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Introduction: The relevance of electroencephalographic (EEG) biomarkers 
is increasing, as advancements in spectral analysis enable computational 
decomposition of complex neural signals into quantitative EEG (qEEG) 
parameters. Especially the differentiation of periodic and aperiodic components 
can reveal insights into neural function, disease biomarkers, and therapeutic 
efficacy. The aim of these analyses from real-world clinical routine EEG 
recordings was to provide normative values of physiological age-related 
oscillatory (periodic) and non-rhythmic (aperiodic) activity.

Methods: We analyzed 532 physiological EEGs of patients between 8 and 
92 years of age. EEG segments were preprocessed, and the power spectrum was 
computed using a multitaper method. We decomposed the power spectrum 
into periodic (peak power, frequency, and bandwidth) and aperiodic (intercept 
and exponent) components. Linear regression models were used to investigate 
age-related changes in these parameters.

Results: We observed significant global age-related changes in the periodic 
alpha (−0.015 Hz/year) and gamma (+0.013 to +0.031 Hz/year) peak frequency 
as well as in the aperiodic exponent (−0.003 to −0.004 μV2/Hz/year). In the other 
parameters there were solely regional or no significant age-related changes.

Conclusion: Decomposing the power spectrum into periodic and aperiodic 
components allows for the characterization of age-related changes.

Significance: This study provides the first spectrum-wide normative 
characterization of age-related changes in periodic and aperiodic activity, 
relevant for non-invasive brain stimulation with alternating current targeting 
ongoing oscillatory activity.
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1 Introduction

Electroencephalography (EEG) provides essential insights into the 
dynamic changes in neural activity across various life stages. The 
nuanced age-related alterations in both periodic and aperiodic EEG 
activity reveal complex patterns of neural development and aging 
(Donoghue et al., 2020). From early childhood to elderly adulthood, 
the aperiodic activity diminishes (Hill et al., 2022). These alterations 
may arise from a shift in the balance between oscillatory coupling and 
local population spiking (Voytek and Knight, 2015). Likewise, aging 
alters dynamic network communication, which is primarily reflected 
by changes in the periodic components of the spectrum (Jauny et al., 
2024; Tröndle et  al., 2023). A well described phenomenon is the 
slowing of the center frequency in the alpha range, that is integral to 
attention and cognition processes (Cesnaite et al., 2023).

Recent methodological advancements offer an apt means to 
decompose the EEG power spectrum into rhythmic oscillations 
(periodic component) and non-rhythmic fluctuations (aperiodic 
component). It helps to dissect complex neural signals (Leroy et al., 
2022), enrich our understanding of brain function (Lendner et al., 
2020), identify potential biomarkers of disease (Pollak et al., 2024), 
and assess the effectiveness of a therapy (Kundu et al., 2023; Salvatore 
et al., 2023). The strength of the approach particularly stems from its 
reflection of the EEG signal’s two-fold nature, encompassing both its 
mathematical characteristics in signal analysis and its 
neurophysiological correlates. The underlying aperiodic activity, 
distributed in a 1/f-manner, has been linked to the cortical balance of 
synaptic excitation and inhibition in computational modeling trials 
(Wang, 2020). In contrast, the superimposed periodic activity involves 
an interplay of cortical neural networks partly orchestrated by 
subcortical nodes (Seeber et al., 2019), and is estimated by gaussians 
centered around the oscillatory peaks.

Quantitative EEG (qEEG) analysis emerged from digital signal 
analysis and spread itself quickly, due to increasing capacities of 
commonly used computers (Höller, 2021). In classical, clinical EEG 
analysis, the recordings are inspected visually by trained experts 
regarding the occurrence of specific patterns (Zhang et al., 2023). In 
contrast, qEEG analysis uses computer-based methods to breakdown 
EEG signals, allowing for the quantification of signal components 
both at specific channels and between channels (Gavaret et al., 2023). 
Normative databases of qEEG have been emerging and are essential 
to develop EEG biomarkers of diseases (Ko et al., 2021; Prichep, 2005).

