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Introduction: Alzheimer’s disease (AD) and glioblastoma (GBM) are severe 
neurological disorders that pose significant global healthcare challenges. 
Despite extensive research, the molecular mechanisms, particularly those 
involving mitochondrial dysfunction, remain poorly understood. A major 
limitation in current studies is the lack of cell-specific markers that effectively 
represent mitochondrial dynamics in AD and GBM.

Methods: In this study, we  analyzed single-cell transcriptomic data using 10 
machine learning algorithms to identify mitochondria-associated cell-specific 
markers. We validated these markers through the integration of gene expression 
and methylation data across diverse cell types. Our dataset comprised single-
nucleus RNA sequencing (snRNA-seq) from AD patients, single-cell RNA 
sequencing (scRNA-seq) from GBM patients, and additional DNA methylation 
and transcriptomic data from the ROSMAP, ADNI, TCGA, and CGGA cohorts.

Results: Our analysis identified four significant cross-disease mitochondrial 
markers: EFHD1, SASH1, FAM110B, and SLC25A18. These markers showed 
both shared and unique expression profiles in AD and GBM, suggesting a 
common mitochondrial mechanism contributing to both diseases. Additionally, 
oligodendrocytes and their interactions with astrocytes were implicated in 
disease progression, particularly through the APP signaling pathway. Key hub 
genes, such as HS6ST3 and TUBB2B, were identified across different cellular 
subpopulations, highlighting a cell-specific co-expression network linked to 
mitochondrial function.
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1 Introduction

Alzheimer’s disease (AD) and glioblastoma (GBM) are major 
neurological disorders that impact the brain’s cellular networks in 
distinct but complex ways. AD, the most prevalent form of dementia, 
is characterized by progressive cognitive decline, while GBM is an 
aggressive brain tumor noted for rapid growth and resistance to 
conventional therapies (Scheltens et  al., 2021; Price et  al., 2024). 
Interestingly, there is a significant overlap between these conditions, 
particularly among older adults. Approximately 42% of GBM patients 
aged 60–82 display AD-related pathology, suggesting potential shared 
pathological mechanisms (Xia et al., 2023). Epidemiological evidence 
indicates an inverse correlation between AD and GBM, but their 
co-occurrence can substantially affect disease progression and 
treatment outcomes (Lanni et al., 2021). Animal models have further 
demonstrated that the presence of AD pathology influences GBM 
tumor growth, disease progression, and immune responses (Broekman 
et al., 2018). This supports the hypothesis that AD and GBM may share 
underlying etiological factors, possibly linked to protein misfolding or 
biochemical changes characteristic of dementia (Lehrer, 2010; Sánchez-
Valle et al., 2017). These findings highlight the importance of assessing 
cognitive status and AD pathology in elderly GBM patients, as it may 
inform treatment strategies, particularly in the context of radiotherapy 
(Shi and Huang, 2023; Fetcko-Fayad et al., 2024). Further investigation 
is warranted to uncover the underlying mechanisms and shared 
pathways between these two devastating neurological conditions.

Mitochondrial dysfunction is a critical feature of both AD and 
GBM. In AD, mitochondrial impairment is a hallmark that drives 
neuronal death and cognitive decline (Calvo-Rodriguez and Bacskai, 
2021). Mitochondrial dysfunction in AD leads to reduced energy 
production, increased oxidative stress, and compromised mitochondrial 
dynamics, thereby impairing cellular quality control and exacerbating 
neuronal damage (Ebanks et  al., 2020). These findings suggest that 
strategies to improve mitochondrial function and mitigate oxidative 
stress may benefit AD patients. Conversely, in GBM, mitochondria play 
a key role in supporting the high metabolic demands of rapidly 
proliferating tumor cells (Thakur et al., 2022). GBM cells reprogram their 
metabolism to enhance mitochondrial respiration and can acquire 
mitochondria from neighboring healthy cells, thereby boosting their 
tumor-forming potential (Zhang et  al., 2023b). This metabolic 
reprogramming and mitochondrial hijacking represent promising 
therapeutic targets, with emerging drugs that inhibit mitochondrial 
apoptosis and mitophagy showing potential efficacy in GBM treatment. 
Despite considerable research, a comprehensive understanding of the 
mitochondrial mechanisms underpinning AD and GBM remains elusive. 
The advent of single-cell RNA sequencing (scRNA-seq) has opened new 
avenues for investigating cellular heterogeneity, offering unprecedented 
insight into disease progression at a cellular level (Lin P. et al., 2024). 
However, the full potential of scRNA-seq to elucidate mitochondrial 
functions in AD and GBM has yet to be realized (Wang et al., 2022).

This study aims to address this gap by utilizing scRNA-seq data 
combined with machine learning algorithms to identify mitochondrial-
related biomarkers with differential expression across diverse cell types 
in AD and GBM. By integrating scRNA-seq with epigenetic and 
transcriptomic analyses, we aim to elucidate the regulatory mechanisms 
governing mitochondrial gene expression, thereby providing a more 
comprehensive view of their roles across various cellular contexts. The 
application of machine learning to multi-omics data offers a powerful 

framework to dissect the intricate relationships between mitochondrial 
function and cellular identity (Baysoy et al., 2023). This dual-pronged 
approach is expected to reveal novel biomarkers and regulatory 
pathways that traditional bulk tissue analyses may have overlooked 
(Zhu et  al., 2020). By identifying cell type-specific mitochondrial 
signatures, our research seeks to refine our understanding of AD and 
GBM, potentially uncovering new therapeutic targets.

In summary, this study addresses a significant gap in our 
understanding of AD and GBM by focusing on the mitochondrial 
mechanisms central to both diseases. Despite extensive research, there 
remains an incomplete understanding of the cellular and molecular 
underpinnings of these conditions, particularly regarding 
mitochondrial function. Our approach integrates scRNA-seq data 
with machine learning algorithms to identify cell-specific 
mitochondrial markers across distinct cellular subpopulations. 
Notably, our findings have highlighted the potential involvement of 
genes linked to mitochondrial epistasis and localization, which may 
play pivotal roles in the pathogenesis of AD and GBM. By advancing 
our understanding of mitochondrial contributions to these diseases, 
we hope this work will guide the development of more targeted and 
effective therapies for AD and GBM patients. A detailed description 
of our methodology and the analysis process is presented in Figure 1.

2 Methods

2.1 Study design

In our research, the objective was to delve into a primary exploration 
of the possible connections between AD and GBM through a multi-
omics lens, with a specific emphasis on mechanisms related to 
mitochondria. It was our intention to detect potential mitochondrial 
biomarkers for both conditions by employing a set of 10 machine 
learning techniques, with the aspiration to augment the current 
repository of scientific knowledge. The multi-omics data framework for 
our study encompassed Single-nucleus RNA sequencing (snRNA-seq) 
profiles from the prefrontal cortex of individuals exhibiting high and 
low AD pathology (n = 48), along with Single-cell RNA sequencing 
(scRNA-seq) from GBM patients and control samples (n = 16). This was 
complemented by DNA methylation data and comprehensive 
transcriptome information (ROSMAP: n = 740, ADNI: n = 1,706, 
TCGA: n = 159, CGGA: n = 151). The characteristics of the cohorts for 
ADNI, ROSMAP, TCGA and CGGA transcriptome and methylation 
data are listed in Supplementary Table S1. Access to this data was 
facilitated through the contributions of four esteemed cohort studies: 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Petersen 
et al., 2010), the Religious Orders Study and Memory and Aging Project 
(ROSMAP) (Bennett et al., 2018), which primarily include participants 
with sporadic late-onset Alzheimer’s Disease (AD); The Cancer Genome 
Atlas (TCGA),1 and the Chinese Glioma Genome Atlas (CGGA)2 (Zhao 
et al., 2021), both of which focus on providing a comprehensive genomic 
characterization of cancers, emphasizing sporadic cases to capture 
broader population trends. Additionally, we incorporated datasets from 

1 https://www.cancer.gov/tcga

2 http://www.cgga.org.cn/
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FIGURE 1

Workflow of unveiling mitochondrial mechanisms in AD and GBM through single-cell transcriptomics and machine learning analysis. Our research 
aims to bridge gaps in our understanding of Alzheimer’s Disease (AD) and Glioblastoma Multiforme (GBM) by employing single-cell RNA sequencing 
(scRNA-seq) alongside machine learning techniques. Our approach focuses on identifying biomarkers that exhibit varying expression levels across 
different types of cells in these conditions. We aimed to find mitochondrial biomarkers for both diseases using 10 machine learning methods, adding to 
scientific knowledge. Our study used multi-omics data, including RNA sequencing from brain samples of people with AD (n = 48) and from GBM 

(Continued)
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the Gene Expression Omnibus (GEO) series GSE138794 (Wang et al., 
2019) and GSE162631 (Xie et al., 2021). For all participants included 
from the aforementioned studies, informed consents were secured, with 
unwavering commitment to ethical conduct and the protection of 
privacy and consent integrity. To bolster the thoroughness of our 
analytical approach, we engineered a sequential bioinformatics pipeline. 
This pipeline was designed to encompass processes such as data 
normalization, correction for batch effects, cellular deconvolution, and 
the analysis of differential expression. Further, we engaged an integrative 
machine learning framework, comprising 10 distinct algorithms: 
Classification Tree, Support Vector Machine (SVM), Xgboost, 
K-Nearest Neighbors (KNN), Random Forest, Glmnet, Linear 
Discriminant Analysis (LDA), logistic regression, Neural Networks 
(NNET), and Naive Bayes. This diverse set of algorithms was utilized to 
pinpoint significant biomarkers associated with mitochondrial functions.

