.2 DASS-21
Figure 5 shows the comparison of DASS-21 within (for both

the experimental and control groups) in both Pre- and Post-
Treatment for all subparts of DASS-21’s score (Depression, Anxiety,
and stress). Depression significantly decreased in the experimental
group (p = 0.0235, t = 1.701) while no significant improvements
were observed in the control group or the other subparts of both
groups. A significant level was set at p < 0.05.

3.2 EEG power spectrum

Figure 6 shows EEG power spectrums for the experimental
group in both eyes opened (EO) and eyes closed (EC). Rows
represent frequency bands (first row: θ-band, second row: α-
band, third row: β-band and fourth row: 7- band). θ-band power
increased significantly (p < 0.05) with high effect size in the
temporal, parietal, and occipital region in the Post-Treatment EO
BB stimulation session which significantly increased only in the
occipital region in the Post-Treatment EC BB stimulation session.
A decrease in power was detected in the α-band during the Post-
Treatment EO BB state compared to the Pre-Treatment EO BB
state specifically in the temporal region. Conversely, an increase in
power was observed in the γ-band, primarily localized to the frontal
regions in the Post-Treatment EC BB stimulation session. No
changes were observed in β-band in both Pre- and Post-Treatment
BB stimulation.

Figure 7 shows EEG power spectrums for the control group.
Rows represent frequency bands (first row: θ-band, second row: α-
band, third row: β-band and fourth row: 7- band). In contrast to the

experimental group, the neurological findings in the control group
indicated no observable changes in all bands.

3.3 Correlation between MMSE and PSD
of EEG channels

A correlation analysis was subsequently performed between the
MMSE subtest scores and the EEG θ-band and α-band activity.
Figure 8 shows the correlation between the subtest scores on MMSE
and activity in specific frequency bands of the Pre-Treatment EO
state, and Post-Treatment EO states of the experimental group.

We found a positive correlation (significantly p < 0.05) in θ-
band in the frontal region of the brain during language tasks and in
the frontal and central regions during registration and orientation
tasks. In addition, no correlation was observed in the α - band.

3.4 Usability testing

The SUS scores information shows that 86% of AD patients had
positive feedback which was above the threshold of 66 which is the
acceptable value. Besides, a significant difference in SUS average
scores was determined in both the experimental- and control
groups, which were widely beyond the acceptable usability level.
Both the experimental (p = 0.024, t-value = 2.88) and the control
(p = 0.023, t-value = 2.667) groups produced significant differences.

4 Discussion

This study aimed to investigate the effects of BB stimulation
on enhancing cognitive functions of AD patients. BB stimulations
corresponding to θ and α- brain waves have shown a beneficial
influence on cognitive processes (Cohen, 1988; Cruceanu and
Alpha, 2013; Wianda and Ross, 2019). Previous studies have
recommended BB stimulation at a frequency of 10 Hz yielded a
positive effect on the working memory capacity. Consequently,
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FIGURE 6

EEG power spectrums for Experimental-Group and statistical comparisons between states in four frequency bands (θ, α, β, and γ). Rows represent
frequency bands (first row: θ-band, second row: α-band, third row: β-band, fourth row: 7-band). Columns represent the power spectrum in four
states (Pre-Treatment EC; first column, Post-Treatment EC; second column, Pre-Treatment EO; third column and fourth column; Post-Treatment
EO), statistical comparisons between Pre-Treatment EC vs. Post-Treatment EC and Pre-Treatment EO vs. Post-Treatment EO states (significant
changes in column 5 and 6, respectively) and effect size between Pre-Treatment EC vs. Post-Treatment EC and Pre-Treatment EO vs.
Post-Treatment EO states (column 7 and 8, respectively). Gray dots represent a significant increase and black dots represent a significant decrease.
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FIGURE 7

EEG power spectrums for Control group and statistical comparisons between states in four frequency bands (θ, α, β, and γ). Rows represent
frequency bands (first row: θ-band, second row: α-band, third row: β-band, fourth row: 7-band). Columns represent the power spectrum in four
states (Pre-Treatment EC; first column, Post-Treatment EC; second column, Pre-Treatment EO; third column and fourth column; Post-Treatment
EO), statistical comparisons between Pre-Treatment EC vs. Post-Treatment EC and Pre-Treatment EO vs. Post-Treatment EO states (significant
changes in column 5 and 6, respectively) and effect size between Pre-Treatment EC vs. Post-Treatment EC and Pre-Treatment EO vs.
Post-Treatment EO states (column 7 and 8, respectively). Gray dots represent a significant increase and black dots represent a significant decrease.
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FIGURE 8

Correlation between MMSE scores (Orientation, Registration, and Language) and PSD of each EEG channel for Pre-Treatment and Post-Treatment
(Experimental group). Columns represent the sessions (Pre-Treatment and Post-Treatment experimental group) of MMSE score (Orientation,
Registration, and Language) of frequency bands (θ and α). The first row in each frequency band represents the correlation values, while the second
row shows the significance values. Gray dots indicate a significant positive correlation, and black dots indicate a significant negative correlation. The
scale from –1 to 0 represents a negative correlation, while the scale from 0 to 1 represents a positive correlation.

in this study, the AD patients in the Experimental-Group
received 10 Hz BB stimulation. We found improved cognitive and
psychometric scores followed by increased θ band activity and
a modified correlation between MMSE scores and global θ-band
activity.