Therefore, this analysis of clinical data aims to describe the 
age-related periodic and aperiodic activity in 532 physiological real-
world resting-state EEG recordings by decomposing the spectrum 
into its periodic and aperiodic components. We  derive a 
comprehensive method to estimate the age-adjusted periodic and 
aperiodic parameters.

2 Methods

This analysis was conducted with EEG data from a German 
tertiary care university hospital. This study was approved by the local 
ethics committee (BB 103/20). The quality standard regarding ethical 
and scientific data collection followed the ICH-GCP guidelines. 

Formal consent was obtained from the data protection board to allow 
handling and pseudonymization of clinical routine data.

2.1 Data collection

The analyzed EEG data was recorded between 2004 and 2014. 
EEG recordings included in this study were obtained as part of routine 
clinical assessments, often for the diagnostic work-up of transient 
neurological symptoms such as presyncope, syncope, migraine aura, 
or transient sensory disturbances. Along with the EEG recording, a 
brief medical history as well as the interpretation of the neurologist in 
charge were assessed. The electrodes were placed with a common 
montage following the 10/20-system at the following 19 electrode 
positions: Fp1, Fp2, Fz, F3, F4, F7, F8, Cz, C3, C4, T7, T8, Pz, P3, P4, 
P7, P8, O1, and O2. The EEG was recorded with a commercially 
available system used in the clinical routine (Galileo.NET, BE Light 
system, EB Neuro S.p.A., Firenze, Italy) with a sampling frequency of 
256 Hz. The reference and ground electrode were placed at A1 and A2, 
respectively. The EEG recordings were standard clinical resting-state 
EEGs, acquired following IFCN guidelines (Nuwer et  al., 1998). 
Patients were instructed to close their eyes during the recording to 
minimize movement artifacts and ensure stable resting-state 
conditions. While provocation maneuvers (e.g., hyperventilation, 
photic stimulation) were conducted as part of the routine EEG 
procedure, these segments were excluded from the analysis.

For each patient, EEG epochs were selected based on the absence 
of artifacts and provocation maneuvers to ensure signal integrity. A 
minimum of 20 artifact-free and provocation-free epochs were retained 
per patient, corresponding to a total of 200 s of usable EEG data per 
participant. The number of selected epochs was kept consistent across 
all recordings to allow for uniform comparisons. The selection process 
was designed to maintain an equal sample size across individuals.

EEG recordings were visually inspected and interpreted by a 
neurology resident and a senior consultant. The classification as 
‘physiological EEG’ was based on the absence of abnormalities, 
including deviations in ground frequency, slowing, epileptiform 
discharges, burst suppression, or seizure activity. Only recordings 
explicitly deemed physiological in the written clinical report were 
included in the database of clinical recordings. We intentionally did 
not apply further exclusion criteria like age or medical conditions.

2.2 EEG analysis

For each patient 20 epochs of 10 s free of artifacts or provocation 
maneuvers were selected. All analyses were conducted in MATLAB 
(MATLAB R2023b, 155 Natick, Massachusetts: The MathWorks Inc.; 
2023.) with the Chronux toolbox (version 2.12 v03, http://chronux.
org/) (Mitra and Bokil, 2008). Analyses were performed separately for 
every single patient, channel, and epoch. Preprocessing included 
trendline removal and bandpass filtering (0–45 Hz). The canonical 
frequency bands were defined as following: delta (δ, 1–4 Hz), theta  
(θ, 4–7 Hz), alpha (α, 7–12 Hz), low beta (β1, 12–20 Hz), high beta  
(β2, 20–30 Hz), and gamma (γ, 30–45 Hz).

A multitaper method was applied to estimate the power spectrum 
with a moving window length of 2 s, a shift of 0.1 s, a time-bandwidth 
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product of 2 and 3 Slepian tapers. We did not conduct a normalization 
of the power spectrum to be able to assess age-related changes. The 
power spectrum was decomposed into its periodic and aperiodic 
components using the FOOOF toolbox with default settings: peak 
width limit 0.5–12 Hz, infinite maximum number of peaks, minimum 
peak height of 0 μV2, peak threshold of 2 standard deviations and a 
fixed aperiodic mode without a knee parameter (Donoghue 
et al., 2020).