2.2 snRNA-seq/scRNA-seq sample collection

For AD samples, post-mortem brain specimens were secured from 
48 subjects who participated in the Religious Order Study (ROS) or the 
Rush Memory and Aging Project (MAP), renowned for their extensive 
research on aging and dementia. Data aggregation in ROSMAP 
encompassed clinical records, meticulous post-mortem evaluations, 
and intricate molecular analysis of the brain tissues. Among these 
participants, a subset of 24 exhibited high β-amyloid levels alongside 
AD pathological indicators, while the remaining 24 demonstrated 
negligible or no β-amyloid presence or related pathological traits. The 
prefrontal cortex, specifically Brodmann area 10, which is known for its 
role in cognitive functions often affected by AD, was examined for each 
subject. Immunohistochemistry confirmed the presence of β-amyloid, 
and microscopic examinations indicated that the integrity of nuclei in 
AD-affected samples was comparable to those without pathology. This 
research resulted in an extensive collection of 80,660 snRNA-seq profiles.

Regarding the GSE138794 context, surgical glioma tissues and 
peripheral blood were collected from patients who underwent 
operations at UCSF, with proper Institutional Review Board approval 
and informed consent. Tissue processing for single-cell RNA 
sequencing (scRNA-seq) followed a standardized protocol. Fresh 
tissue was subjected to mechanical and enzymatic dissociation using 
papain in a DNase I-containing solution, followed by filtration and 
resuspension in PBS. For frozen tissue, nuclei extraction followed the 
“Frakenstein” protocol as shared by the 10x Genomics community.3 

3 https://community.10xgenomics.com/t5/Customer-Developed-Protocols/

ct-p/customer-protocols

Single-cell capture and complementary DNA (cDNA) synthesis were 
performed using the Fluidigm C1 system and the SMARTer Ultra Low 
RNA Kit. This was followed by cDNA quantification, dilution, and 
library preparation using the Nextera XT DNA Library Prep Kit. 
Agencourt AMPure XP beads were used for purification and size 
selection of the libraries. The 10X Genomics platform processed live 
cells and nuclei from both fresh and frozen tissues on the Chromium 
Single Cell Capture Chip, strictly adhering to the manufacturer’s 
guidelines for cell capture, reverse transcription, lysis, and library 
preparation. Sequencing was carried out on the Illumina NovaSeq 
platform using a 100 base pair paired-end protocol, yielding crucial 
data for analyzing the tumor microenvironment at the single-cell level. 
The dataset includes four IDH-wildtype (IDH-WT) GBMs and four 
IDH-mutant gliomas, providing a balanced representation of these 
two molecular subtypes. This composition is crucial for studying the 
molecular heterogeneity between IDH-WT and IDH-mutant gliomas, 
given their distinct biological behaviors and clinical outcomes.

For the GSE162631 dataset, surgical specimens were collected from 
four patients diagnosed with GBM with the aim of isolating endothelial 
cells (ECs) for single-cell RNA sequencing (scRNA-seq). From each 
patient, two tissue samples were processed: one extracted from the 
tumor epicenter and another from the peritumoral region. Tissue 
dissociation was initiated within 2 h of resection at the research facility 
to ensure cell viability and integrity. Single-cell suspensions were 
prepared following mechanical dissociation of the tissues, and specific 
kits from Miltenyi Biotec were utilized for the processing of tumor and 
peritumoral tissues. Cellular debris and red blood cells were 
meticulously removed according to the established protocol. Endothelial 
cells were then enriched through CD31+ selection using Dynabeads, a 
magnetic bead-based technology. The samples were subsequently 
resuspended in Dulbecco’s Phosphate-Buffered Saline (DPBS) with 
Bovine Serum Albumin (BSA) to facilitate cell counting and viability 
assessment. The optimal volume for scRNA-seq was selected based on 
the established protocol to ensure high-quality sequencing results. This 
dataset consists exclusively of IDH-WT samples, providing insights into 
the aggressive nature of this subtype, which is associated with a poorer 
prognosis and limited therapeutic options.

2.3 snRNA-seq/scRNA-seq data processing

snRNA-seq/scRNA-seq libraries were crafted employing Chromium 
Single Cell Reagent Kit (10X Genomics). Subsequently, these libraries were 
consolidated and subjected to sequencing on the NovaSeq 6,000 platform 
by Illumina, guided by the NovaSeq Control Software (v1.6.0). The 
unprocessed sequence data underwent refinement through the Cell 
Ranger software (v.7.1.0) which enabled the alignment of reads to the 
human reference genome GRCh38. Consequently, for each specimen, a 

patients (n = 16). We also included DNA methylation and transcriptome data from large studies. Data access was provided by four major studies: ADNI, 
ROSMAP, TCGA, and CGGA. We also used data from the GEO database. Informed consent was obtained from all participants, ensuring ethical 
standards and privacy protection. We performed a step-by-step bioinformatics process that included data normalization, correcting for batch effects, 
and analyzing gene expression differences. We also used a machine learning system with 10 different algorithms to identify key biomarkers. These 
algorithms helped us find important biomarkers related to mitochondria. This comprehensive analysis will elucidate the expression patterns and 
functions of these genes across different cell types. The integration of machine learning with genomic data provides a robust approach for exploring 
the complex interplay between mitochondrial function and cell identity. This dual-pronged strategy aims to uncover novel biomarkers and regulatory 
mechanisms, potentially obscured by traditional bulk tissue analysis methods. Our research will identify specific mitochondrial patterns associated with 
various cell types, providing a nuanced perspective on AD and GBM. This could open up new possibilities for targeted treatments.

FIGURE 1 (Continued)
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gene count matrix was formulated. The raw count data of ROSMAP 
snRNA-seq datasets and scRNA-seq datasets (GSE162631 and 
GSE138794) were analyzed utilizing the “Seurat” R package (v4.3.0.1). The 
filtration process was initially conducted to remove cells of poor quality, 
defined by a total RNA feature count below 200 or mitochondrial RNA 
surpassing 5%. Following the normalization of cellular gene expression, 
the SCTransform integration workflow was applied to integrate data from 
the various datasets. A total of 3,000 anchors for integration were identified, 
representing close neighbors within the individual datasets. Data scaling 
was performed to neutralize the effects of the cell cycle and to adjust for the 
overall counts recorded per cell and the mitochondrial gene expression 
ratio per cell. Principal Component Analysis (PCA) was then implemented 
to reduce the data dimensions, yielding 30 principal components. This was 
followed by the application of t-distributed stochastic neighbor embedding 
(tSNE) and uniform manifold approximation and projection (UMAP) 
algorithms for further dimensionality reduction across the initial 15 
dimensions. The “doubletFinder” R package (McGinnis et al., 2019) was 
employed to sift out any doublets from the dataset. The application of the 
FindNeighbors and FindClusters functions, set at a resolution of 0.5, 
resulted in the identification of 8 and 12 distinct cell clusters for AD and 
GBM, respectively. The Wilcoxon rank-sum test was subsequently utilized 
to pinpoint genes with significant differential expression within each 
cluster, using the “FindAllMarkers” function with a minimum percentage 
cutoff of 0.25 and a logarithmic fold change threshold set at 0.25. Finally, 
the process of cluster consolidation and further exploration of cellular 
trajectories was facilitated by the “SCP” R package. This package was 
instrumental in the analysis of differentially expressed genes, cell type 
annotation, and the elucidation of cellular developmental paths, providing 
a comprehensive view of the cellular dynamics within the context of AD 
and GBM.

