Skip to main content

ORIGINAL RESEARCH article

Front. Aging Neurosci.

Sec. Neurocognitive Aging and Behavior

Volume 17 - 2025 | doi: 10.3389/fnagi.2025.1538166

This article is part of the Research Topic Progress in the Assessment and Intervention of Neurocognitive Aging and Neurodegenerative Diseases View all 15 articles

Serine-129 Phosphorylated α-Synuclein Drives Mitochondrial Dysfunction and Calcium Dysregulation in Parkinson's Disease Model

Provisionally accepted
Hui Yang Hui Yang *Jie Jiao Jie Jiao Weijin Liu Weijin Liu Ge Gao Ge Gao
  • Capital Medical University, Beijing, China

The final, formatted version of the article will be published soon.

    Phosphorylation of α-synuclein at serine-129 (p-α-syn) is a hallmark of Parkinson's disease (PD) and constitutes nearly 90% of α-synuclein in Lewy bodies, playing a critical role in disease progression. Despite its pathological significance, the molecular targets and mechanisms driving p-α-syn-induced toxicity, particularly mitochondrial dysfunction, remain poorly understood. In this study, we observed mitochondrial dysfunction in primary cortical neurons derived from Thy1-SNCA transgenic mice, which overexpress human α-synuclein (hα-syn) and exhibit elevated levels of p-α-syn. Notably, inhibiting Ser129 phosphorylation improved mitochondrial function, underscoring the role of p-α-syn in mitochondrial damage. To investigate the molecular mechanism, we performed co-immunoprecipitation combined with mass spectrometry (CO-IP/MS) to identify p-α-syn binding proteins. This analysis identified protein tyrosine phosphatase interacting protein 51 (PTPIP51) and vesicle-associated membrane protein-associated protein B (VAPB) as key binding partners. Both proteins are localized in the mitochondria-associated endoplasmic reticulum mem-brane (MAM) and essential for calcium transfer between the endoplasmic reticulum (ER) and mitochondria. Our results showed that p-α-syn binds to PTPIP51 and VAPB, disrupting calcium signaling between the ER and mitochondria. Importantly, inhibition of Ser129 phosphorylation partially rescued calcium homeostasis. These findings uncover a novel mechanism by which p-α-syn drives mitochondrial dysfunction and calcium dysregulation through its interactions with MAM-associated proteins, providing new insights into its role in PD pathogenesis and potential therapeutic targets.

    Keywords: α-Synuclein, Phosphorylation, Mitochondrial dysfunction, calcium transport, Parkinson's disease

    Received: 02 Dec 2024; Accepted: 17 Mar 2025.

    Copyright: © 2025 Yang, Jiao, Liu and Gao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Hui Yang, Capital Medical University, Beijing, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

    Research integrity at Frontiers

    Man ultramarathon runner in the mountains he trains at sunset

    94% of researchers rate our articles as excellent or good

    Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


    Find out more