We characterized the aperiodic offset and exponent, respectively 
the intercept and the slope of the aperiodic activity. The FOOOF 
toolbox parametrizes the periodic activity as fitted gaussians over the 
aperiodic slope with the center frequency, the adjusted periodic power, 
and the bandwidth. Instead of defining the power of the alpha peak as 
the total power within a canonical band, we searched if a power peak 
with a center frequency within the range of interest was fitted and the 
associated adjusted periodic power and bandwidth was assessed 
(Figure 1). If more than one power peak was comprised within the 
band of interest, the peak with the highest power was selected. 
Topographic representations were performed with the topoplot 
function in EEGlab (version 2023.1) (Delorme and Makeig, 2004).

2.3 Statistical analysis

All statistical analyses were performed in MATLAB. Electrodes 
were grouped and averaged into five regions: frontal (Fp1, Fp2, Fz, F3, 
F4, F7, and F8), central (Cz, C3, and C4), temporal (T7 and T8), 
parietal (Pz, P3, P4, P7, and P8), and occipital (O1 and O2). Linear 
regressions were fitted for each parameter with the fitlm function. 
We extracted the residual mean standard error (RMSE)—the spread of 
the empirical data around the linear fit, the coefficient—the change in 
value each year, and the intercept—the theoretical frequency at 
0 years—for each parameter. The linear models were compared to 
models with only a constant to test for significance. Intrasubject 
variability of the peak center frequency was defined as the standard 
deviation of the center frequency within 20 epochs for each patient 
within a single EEG recording.

2.4 Calculation of age-adjusted parameters

We defined the age-adjusted values of periodic and aperiodic 
parameters based on the results of the linear regression models. The 
age-adjusted frequency can be calculated using with the linear formula:

 ( )Age Adjusted Parameter Coefficient Age Intercept= ∗ +

3 Results

A total of 10.620 EEG epochs from 532 patients were included in 
this analysis (Table 1 and Figure 2).

3.1 Center frequency

An average topographical representation of the center frequency 
dynamics within all power bands can be found in Figure 2. A global 
age-related change in the center frequency was solely found in the 
alpha and gamma range. In the alpha band, there was a significant 
decrease of around 0.01 Hz per year, while we saw an increase in the 
gamma peak frequency between 0.01 and 0.03 Hz per year, 
depending on the region. In the other frequency bands, significant 
changes were regional and had smaller orders of magnitude. The 
RMSE depends on the frequency band and is generally larger in the 
faster oscillatory ranges. A similar dynamic was observed for 
intrasubject variability (Figure 3 and Supplementary Table S1).

3.2 Adjusted peak power

The age-related changes in the adjusted power of the fitted peaks 
is shown in Figure 3. Age did not show a globally significant effect on 
the adjusted power within any frequency band. The RMSE, coefficients, 
intercept, and p-values as well as the intrasubject variability of the 
adjusted power within the ranges of interest can be  found in the 
supplementary materials (Figure 4 and Supplementary Table S2).

FIGURE 1

Parametrization of oscillatory activity within a frequency range of interest. (A) Power spectrum decomposition with fitting of the aperiodic (orange) and 
periodic (blue) components. (B) The power within a canonical band comprises the periodic and aperiodic components of the power spectrum. (C) The 
FOOOF toolbox parametrizes the periodic activity by fitting gaussians of oscillatory activity over the underlying aperiodic slope.
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3.3 Bandwidth

Age-related changes in the bandwidth of the fitted oscillatory 
peaks are depicted in Figure 4. There were no global dynamics for this 
parameter. In the low beta range, we saw a significant age-related 
increase of the peak bandwidth in the frontal, parietal, central and 
temporal electrodes of 0.01 to 0.02 Hz per year. The RMSE, coefficients, 
intercept, and p-values as well as the intrasubject variability of the peak 
bandwidth within the ranges of interest can be  found in the 
supplementary materials (Figure 5 and Supplementary Table S3).

3.4 Aperiodic activity

The aperiodic exponent showed a global significant decrease with 
age of around 0.003 μV2/Hz per year. We did not see age-dependent 
significant changes in the aperiodic offset (Supplementary Table S4).