2.4 Cell–cell communication analysis

In multicellular organisms, effective communication between cells 
is essential for their proper functioning, enabling the sharing of 
information through the release of signaling molecules or via direct 
cell-to-cell contact. “CellChat” is a specialized bioinformatics tool 
designed to infer and quantitatively analyze networks of intercellular 
communication from scRNA-seq data (Jin et al., 2021). It incorporates 
comprehensive ligand-receptor interaction databases and is accessible 
online at http://www.cellchat.org/. This tool facilitates the identification 
and quantification of interactions based on differential expression levels 
of ligands and receptors within cell groups, with statistical significance 
defined by a p-value threshold of less than 0.05. The netVisual_
diffInteraction function within CellChat was utilized to visually 
represent variations in the strength of intercellular communication, 
highlighting the differences between distinct cell populations. To 
elucidate the complex coordination among multiple cell populations 
and the signaling pathways that drive intercellular communication, 
non-negative matrix factorization (NMF) is implemented through the 
identifyCommunicationPatterns function, which aids in deducing the 
underlying communication patterns. Subsequently, CellChat enables 
the extraction of key signaling inputs and outputs among various cell 
clusters, which can be visually depicted using scatter plots for a clear 
representation of intercellular signaling dynamics. By measuring the 
Euclidean distance between pairs of shared signaling pathways on a 
two-dimensional manifold scatter plot, the rankSimilarity function was 

applied to pinpoint pathways that exhibit the most significant 
alterations, particularly in the context of AD and GBM samples. Finally, 
CellChat allows for the comparison of communication probabilities 
between ligand-receptor pairs that are regulated by specific cell 
populations and directed towards others. This comparison is achieved 
by adjusting the compare parameter within the netVisual_bubble 
function, providing a nuanced view of cell population-specific 
regulatory effects within the intercellular communication network. 
This approach offers valuable insights into the intricate mechanisms of 
cell–cell interactions in the context of scRNA-seq data analysis.

2.5 Integrative machine learning model 
construction and feature importance 
selection

The “Boruta” R package is an advanced ensemble method for 
feature selection, designed to identify the most influential predictors 
in complex datasets. By employing a p-value threshold of 0.01, 
we enforced a rigorous criterion for variable retention, ensuring that 
only those features with a statistically significant association to the 
outcome variable are considered. The algorithm operate by comparing 
the importance of each feature against a set of randomly generated 
“shadow” features. This comparison is grounded in the mean decrease 
in accuracy, a measure that reflects the predictive relevance of each 
feature. Through iterative evaluation, Boruta distinguishes between 
truly important features and those that exhibit only spurious 
correlations. Upon completion of the Boruta process, a subset of 
“Confirmed” variables was selected—those that have demonstrated a 
substantial impact on model accuracy and have surpassed the 
predefined significance threshold. These variables form the basis for 
subsequent machine learning modeling, streamlining the dataset to 
its most informative elements. To account for potential confounding 
factors, such as age, gender, and IDH mutation status, we incorporated 
these variables as covariates in our machine learning models. This 
adjustment ensures that the predictive power of the identified gene 
signatures is evaluated independently of these clinical variables.

For models construction, we  adopted a meticulous analytical 
approach to construct predictive models and identify key biomarkers 
using the “mlr3” R package.4 This package is part of the “mlr3verse,” a 
comprehensive ecosystem for machine learning in R, known for its 
flexibility and extensive range of algorithms. Our methodology 
commenced with a rigorous data preprocessing phase, which included 
data cleaning to handle missing values and outliers, and normalization 
to ensure that all features were on a comparable scale. An initial 
feature selection was conducted based on statistical measures such as 
variance and correlation, thereby establishing a solid foundation for 
model training.

The machine learning algorithms were categorized based on their 
analytical strengths:

 • Tree-based models like Classification Tree, Random Forest, and 
Xgboost, known for their ability to handle non-linear 
relationships and interactions between features.

4 https://mlr-org.com/
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 • Discriminant and linear models including Linear Discriminant 
Analysis (LDA) and Glmnet, which are effective for linearly 
separable data.

 • Instance-based learning with K-Nearest Neighbors (KNN), 
which relies on the similarity of instances for prediction.

 • Kernel-based learning via Support Vector Machine (SVM), 
which uses kernel functions to transform data into a higher-
dimensional space.

 • Probabilistic models such as Logistic Regression and Naive Bayes, 
with the latter noted for its simplicity and effectiveness in high-
dimensional spaces.

 • Neural Networks were also employed for their capacity to capture 
complex patterns.

Each algorithm underwent hyperparameter optimization using 
grid search cross-validation, streamlined by the AutoML features of 
the “mlr3” package, to identify the most effective hyperparameters. 
Post model training, variable importance scores were extracted and 
aggregated to pinpoint potential biomarker candidates. To reinforce 
the stability of feature selection, a process of stability selection was 
implemented, ensuring the consistency of important features across 
various data subsets. The predictive performance of the models was 
then validated using a held-out test set, thereby confirming the 
generalizability of our models and the relevance of the identified 
biomarkers. Subsequently, the models were refined using the selected 
biomarker subset, thereby enhancing both predictive accuracy and 
model interpretability. Throughout this process, we  maintained 
stringent documentation standards, detailing every step from data 
preprocessing to model validation. This included hyperparameter 
settings, feature selection criteria, and variable importance scores.

2.6 Transcriptomic data collection and 
processing

In this research, 694 glioblastoma patients from the TCGA cohort 
were included. Clinical data were sourced from TCGA’s published works, 
as detailed previously. Utilizing the Xena Browser by UCSC, TCGA’s 
gene expression data from AffyU133a arrays and Illumina HiSeq 
RNA-seq for lower-grade gliomas (LGGs) and glioblastomas (GBMs) 
were retrieved from https://tcga-data.nci.nih.gov/. Additionally, the 
CGGA (Chinese Glioma Genome Atlas) dataset, which comprises 692 
cases with gene expression profiles for 24,326 genes along with overall 
survival data, was accessed through the CGGA website at http://www.
cgga.org.cn/. This dataset was generated using the Illumina HiSeq 2000 
sequencing platform. Ethical approval for this study was granted by the 
Institutional Review Boards of Beijing Tiantan Hospital, with all 
participants providing their written consent. The research was conducted 
in strict compliance with the guidelines and regulations set forth by the 
Institutional Review Boards. Gene expression values were initially 
normalized to fragments per kilobase of transcript per million mapped 
reads (FPKM), considering the gene length. The “limma” R package was 
employed for data analysis, applying a fold change threshold of greater 
than 1.5 and an adjusted p-value of less than 0.05 to identify differentially 
expressed genes (DEGs). The “clusterProfiler” R package (Wu et al., 
2021) was then used for functional enrichment analysis of the DEGs, 
categorizing them by Gene Ontology (GO) terms related to biological 
processes (BP), molecular functions (MF), and cellular components 

(CC). Additionally, pathway enrichment analysis was conducted with 
the “clusterProfiler” package, referencing pathways from the Kyoto 
Encyclopedia of Genes and Genomes (KEGG), with a false discovery 
rate (FDR) threshold of less than 0.05. For survival analysis, the “survival” 
and “survminer” R package was applied, offering an extensive toolkit for 
time-to-event data analysis. The package’s Coxph and Survfit function 
was utilized to perform Cox proportional hazards regression, a widely 
recognized approach to explore the correlation between survival 
outcomes and multiple predictive variables.

2.7 Methylation data collection and 
processing

In our study, we explored the complex patterns of DNA methylation 
within a cohort comprising 159 glioma tissue samples. These data were 
meticulously sourced from the TCGA database, facilitated by the 
“TCGAbiolinks” R package (Colaprico et al., 2016). The methylation 
status of the samples was assessed using the Illumina Infinium 
HumanMethylation 450 platform, which quantifies methylation as 
β-values. These values represent the ratio of methylated cytosines to the 
total cytosine signal. Our investigation centered on methylation events 
occurring near CpG islands, including their shores and shelves. These 
regions are of significant interest due to their role in gene regulation. To 
ensure the accuracy of our analysis, we meticulously curated the data by 
excluding CpG sites that were in close proximity to known single 
nucleotide polymorphisms (SNPs), as identified on the Illumina product 
support website, and those that exhibited cross-reactivity. This exclusion 
was critical to prevent any misinterpretation of the methylation status. 
Additionally, we  omitted CpG sites located on the Y chromosome, 
considering their lack of relevance to our all-female patient cohort. 
These rigorous filters culminated in a refined dataset comprising 180,758 
CpG sites, which was then prepared for detailed analysis.