The observed behavioral outcomes in the experimental
group which underwent BB stimulation demonstrated significant
improvements. The substantial decrease in depression and stress
scores, as indicated by the DASS-21 scale, aligns with research
suggesting that auditory interventions can positively impact
emotional wellbeing (Le Scouarnec et al., 2001; Puzi et al.,
2013; Sung et al., 2017). These findings highlight the potential
of BB stimulation to reduce emotional distress in AD patients
experiencing severe mood disturbances as part of their dementia-
related symptoms (Babulal et al., 2016).

Furthermore, behavioral changes were also observed in the
experimental group by MMSE indicating a meaningful impact of
the BB stimulation. The consequences of AD include cognitive
decline, behavioral change, memory loss, and communication.
The improved score in components of the MMSE examination
following intervention demonstrates that BB has the potential to
facilitate advancements in orientation, registration and language.
These findings align with studies conducted on non-AD patients
which explore the cognitive benefits of BB interventions in
dementia-related disorders (Beauchene et al., 2016; Beauchene
et al., 2017; Kraus and Porubanová, 2015). However, there were
no significant impacts in the control group either in depression,
anxiety, and stress levels or in any part of MMSE.

The EEG recordings in the experimental group provide insight
into the underlying neurological mechanisms contributing to the
observed behavioral improvements. The significant increase in θ-
band power in the occipital region of the brain coincides with
research (Sarnthein et al., 1998; Sauseng et al., 2010; Zhang et al.,
2016) suggested showing θ- oscillations have been connected to
cognitive functions like attention, and memory. θ- activity has
been reported to play a major role in working memory functions
(Gevins and Smith, 2000; Kraus and Porubanová, 2015; Zhang
et al., 2016) and in the integration of different neural circuits
during memory processes (Kraus and Porubanová, 2015). The
results of previous research (Sammer et al., 2007) have shown that
an increase in the synchronization of oscillatory phases between
different brain regions supports working memory and acts by
facilitating neural connections. Phase synchronization in the θ-
frequency range persists between the prefrontal and parietal brain
regions throughout the stages of a working memory task, including
encoding, maintenance, and retrieval (Fell and Axmacher, 2011).

The observed decrease in α-band power, despite the use of α-
frequency BB stimulation may indicate that the brain is reallocating
cognitive resources to more demanding tasks. A reduction
in α-band power is often associated with increased cognitive
engagement, suggesting the brain enters a more active state that
facilitates processes such as attention and memory (Beauchene
et al., 2016; Cruceanu and Alpha, 2013; McKhann et al., 1984;
Sauseng et al., 2004). This shift in neural activity could account
for the simultaneous increase in θ-band power, which is linked to
memory and attentional processes, reflecting an adaptive response
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to BB stimulation aimed at enhancing cognitive function (Chaieb
et al., 2015; Garcia-Argibay et al., 2019).

The results of this study align with those stated by Christopher
(Desai et al., 2015), providing further support in the role of θ-
band activity modulation in enhancing cognitive functions through
binaural beats stimulation. While our study did not observe
significant evidence of improvement in attention, as noted in prior
studies, we found significant changes in orientation, registration,
and language in the Experimental Group, suggesting that θ-band
activity modulation contributes to specific cognitive improvements.
Our findings follow the path taken by the abovementioned
variation wherein the frontal and temporal regions show an
increase in correlation score after the BB stimulation. Moreover,
in AD patients, BB stimulation appeared to have a positive effect
on neural network efficiency with θ-band correlation increasing
during cognitive tasks, which was particularly prominent in brain
regions related to learning and memory (Benwell et al., 2020;
Klimesch, 1999). The prevalence of left hemisphere activity in the
θ-band during cognitive tasks underlines the high importance of
BB stimulation on speech, meaning processing, and concentration
in AD subjects (Fonseca et al., 2011; Gianotti et al., 2007; Karakaş
et al., 2003; Nokia et al., 2012).

The findings of this study hold significant implications for
diagnosing AD and identifying its biomarkers. By analyzing MMSE
scores, brainwave activity (including changes in α- and θ-band
power), and cognitive performance across various tasks, the study
uncovers specific EEG patterns linked to cognitive decline in AD
patients. These neurophysiological markers can help distinguish
AD patients from healthy controls. By demonstrating the potential
of BB to improve cognitive function, as shown by enhanced MMSE
scores, this research provides valuable insights into non-invasive
treatment options for AD patients. Moreover, the methods used to
implement BB stimulation in this study offer a practical framework
that can be adopted by other clinics to incorporate BB into patient
care protocols, potentially improving treatment outcomes.

This study was a single-blind pilot/feasibility investigation, and
as such, effect sizes may be smaller in larger, more rigorously
controlled studies. Therefore, the findings should be regarded as
preliminary and as a foundation for future research. To enhance
scientific rigor and expand understanding, future studies could
explore the combination of therapies such as tDCS (Brown, 2007),
transcutaneous electrical nerve stimulation (Abul Hasan et al.,
2023; Mujib et al., 2024), and neurofeedback (Zafar et al., 2025),
along with the integration of machine learning approaches (Ather
et al., 2024; Marappan et al., 2022; Zahid Rao et al., 2024).

In conclusion, this research investigated the BB effect on
cognitive scores, particularly attention and working memory,
in patients with AD. Further research is warranted to elucidate
its therapeutic mechanisms comprehensively and explore
its applicability.
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