4 Discussion

This analysis provides the first spectrum-wide normative 
characterization of the age-related changes in oscillatory (periodic) 
and non-rhythmic (aperiodic) activity within physiological resting-
state EEGs. While these processes have been partially described in 
some frequency bands or within age-cohorts, a parametrization of 
these dynamics over the life span was lacking. We found age-related 
changes in both periodic and aperiodic EEG parameters. Regarding 
the periodic activity, especially the center frequency of the alpha peak 
significantly decreased with age, while the gamma peak frequency 
increased. The aperiodic exponent describing the slope of the 

aperiodic activity decreased with age, but no significant changes were 
observed in the offset.

By focusing on real-world clinical EEG data, we  aim to offer 
reference values that are directly applicable in clinical and research 
settings. While previous studies have examined periodic and aperiodic 
activity in distinct patient populations, our study provides a 
foundational dataset that can serve as a comparative baseline for both 
healthy aging and disease-related alterations.

4.1 Age-related spectral changes

We provided a normative characterization of ongoing oscillatory 
activity in the resting-state EEG in six frequency bands by isolating 
the periodic from the aperiodic components in the power spectrum. 
In line with previous studies, the aperiodic slope showed a ubiquitous 
decrease with age, significantly affecting the total power (Donoghue 
et  al., 2020). Conventional decomposition of EEG spectra into 
canonical frequency bands does neither account for this, nor for 
frequency shifts across rigid band limits (Scally et al., 2018). For 
instance, we  confirmed previous evidence that the major part of 
age-related differences in the alpha power can be explained by the 
flattening of the aperiodic slope and a shift towards the theta range, 
rather than a loss of oscillatory activity (Tröndle et al., 2023; Cesnaite 
et al., 2023; Merkin et al., 2023). Similarly, the loss of theta power 
associated with increasing age and deterioration of cognitive status 
can be explained from the flattening of the aperiodic slope (Cesnaite 
et al., 2023; Caplan et al., 2015).

4.2 Estimation of age-adjusted center 
frequency

The observed slowing in the alpha center frequency by 
approximately 0.01 Hz per year corresponds to previous findings and 
reinforces the notion that the individual alpha frequency (IAF) alters 
as the brain ages and cognition deteriorates (Cesnaite et al., 2023; 
Merkin et  al., 2023). We  observed an acceleration of the center 
frequency in the gamma range amounting to 0.01 to 0.03 Hz per year 
depending on the brain region. The acceleration of frequencies in the 
gamma range has been proposed as a compensatory mechanism to 
counteract for declining nerve conduction velocities (Hong and 
Rebec, 2012). It has been postulated that this mechanism contributes 
to the flattening of the aperiodic slope and is also reflected in the 
acceleration of the center frequency in the gamma oscillations 
(Voytek et al., 2015). For the other frequency bands, we show that 
there is no overall age-related trend in the center frequency and 
present normative, age-independent values. Intrasubject variability 
was assessed across all analyzed parameters and was generally higher 
in faster oscillatory bands, particularly in the gamma range.

4.3 Clinical application

This analysis was originally conceived to inform a protocol for 
individualized transcranial alternating current stimulation (tACS) in 
an elderly population (Leroy et  al., 2025). Non-invasive brain 
stimulation techniques such as transcranial alternating stimulation 

TABLE 1 Patient characteristics.

Patient cohort

Sample size 532

Female (%) 274 (52)

Age range (years) 8–92

Age mean (± standard deviation) 50.5 (±17.6)

FIGURE 2

Histograms of age and sex distribution.
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FIGURE 3

Characterization of peak frequency (Hz) within the frequency bands of interest on the average of 20 single 10-s epochs per patient. For each 
frequency band, an averaged topographical representation of the center frequency was computed, and the linear regression (thick blue line) as well as 
the 95% confidence interval (dashed blue lines) was plotted for each parameter. The frequency bands were defined as follows: delta (A, 1–4 Hz), theta 
(B, 4–8 Hz), alpha (C, 8–12 Hz), low beta (D, 12–20 Hz), high beta (E, 20–30 Hz), and gamma (F, 30–50 Hz). If the p-value was below the significance 
level of 0.05, the statistical significance was reported with red asterisks (*: p-value 0.05–0.001; **: p-value ≤0.001).
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FIGURE 4