For the samples from the Chinese Glioma Genome Atlas (CGGA), 
immediate post-surgical snap-freezing in liquid nitrogen was employed 
to preserve tissue integrity. Hematoxylin and eosin-stained sections were 
meticulously examined to ensure that only samples with a tumor cell 
content exceeding 80% were included in the study. Genomic DNA 
extraction was conducted using the QIAamp DNA Mini Kit, strictly 
following the manufacturer’s protocol. The purity and concentration of 
the extracted DNA were determined using a NanoDrop ND-1000 
spectrophotometer. The DNA methylation data underwent a series of 
normalization and processing steps using the ChAMP R package, with its 
default parameters applied to ensure analytical consistency. Subsequently, 
the “EpiDISH” R package (Teschendorff et  al., 2017) was utilized to 
deconvolute the methylation profiles. This approach provided an 
estimation of the relative proportions of various immune cell types within 
the GBM samples. Our analysis not only deepened the understanding of 
the immune microenvironment in GBM but also provided valuable 
insights that could potentially inform the development of targeted 
immunotherapeutic strategies.

2.8 High-dimensional weighted gene 
co-expression network analysis

In our study, we  employed high-dimensional weighted gene 
co-expression network analysis (hdWGCNA) to delve into the complex 
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relationships within single-cell RNA sequencing (scRNA-seq) data. This 
approach was facilitated by the “hdWGCNA” R package (Morabito et al., 
2023), which is specifically designed to create gene correlation networks 
suited for scRNA-seq data. We initiated our analysis by creating a Seurat 
object employing the SetupForWGCNA function. To counteract the 
sparsity characteristic of scRNA-seq data, we constructed metacells, 
which are clusters of transcriptionally similar cells, using the k-Nearest 
Neighbors (KNN) algorithm with default parameters: k = 25 for the 
number of neighbors and max_shared = 10 to control the sharing of 
cells between metacells. The determination of the optimal soft power 
threshold for gene–gene correlation scaling was performed using the 
TestSoftPowers function, which was set to explore a range of soft power 
values from 1 to 30 to achieve the best fit to the scale-free topology 
model. The ConstructNetwork function was then utilized to create a 
topological overlap matrix (TOM) for module detection, employing the 
scaled gene–gene correlations. Module dendrograms were visualized 
using the PlotDendrogram function to provide a clear hierarchical 
representation of gene clusters. Module eigengenes (ME), calculated 
with the ModuleEigengenes function using default settings, served as 
the first principal components of each module’s gene subset. Intra-
modular connectivity was quantified using the SignedKME algorithm, 
which determined the kME metric for each gene in relation to its 
module’s eigengene. This step was crucial for identifying the most 
interconnected genes within each module. For dimensionality reduction 
and visualization, the RunModuleUMAP function was applied to the 
TOM, focusing on the top five hub genes per module as ranked by their 
kME values. This resulted in a UMAP visualization that was 
predominantly influenced by these hub genes, with annotations for the 
top five hub genes in each module to reflect the module’s key features.

2.9 Statistical analyses

All statistical analyses and data visualizations were performed 
using R software (version 4.3.3). Differences in survival between the 
two groups were assessed using Kaplan–Meier curves and the log-rank 
test. Univariate and multivariate Cox regression analyses were used to 
determine prognostic factors. For correlation analysis, correlation 
coefficients were calculated using Pearson for normally distributed 
data and Spearman for non-normally distributed data. For analysis of 
differences between two groups of data, unpaired Student’s t-test and 
Mann–Whitney U-test were used for normally and non-normally 
distributed variables, respectively. To compare more than two groups, 
one-way analysis of variance (ANOVA) and Kruskal–Wallis’s tests 
were used as parametric and nonparametric methods, respectively. 
The adjusted p-value (FDR) was calculated by the Benjamini–
Hochberg correction method. p < 0.05 was considered statistically 
significant unless mentioned otherwise.

3 Results

3.1 Single-cell transcriptomics unveils 
distinct mitochondrial signatures and 
cellular heterogeneity in AD and GBM

Our investigation began with single-nucleus RNA sequencing 
(snRNA-Seq) of AD, followed by comprehensive data annotation to 

delineate cellular subpopulations and their associated biological 
processes. After stringent quality control, we  obtained a dataset 
comprising 70,634 cells for analysis. Using dimensionality reduction 
techniques, including UMAP and tSNE, alongside clustering analyses, 
we identified eight distinct cellular subpopulations: Oligodendrocytes 
(25.8%), Inhibitory Neurons (13.0%), Excitatory Neurons (4.9%), 
Astrocytes (4.8%), Oligodendrocyte Precursor Cells (OPCs, 3.7%), 
Microglia (2.7%), Pericytes (0.2%), and Endothelial Cells (0.2%) 
(Figures 2A–C). Hierarchical clustering and the Wilcoxon rank sum 
test were utilized to detect DEGs within each cellular cluster, revealing 
a significant representation of nerve cells. Each cell type exhibited a 
unique set of functionally distinct genes. For instance, Excitatory 
Neurons predominantly expressed genes associated with the 
modulation of chemical synaptic transmission and the regulation of 
trans-synaptic signaling processes. Subsequent clustering and 
enrichment analysis of DEGs from these cellular subpopulations 
uncovered that the C2 cluster, characterized by genes ABL1, DIP2B, 
SEMA4D, and SMURF1 in Oligodendrocytes, was significantly 
enriched for the mitochondrial morphogenetic pathway 
(Figures  3A,B). The defining genes of each cell subpopulation, as 
determined through cellular profiling, were as follows: Excitatory 
Neurons (CDK5), Oligodendrocytes (LPAR1), Inhibitory Neurons 
(RELN), Microglia (NCKAP1L), OPCs (DISC1), and Astrocytes 
(NOTCH1) (Supplementary Table S2). Notably, LPAR1, RELN, and 
NCKAP1L are associated with mitochondrial epistasis, genes 
previously identified in our study, while DISC1 is recognized as a gene 
related to mitochondrial localization (Figures 3C,D).

To investigate GBM heterogeneity, we  conducted an integrated 
analysis of scRNA-seq data from two distinct datasets (GSE138794 and 
GSE162631). The SCTransform algorithm was utilized to mitigate batch 
effects, resulting in an integrated dataset comprising 35,674 cells across 16 
samples. UMAP analysis identified 38 clusters, categorized into 12 cell 
types according to existing annotations: Microglia (35.6%), Neoplastic 
Cells (22.3%), Neutrophils (11.9%), Macrophages (10.2%), Myeloid Cells 
(8.1%), Mural Cells (6.5%), Dendritic Cells (1.8%), Oligodendrocytes 
(1.7%), Endothelial Cells (1.1%), Astrocytes (0.4%), T Cells (0.2%), and B 
Cells (0.1%) (Figures  2D–F). Differential gene expression analysis 
indicated that neoplastic cells exhibited the highest frequency of DEGs, 
followed by astrocytes and oligodendrocytes (Figure  4A; 
Supplementary Table S3). These cell types were significantly enriched for 
mitochondrial processes, including mitochondrial gene expression, 
electron transport chain activity, and ATP synthesis, with key genes such 
as MT-ND1, MT-ND2, MT-ND4, and MT-ND5 prominently expressed 
(Figures  4B–D). These genes were also linked to the NADH 
dehydrogenase (ubiquinone) 1 beta subcomplex, a crucial component of 
mitochondrial complex I, indicating a pivotal role in mitochondrial 
energy metabolism. Additionally, enrichment analysis showed these cells 
were involved in neuronal and cellular projections, highlighting their roles 
in neural development (Figure 4E).

Comparative analyses of single-cell transcriptomics in AD and 
GBM revealed shared mitochondrial involvement in oxidative 
phosphorylation, immune response, and small GTPase-related 
signaling pathways. Both AD and GBM showed significant immune-
related enrichments, particularly involving microglia. Notably, 
oligodendrocytes in both conditions displayed enrichment in 
mitochondrial processes such as morphogenesis, energy metabolism, 
axon ensheathment, and neuronal morphogenesis. KEGG pathway 
enrichment of oligodendrocyte-specific genes in GBM indicated 
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FIGURE 2

Cellular subpopulation landscape in AD and GBM. (A–C) Our investigation of AD utilized single-nucleus RNA sequencing (snRNA-Seq) to meticulously 
annotate and delineate cellular subpopulations in relation to established biological processes. Post stringent quality control measures, a dataset of 
70,634 cells was subjected to dimensionality reduction techniques, such as Uniform Manifold Approximation and Projection (UMAP) and t-Distributed 
Stochastic Neighbor Embedding (tSNE), coupled with cluster analysis. This approach identified eight distinct cellular subpopulations, including 
Oligodendrocytes (25.8%), Inhibitory Neurons (13.0%), Excitatory Neurons (4.9%), Astrocytes (4.8%), Oligodendrocyte Precursor Cells (OPCs, 3.7%), 
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associations with Huntington’s, Parkinson’s, and Alzheimer’s disease. 
Additionally, AD showed higher enrichment in synaptic transmission 
and neuronal signaling, whereas GBM emphasized mitochondrial 
energy metabolism, ATP synthesis, and immune response processes, 
including T cell differentiation (Figures 3E, 4E).

3.2 Decoding complex intercellular 
networks: cell–cell communication 
analysis reveals critical signaling pathways 
in AD and GBM

Cell communication analysis revealed intricate signaling networks 
among various brain cell types in AD and GBM. In AD, distinct receptor-
ligand interactions were identified, prominently involving OPCs, 
astrocytes, excitatory and inhibitory neurons, and oligodendrocytes. The 
strongest interactions were observed between OPCs and astrocytes, as 
well as between excitatory and inhibitory neurons (Figures  5A,B; 
Supplementary Figure S1A; Supplementary Table S4). The five most 
significant signaling pathways were ADGRL (27 interactions), PTPRM 
(25 interactions), UNC5 (23 interactions), NRXN (23 interactions), and 
PSAP (21 interactions) (Figure  5C; Supplementary Figures S1B,C; 
Supplementary Table S5). Notably, the ligand-receptor pairs NRG3-
ERBB4, NRXN3-LRRTM4, and NRXN1-NLGN1 exhibited the most 
substantial interactions across astrocytes, excitatory/inhibitory neurons, 
and OPCs (Supplementary Figures S1B,C). Outgoing and incoming 
signal patterns were categorized for cluster analysis, revealing five efferent 
and four afferent patterns, with ADGRL and NCAM pathways 
dominating secreted signals in excitatory and inhibitory neurons 
(Figures  5D–F). Astrocytes and oligodendrocytes exhibited distinct 
secretion patterns, enriched for pathways such as APP and PTPR 
(Supplementary Figure S1C).

In GBM, intercellular interactions were predominantly centered 
around astrocytes, myeloid cells, neoplastic cells, and oligodendrocytes. 
The highest interaction frequency was noted between astrocytes and 
neoplastic cells (18 interactions), followed by oligodendrocytes and 
astrocytes (Figures  6A,B; Supplementary Figure S2A; 
Supplementary Table S5). The APOE and APP pathways were significantly 
enriched across multiple cell types, including astrocytes, oligodendrocytes, 
microglia, dendritic cells, and macrophages. Among these, APP-CD74 
and APP-(TREM2 + TYROBP) accounted for the largest proportion of 
interactions (Figure  6C; Supplementary Figures S2B,C; 
Supplementary Table S5). Cell communication patterns were categorized 
into four outgoing and four incoming modes, with immune cells (e.g., 
microglia, dendritic cells, and macrophages) showing similar signaling 
profiles. Both astrocytes and oligodendrocytes were uniquely enriched for 
the APP pathway (Figures 6D–F and Supplementary Figures S2B,C).

In summary, 39 signaling pathways were enriched in AD and 
49 in GBM, with 23 pathways shared between both conditions. The 
APP pathway emerged as the most significant (705/2851, 24.7%), 

followed by PSAP (462/2851, 16.2%), CypA (266/2851, 9.3%), PTN 
(252/2851, 8.8%), and NRXN (207/2851, 7.2%). Oligodendrocytes 
were key contributors to the APP signaling pathway (Figures 5G, 6G). 
Supplementary Figures S1, S2 illustrate specific receptor-ligand pairs 
across key cell types. The central roles of the NRXN and APP pathways 
in AD and GBM were highlighted, reflecting their distinct yet 
overlapping contributions to neuronal and neoplastic cells, 
respectively (Supplementary Figures S1D, 2D).

3.3 Comparative transcriptomics identifies 
distinct gene expression profiles and 
functional pathways in AD and GBM

Gene expression analysis across four databases identified DEGs with 
the following up-and down-regulation counts: ROSMAP (up-regulated: 
436, down-regulated: 1,267), ADNI (up-regulated: 25, down-regulated: 
11), TCGA (up-regulated: 5,125, down-regulated: 5,121), and CGGA 
(up-regulated: 84, down-regulated: 33). The 10 most significantly up-and 
down-regulated genes were depicted in Figures 7A,C,E,G. The TCGA 
dataset demonstrated the most pronounced gene expression differences, 
whereas the ADNI dataset exhibited the fewest.

Functional analysis of DEGs in the ROSMAP dataset revealed 
significant enrichment in nuclear chromosome segregation. In 
contrast, DEGs in the ADNI dataset were primarily associated with 
immune-related functions, particularly B cell activation and signaling 
pathways (Figures 7B,D and Supplementary Figures S3A,B,E–H). For 
GBM, differential gene expression analysis indicated that TCGA genes 
were enriched in protein  localization and assembly, while CGGA 
genes were largely involved in chromosome segregation and mitotic 
processes (Figures 7F,H and Supplementary Figures S3C,D,G,H).

When consolidating all differential expression analyses, the most 
common enrichments were found in cellular processes, binding 
activities, and cellular anatomical structures. KEGG pathway analysis 
identified significant shared enrichment across signaling pathways. 
Genes up-regulated in both AD and GBM were enriched in mitosis, 
osteoblast morphogenesis, and protein-localized transcriptional 
maintenance. In contrast, down-regulated genes were most 
significantly associated with nuclear transcription, synaptic signaling, 
and calcium ion transport (Supplementary Figure S4).

3.4 Integration of machine learning and 
multi-omics data identifies novel 
cell-specific mitochondrial markers in AD 
and GBM

Using differentially expressed genes from each cell type in AD and 
GBM single-cell datasets, we  implemented a screening process 
utilizing ten distinct machine learning algorithms. To investigate the 

Microglia (2.7%), Pericytes (0.2%), and Endothelial Cells (0.2%). (D–F) To explore the heterogeneity of GBM, we integrated single-cell RNA sequencing 
(scRNA-seq) data from two distinct datasets (GSE138794 and GSE162631). The SCTransform algorithm was applied to mitigate batch effects, resulting 
in an integrated dataset comprising 35,674 cells across 16 samples. Unsupervised clustering analysis identified 38 distinct clusters, which were 
categorized into 12 cell types: Microglia (35.6%), Neoplastic Cells (22.3%), Neutrophils (11.9%), Macrophages (10.2%), Myeloid Cells (8.1%), Mural Cells 
(6.5%), Dendritic Cells (1.8%), Oligodendrocytes (1.7%), Endothelial Cells (1.1%), Astrocytes (0.4%), T Cells (0.2%), and B Cells (0.1%). This comprehensive 
categorization facilitates a deeper understanding of the cellular diversity within AD and GBM and paves the way for targeted therapeutic strategies.
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FIGURE 3

Characterization and functional annotation of AD single-cell subpopulations. (A) Hierarchical clustering, utilizing the Wilcoxon rank sum test, was 
employed to identify differentially expressed genes (DEGs) within each cluster, revealing a substantial representation of nerve cells. (B) Functional 
enrichment analysis revealed unique gene sets for each cell subset. Excitatory Neurons predominantly expressed genes linked to chemical synaptic 
transmission modulation and trans-synaptic signaling regulation. DEGs from cellular subpopulations, particularly the C2 cluster marked by ABL1, 
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impact of mitochondria-related genes, we compared mitochondrial 
epistasis genes with mitochondrial localization genes based on 
previous studies (Xu et al., 2022, 2024). Our analysis identified 275 
cell-specific mitochondrial epistasis genes (MT-Inter) and 94 cell-
specific mitochondrial localization genes (MT-Locate) 
(Supplementary Tables S6, S7). The predictive potential and variable 
significance of these genes were evaluated using gene expression data 
from four databases: ROSMAP, ADNI, TCGA, and CGGA. The 
models were assessed using seven performance metrics: Area Under 
the Curve (AUC), Confusion Entropy (CE), Accuracy (ACC), 
Precision, Recall, Sensitivity, and Specificity.