Characterization of peak power (dB) within the frequency bands of interest on the average of 20 single 10-s epochs per patient. For each frequency 
band, an averaged topographical representation of the peak power was computed, and the linear regression (thick blue line) as well as the 95% 
confidence interval (dashed blue lines) was plotted for each parameter. The frequency bands were defined as follows: delta (A, 1–4 Hz), theta (B, 
4–8 Hz), alpha (C, 8–12 Hz), low beta (D, 12–20 Hz), high beta (E, 20–30 Hz), and gamma (F, 30–50 Hz). If the p-value was below the significance 
level of 0.05, the statistical significance was reported with red asterisks (*: p-value 0.05–0.001; **: p-value ≤0.001).
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FIGURE 5

Characterization of peak bandwidth (Hz) within the frequency bands of interest on the average of 20 single 10-s epochs per patient. For each 
frequency band, an averaged topographical representation of the peak bandwidth was computed, and the linear regression (thick blue line) as well as 
the 95% confidence interval (dashed blue lines) was plotted for each parameter. The frequency bands were defined as follows: delta (A, 1–4 Hz), theta 
(B, 4–8 Hz), alpha (C, 8–12 Hz), low beta (D, 12–20 Hz), high beta (E, 20–30 Hz), and gamma (F, 30–50 Hz). If the p-value was below the significance 
level of 0.05, the statistical significance was reported with red asterisks (*: p-value 0.05–0.001; **: p-value ≤0.001).
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(tACS) are increasingly used to entrain oscillatory brain activity in 
elderly subjects and numerous neurological and psychiatric disorders, 
including but not limited to Parkinson’s disease (Madrid and 
Benninger, 2021), dementia (Manippa et al., 2023) and depression 
(Lee et al., 2022). The tACS is intended to interact with ongoing 
oscillatory activity, yet the frequency of these oscillations changes in 
the aging brain, resulting in possible mismatches (Fröhlich et al., 
2015). Recent work showed that tACS in the alpha range modulates 
the periodic but not the aperiodic components of the power 
spectrum, underlying the importance of this distinction in the 
context of brain stimulation (Kasten et  al., 2024). Age-adjusted 
stimulation frequencies in the alpha range, could provide a practical 
alternative that balances standardization and efficacy, circumventing 
the complexity of closed-loop EEG-synchronized setups (Zrenner 
and Ziemann, 2024; Nasr et  al., 2022). This approach offers a 
reproducible and clinically feasible method to refine tACS protocols 
and addresses variability in neurophysiological characteristics.

4.4 Limitations

A limitation of this analysis lies in its cross-sectional design, which 
does not allow for the tracking of individual aging processes over time. 
Consequently, longitudinal studies would offer a more nuanced 
understanding of how EEG parameters evolve with age in the same 
subjects. The study’s interpretations of frequency changes, especially in 
the gamma bands, may also be impacted by external variables such as 
minor physical movements or muscle artifacts, not accounted for during 
EEG recordings. Moreover, the analysis did not implement corrections 
for multiple testing since the primary goal was to describe physiological 
phenomena, rather than to introduce or validate new hypotheses.

The findings of this study are inherently limited by both intra- and 
intersubject variability, which is a common characteristic of resting-
state EEG. While intersubject variability is a key consideration when 
designing individualized stimulation protocols, intrasubject variability 
should also be  taken into account, particularly in the context of 
tACS. While the real-world nature of this dataset enhances its 
generalizability to clinical practice, it inherently includes patients with 
diverse medical backgrounds. Eventually, non-neurological disorders 
such as syncopes or unspecific transient symptoms are frequent results 
of a physiological EEG during diagnostic work-up. This said, patients 
did not necessarily suffer a neurological disorder just because they 
underwent EEG examination.

5 Conclusion

The findings from this analysis of clinical routine data highlight 
the intricate dynamics of age-related changes in resting-state EEG 
signals, which may have crucial implications for the understanding 
of the aging brain and the tailoring of neurotherapeutic interventions.
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