For AD, Random Forest algorithm using mitochondrial 
localization genes from ROSMAP showed the highest predictive 
efficiency (AUC = 0.8). In the ADNI database, the KNN algorithm, 
using mitochondrial epistasis-related genes, achieved the best 
predictive performance (AUC = 0.82). Focusing on GBM, within the 
TCGA dataset, the Classification Tree’s AUC fell just below 0.9 
(TCGA-Locate AUC = 0.88, TCGA-Inter AUC = 0.84), while all other 
models showed exceptionally high results, with AUCs surpassing 0.95. 
Notably, the TCGA-Locate model achieved the highest AUC score of 
0.99. In the CGGA dataset, the Random Forest-based CGGA-Inter 
model emerged as the most effective (AUC = 0.77) (Figure  8 and 
Supplementary Table S8).

Integrating variable importance from the top three predictive 
models allowed us to identify key markers within the MT-Inter and 
MT-Locate categories for each of the four datasets: ADNI (9/5), 
ROSMAP (25/16), and CGGA (39/49). For the TCGA dataset, the 
top  50 marker genes were selected. Network analysis revealed 
significant intersections among gene sets, with the TCGA-Locate and 
CGGA-Locate models showing the highest number of shared genes 
(17) (Supplementary Figure S5 and Supplementary Table S9). Notably, 
ERBB4 was a significant contributor across RUSH-Locate, CGGA-
Locate, TCGA-Locate, and CGGA-Inter models.

By compiling biomarkers of high importance, we curated a list 
of 24 candidate cell-specific mitochondria-associated markers, each 
demonstrating significant contributions in at least one dataset for 
both AD and GBM (Supplementary Table S10). Among them, 16 
were classified as mitochondrial epistasis genes, and 13 as 
mitochondrial localization genes. Five genes, ERBB4, ABAT, 
FAM110B, MAPK10, and PRKCA, were classified as both 
mitochondrial epistasis and mitochondrial localization genes. Their 
distinct expression patterns across different cell types of AD and 
GBM were illustrated in Supplementary Figures S6, S7. These 
candidate marker genes were predominantly expressed in 
oligodendrocytes and neoplastic cells, with distinct distribution 
patterns across neural cells in AD and GBM compared to immune 
cells. Particularly, significant disparities in expression were noted 
between astrocytes and oligodendrocytes.

3.5 Inference of immune cell components 
based on methylation data

Immune cell interactions with the tumor microenvironment 
(TME) are crucial for influencing tumor development, metastasis, and 
treatment response. We analyzed methylation data from four datasets 
to determine the distribution of 24 candidate genes in seven immune 
cell types. In the ROSMAP dataset, significant positive correlations 
were observed between the expression of SNN, LIMCH1, and MAPK10 
with monocytes and eosinophils, while negative correlations were 
noted with B-cells, NK-cells, and CD4+ T-cells. In the ADNI dataset, 
ERBB3, LIMCH1, and SACS showed strong positive correlations with 
NK-cells and CD8+ T-cells, while CYCS, SLC25A18, and MAPK10 were 
negatively correlated with NK-cells and CD8+ T-cells (Figures 9A,B).

In GBM, TCGA methylation data indicated that ABAT, KCNJ10, 
and SLC25A18 had significant positive associations with monocytes 
and neutrophils, while negative associations were noted with 
eosinophils. In the CGGA dataset, ADIPOR2, SASH1, and KCNJ10 
demonstrated significant positive correlations with CD8+ T-cells, 
monocytes, and eosinophils, along with a strong negative correlation 
with B-cells (Figures 9D,E).

Categorizing these genes into mitochondrial epistasis and 
localization genes revealed distinct correlation patterns. In AD 
datasets, mitochondrial epistasis genes showed the strongest positive 
correlation with NK cells and neutrophils. Mitochondrial localization 
genes were most strongly associated with neutrophils, while significant 
positive correlations were also observed with NK cells, CD4+ T-cells 
(ROSMAP), and CD8+ T-cells (ADNI). In GBM datasets, a 
combination of mitochondrial epistasis and localization genes 
exhibited strong correlations with eosinophils, CD4+ T-cells, and 
CD8+ T-cells, with NK cells and CD4+ T-cells showing the most 
prominent positive associations (Figures 9C,F).

3.6 Survival analysis identifies cross-disease 
markers with differential prognostic impact 
in AD and GBM

Survival analysis of 24 candidate genes across four datasets revealed 
significant differences in AD and GBM risk (p < 0.0001). Multi-gene 
Cox regression analysis identified significant genes (p < 0.05) in each 
dataset: ROSMAP (13 genes), ADNI (3 genes), TCGA (8 genes), and 
CGGA (11 genes) (Supplementary Table S11). Key genes with the most 
pronounced effects on disease risk were identified for each dataset: in 
TCGA, LIMCH1 (HR = 0.46, p = 2.27 × 10−9); in CGGA, CREB5 
(HR = 1.02, p = 6.91 × 10−8); in ROSMAP, SACS (HR = 12.87, 
p = 3.51 × 10−5), and in ADNI, GPC1 (HR = 0.30, p = 2.27 × 10−9). 
Among these significant genes, CYCS, FAM110B, GOLM1, and 

DIP2B, SEMA4D, and SMURF1 in Oligodendrocytes, showed significant enrichment in the mitochondrial morphogenetic pathway. (C) The histogram 
illustrates the proportional representation of cell types within each sample. (D) Cell subpopulations were characterized by defining genes: Excitatory 
Neurons (CDK5), Oligodendrocytes (LPAR1), Inhibitory Neurons (RELN), Microglia (NCKAP1L), OPCs (DISC1), and Astrocytes (NOTCH1). Notably, LPAR1, 
RELN, and NCKAP1L, implicated in mitochondrial epistasis, and DISC1, a gene associated with mitochondrial localization, were identified. This 
underscores the complex interplay between cellular identity and mitochondrial function in neurological diseases. (E) GSVA enrichment analysis across 
cell types revealed heightened involvement in signal transduction within the nervous system, including synaptic transmission, as well as processes 
related to cell growth and differentiation.
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FIGURE 4

Characterization and functional annotation of GBM single-cell subpopulations. (A) Differential gene expression analysis identified Neoplastic Cells 
exhibited the highest frequency of DEGs, followed by Astrocytes and Oligodendrocytes. (B) Functional enrichment analysis of different cell subsets. All 
three cell types showed significant enrichment in mitochondria-related processes, including mitochondrial gene expression and mitochondrial ATP 
synthesis coupled with electron transport. They commonly had enrichment for mitochondrial gene clusters including MT-ND1, MT-ND2, MT-ND4, and 
MT-ND5. The differentially expressed genes in these cells included numerous genes coupled with the NADH dehydrogenase (ubiquinone) 1 beta 
subcomplex, a key component of the mitochondrial respiratory chain complex I. (C) The histogram illustrates the proportional representation of cell 
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SLC25A18 demonstrated opposing effects on disease risk in AD and 
GBM, increasing risk in one while decreasing it in the other. In contrast, 
EFHD1, LIMCH1, MAOB, COX6B1, SASH1, and SNN consistently 
contributed to disease risk in both AD and GBM (Figure 10). Further 
screening of integrated gene expression data revealed four genes—
EFHD1, SASH1, FAM110B, and SLC25A18—that were differentially 
expressed in both AD and GBM (Supplementary Figure S8).

3.7 Single-cell analysis reveals key gene 
associations with cell cycle and stemness 
in high-grade gliomas

Single-cell level analysis using the CancerSEA database (Yuan et al., 
2019) revealed significant correlations between four candidate genes and 
functional states of high-grade gliomas (HGG) in the central nervous 
system (CNS). Notably, EFHD1 and SLC25A18 exhibited strong positive 
correlations with cellular processes related to the cell cycle 
(Cor = 0.368/0.385, P < =0.001), whereas SASH1 and FAM110B were 
found to be closely associated with tumor stemness (Cor =0.328/0.427, 
P < =0.001) (Figures 11A–D and Supplementary Table S12).

To further validate these associations, we employed generalized 
linear models that incorporated a comprehensive set of 14 gene 
characteristics in HGG. These characteristics spanned a range of 
biological processes, including gene expression, angiogenesis, apoptosis, 
cell cycle, differentiation, DNA damage, DNA repair, epithelial-
mesenchymal transition (EMT), hypoxia, inflammation, invasion, 
metastasis, proliferation, quiescence, and stemness. In these models, cell 
cycle and stemness were set as the dependent variables, while the 
remaining characteristics served as independent variables, allowing us 
to capture the complex interplay between gene expression and HGG 
biology. Our models demonstrated that EFHD1 and SLC25A18 were 
significantly associated with the cell cycle (R2 = 0.790), while SASH1 and 
FAM110B showed a notable association with tumor stemness 
(R2 = 0.522) (Figures 11E–H and Supplementary Tables S13–S16).

3.8 Pseudotime analysis reveals distinct 
cellular lineages and dynamic expression 
patterns of key genes in AD and GBM 
progression

We conducted pseudotime analysis on sn/scRNA-seq datasets 
from AD and GBM to explore dynamic cellular features. The heatmap 

illustrated three distinct lineages and six feature clusters within each 
dataset, with each cluster associated with unique biological functions. 
For instance, in AD, Cluster 1 (C1) was enriched for immune 
processes, including complement activation and cell adhesion. Cluster 
2 (C2) was involved in the regulation of the MAPK cascade, while 
Cluster 4 (C4) related to intermediate filaments and the cytoskeleton. 
In GBM, Cluster 1 (C1) showed a response to essential metal ions such 
as copper and zinc and was associated with synaptic potentiation. 
Cluster 2 (C2) correlated with the blood–brain barrier, and Cluster 3 
(C3) was linked to membrane proteins and lipolytic processes 
(Supplementary Figure S9).

tSNE maps further elucidated the potential evolutionary paths of 
various cell types in AD and GBM. In AD, the expression levels of 
Astrocytes, Oligodendrocytes, and OPCs were notably higher in the 
later stages across the three spectral time series. Specifically, EFHD1 
exhibited increased expression at the late pseudotime stage of Lineage 
1. SASH1 showed elevated expression at the late pseudotime stages 
across Lineages 1, 2, and 3. The expression of FAM110B fluctuated 
similarly across different lineages and time periods, while SLC25A18 
displayed increased expression at the late pseudotime stage of 
Lineage 3.

In GBM, EFHD1 expression was heightened in oligodendrocytes 
and tumor cells during the middle and late pseudotime stages of 
Lineage 1. SASH1 demonstrated a decreasing expression trend from 
pre-pseudotime tumor cells and myeloid cells. FAM110B expression 
was upregulated in tumor cells and some oligodendrocytes during the 
middle and late stages of Lineages 1 and 3. SLC25A18 expression was 
elevated in tumor cells and a subset of astrocytes and oligodendrocytes 
at the late pseudotime stages of Lineages 1 and 3.

3.9 Single-cell co-expression network and 
gene enrichment analyses reveal cell 
type-specific modules and mitochondrial 
gene associations in AD and GBM

We identified cell types in AD and GBM using candidate 
differential genes from multi-omics data analysis. The identified AD 
cell types include astrocytes, oligodendrocytes, oligodendrocyte 
precursor cells (OPCs), and excitatory/inhibitory neurons 
(Supplementary Tables S17–S21). In GBM, the identified cell types are 
astrocytes, microglia, oligodendrocytes, myeloid cells, and neoplastic 
cells (Supplementary Tables S22–S26). To investigate potential gene 
interactions, we constructed single-cell gene co-expression networks 

types within each sample. (D) Mitochondrial genes in these cell types were significantly enriched for processes related to mitochondrial function, 
including gene expression and electron transport-coupled ATP synthesis, underscoring their role in energy metabolism. (E) This enrichment highlights 
the intimate connection of these cell types with mitochondrial function and energy metabolism. Additionally, enrichment for processes involved in the 
development of neuronal and cellular projections was observed, indicating a role in cellular and neural development. Our single-cell analysis 
outcomes from AD and GBM highlight shared involvement in key biological processes. Both conditions show significant enrichment in mitochondria-
related processes, particularly oxidative phosphorylation, and pathways influenced by small GTPases. Immune-related processes are also commonly 
enriched, with a notable role for microglia. Oligodendrocyte function is conserved in both diseases, closely associated with mitochondrial processes 
such as morphogenesis and energy metabolism, as well as axon ensheathment and neuronal morphogenesis. KEGG disease enrichment analysis of 
GBM’s oligodendrocyte signature genes suggests correlations with other neurodegenerative conditions, including Huntington’s disease, Parkinson’s 
disease, and AD. AD exhibits heightened enrichment in nervous system signaling, including synaptic transmission, and processes related to cell growth 
and differentiation. In contrast, GBM is characterized by a greater emphasis on mitochondrial energy metabolism, evident in the coupling of ATP 
synthesis with electron transport and the ATP biosynthetic process. Furthermore, GBM shows significant enrichment in immune response processes, 
particularly lymphocyte and T cell differentiation.

FIGURE 4 (Continued)
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FIGURE 5

Systems analysis of cell–cell communication network in AD single-cell data. Panel (A–G) and Supplementary Figure S1 illustrate the intricate signaling 
networks among various cell types in the brains of patients with AD, as revealed by cell communication analysis. (A,B) The aggregated cell–cell 
communication network highlights prominent receptor-ligand interactions, especially among neuronal cells such as OPCs, Astrocytes, Excitatory 
Neurons, Inhibitory Neurons, and Oligodendrocytes. Significant interactions are observed between OPCs and Astrocytes, as well as between Excitatory 
and Inhibitory Neurons. (C) The most impactful pathways are ranked by the number of interactions, with ADGRL (27), PTPRM (25), UNC5 (23), NRXN 
and PSAP (each with 23), and FLRT (21) leading the list. Within Astrocytes, Excitatory/Inhibitory Neurons, and OPCs, the ligand-receptor pairs NRG3-
ERBB4, NRXN3-LRRTM4, and NRXN1-NLGN1 stand out (Supplementary Figures S1B,C). (D,E) Signal classification into outgoing and incoming facilitates 
pattern recognition and cluster analysis, identifying five distinct efferent and four afferent signaling patterns. (F) Excitatory and Inhibitory neurons show 
similar conduction patterns, with the ADGRL and NCAM pathways being the primary routes for signal secretion. (G) Network centrality scores for the 
APP, PSAP, and CypA signaling pathways are computed and visualized, indicating their central roles in the cellular communication network.
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FIGURE 6

Systems analysis of cell–cell communication network in GBM single-cell data. (A,B) In GBM, Astrocytes, Myeloid Cells, Neoplastic Cells, and 
Oligodendrocytes exhibit particularly prominent intercellular interactions, as evidenced by high interaction counts (Astrocytes: 106 and 88, Myeloid 
Cells: 75 and 97, Neoplastic Cells: 100 and 78, Oligodendrocytes: 77 and 83). The most substantial interactions occur between Astrocytes and 
Neoplastic Cells, with Oligodendrocytes also showing significant interactions with both Astrocytes and Neoplastic Cells, each with 14 interactions. This 
suggests a key role for these cell types in the GBM cellular communication network. (C) A significant enrichment of the APOE or APP pathway is noted 
across various cell types, including Astrocytes, Oligodendrocytes, Microglia, Dendritic Cells, Macrophages, and T cells. Notably, the APP-CD74 and 
APP-(TREM2 + TYROBP) interactions constitute the majority of these pathway interactions. This prevalence suggests a central role for the APP pathway 
in the cellular interactions in GBM, potentially influencing disease progression and response to treatment (Supplementary Figures S2B,C). (D–F) All cell 
types display signaling patterns categorized into four distinct outgoing and four incoming patterns. Microglia and certain immune cells, such as 
Dendritic Cells, Macrophages, and T cells, exhibit similar signaling patterns, suggesting a coordinated immune response. In contrast, Astrocytes and 
Oligodendrocytes have unique transmission patterns, but both are enriched for the APP pathway, indicating a distinct role for these glial cells in disease 
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for AD and GBM. In AD, the co-expression network revealed 
modules predominantly involving astrocytes (4 modules), inhibitory 
neurons (7 modules), and oligodendrocytes (2 modules) 
(Supplementary Figure S10). In GBM, co-expression modules were 
detected in microglia (4 modules), neoplastic cells (2 modules), and 
oligodendrocytes (2 modules) (Supplementary Figure S12). 
We identified hub genes from each cell module and assessed their 
recurrence across cell types. The most recurrent hub genes in AD were 
FTH1 (identified in astrocytes, oligodendrocytes, and OPCs) and 
HS6ST3 (found in excitatory neurons, inhibitory neurons, and OPCs). 
In GBM, TUBB2B emerged as the most frequently identified hub gene, 
observed in astrocytes, neoplastic cells, myeloid cells, and 
oligodendrocytes. Among the identified hub genes, mitochondrial 
epistasis-related genes included HS6ST3, DOCK10, DPP10, NRG3, and 
NRXN1. Meanwhile, genes with mitochondrial localization included 
HSP90AA1 and PRNP. Figure 12 and Supplementary Figures S11, S13 
illustrated the overlap between sub-modules within individual cell 
types and differentiation genes, correlations between modules, as well 
as the network and distribution of hub genes across cellular subsets. 
Notably, oligodendrocytes demonstrated the most pronounced 
variation in module distribution, suggesting distinct functional roles 
in both AD and GBM pathologies.

Gene enrichment analyses further revealed specific associations. 
In AD, SASH1 was associated with modules involving astrocytes 
(Astrocytes3), inhibitory neurons (Inhibitory Neurons3), and 
oligodendrocytes (Oligodendrocytes2). FAM110B was linked to 
astrocytes and inhibitory neurons (Inhibitory Neurons3), while 
EFHD1 showed enrichment primarily in oligodendrocytes 
(Oligodendrocytes1). The Astrocyte2 module was found to have 
strong associations with excitatory neurons and exhibited functional 
enrichment for the glutamate catabolic process (GO:0006538) and 
intracellular iron ion sequestration (GO:0006880). Notably, gene 
expression synergism was observed between excitatory and inhibitory 
neurons, indicating potential interactions affecting neuronal signaling. 
Inhibitory Neurons3 were particularly involved in retinal ganglion cell 
axon guidance (GO:0031290) and the glutamate receptor signaling 
pathway (GO:0007215). Oligodendrocyte modules (Oligodendrocyte1 
and Oligodendrocyte2) were enriched for endoplasmic reticulum 
proteins (GO:0045047) and processes regulating basement membrane 
assembly during embryoid body morphogenesis (GO:1904261), 
respectively (Supplementary Figure S11).

In GBM, gene enrichment analyses also identified SASH1 
associated with microglia (Microglia3) and oligodendrocytes 
(Oligodendrocytes1). FAM110B was linked to neoplastic cells 
(Neoplastic Cells1) and oligodendrocytes (Oligodendrocytes2). The 
Microglia3 module was involved in processes such as 
leukocyte aggregation (GO:0070486), adiponectin regulation 
(GO:0070163), astrocyte differentiation (GO:0048708), and 
excitatory postsynaptic potential (GO:0090394). Oligodendrocyte 
modules (Oligodendrocyte1 and Oligodendrocyte2) were associated 
with the regulation of protein depolymerization (GO:1901879) and 

protein targeting to the endoplasmic reticulum (GO:0045047), 
respectively (Supplementary Figure S13).

4 Discussion

Emerging evidence suggests both positive and inverse 
relationships between AD and GBM risk (Zabłocka et al., 2021; Cai 
et al., 2022). AD is characterized by neurodegeneration, while GBM 
involves uncontrolled cell proliferation. Despite their differences, both 
share mitochondrial dysfunction as a common pathological feature. 
In AD, mitochondrial impairment reduces energy production and 
increases oxidative stress, leading to neuronal death (Ebanks et al., 
2020). Conversely, in GBM, mitochondrial abnormalities support 
tumor growth and resistance to apoptosis, promoting malignancy 
(Wang S. et al., 2024). These opposing effects underscore the complex 
role of mitochondria in disease mechanisms. Multi-omics approaches 
and machine learning algorithms are pivotal in identifying key genes 
and pathways involved in AD and GBM.

First, we explored the characterization of different cell types and 
their marker genes in AD and GBM based on single-cell data. 
Oligodendrocytes in both diseases were enriched for mitochondria-
associated functions, including the mitochondrial morphogenetic 
pathway in AD and ATP synthesis coupled with electron transport in 
GBM. In AD, LPAR1, a key mitochondrial epistasis gene, influences 
mitochondrial dynamics, energy metabolism, and apoptosis, 
contributing to neuroinflammation and neuronal survival. In GBM, 
LPAR1 promotes tumor growth and invasion through altered 
mitochondrial bioenergetics (Choi et  al., 2010). These findings 
highlight LPAR1’s potential as a therapeutic target in both AD and 
GBM. Additionally, GBM Neoplastic cells, Astrocytes, and 
Oligodendrocytes exhibited enrichment in NADH dehydrogenase 
complex (Complex I) genes. Mutations in MT-ND1, MT-ND2, 
MT-ND4, and MT-ND5, crucial for Complex I  function, lead to 
altered bioenergetics and increased oxidative stress, contributing to 
GBM’s aggressiveness and therapeutic resistance (Viale et al., 2015). 
In comparing AD and GBM, mitochondria play divergent roles: 
sustaining neuronal signaling in AD and meeting high-energy 
demands in GBM. Oligodendrocyte function, linked to myelin 
production, may be compromised in AD, impacting axonal signaling, 
whereas in GBM, it may be  adapted to support the tumor 
microenvironment. Understanding these roles could reveal shared or 
distinct regulatory mechanisms and offer new avenues for intervention.

Cellular communication analysis emphasized the importance 
of the microenvironment in AD and GBM, particularly the 
regulatory roles of astrocytes and oligodendrocytes. Astrocytes 
interact with GBM cells to promote tumor growth, invasion, and 
therapy resistance, partly through extracellular vesicles and 
mitochondrial transfer mediated by GAP43 (Brandao et al., 2019; 
Zhang et al., 2020; Watson et al., 2023). Astrocytes also engage in 
complex interactions with oligodendrocytes, crucial for glial 

pathology, potentially affecting tumor growth and therapy response [Figure 5G and panel (G)]. A total of 39 signaling pathways are enriched in AD, 
while 49 are enriched in GBM, with 23 pathways common to both. The APP pathway is the most significant, accounting for 24.7% of total interactions 
(705 out of 2,851), followed by the PSAP pathway, which represents 16.2% of interactions (462 out of 2,851). Other notable pathways include CypA, 
PTN, and NRNX, highlighting the APP pathway’s potential as a central mechanism in disease pathology.
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FIGURE 7

Comprehensive transcriptomic characterization of AD and GBM. This figure presents a comprehensive gene expression analysis across four distinct 
databases—ROSMAP, ADNI, TCGA, and CGGA—comparing differentially expressed genes in AD and GBM. The analysis highlights a significant variation 
in the number of up-and down-regulated genes among the datasets: ROSMAP (A) displays 436 up-regulated and 1,267 down-regulated genes, ADNI 
(C) shows 25 up-regulated and 11 down-regulated genes, TCGA (E) exhibits 5,125 up-regulated and 5,121 down-regulated genes, and CGGA (G) shows 
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84 up-regulated and 33 down-regulated genes. The 10 most significantly up-and down-regulated genes are illustrated for each database, with TCGA 
demonstrating the most substantial differences in gene expression and ADNI showing the least, suggesting a diverse molecular landscape across 
patient cohorts. The ROSMAP dataset (B) indicates that differential genes are predominantly involved in nuclear chromosome segregation, suggesting 
roles in cell division and genomic stability. In contrast, the ADNI dataset (D) reveals that differential genes are primarily associated with immune-related 
processes, such as B cell activation and signaling pathways (Supplementary Figures S3A,B,E–F), emphasizing the involvement of immune mechanisms 
in AD pathogenesis. For GBM, the TCGA (F) and CGGA (H) datasets show that differential genes are mainly implicated in protein localization and 
assembly, and chromosome segregation and mitotic processes (Supplementary Figures S3C,D,G–H), indicating a significant impact on tumor growth 
and progression, which could influence therapeutic strategies. The differential gene expression patterns observed across these databases provide 
valuable insights into the molecular mechanisms underlying AD and GBM, emphasizing the heterogeneity in disease pathology and the necessity for 
tailored therapeutic approaches. Understanding these patterns can guide the development of targeted therapies and personalized medicine strategies, 
ultimately aiming to improve patient outcomes.

FIGURE 7 (Continued)

FIGURE 8

Machine learning-driven identification of mitochondria-associated markers in AD and GBM. We employed a panel of 10 distinct machine learning 
algorithms to screen differentially expressed genes identified for each cell type. Our analysis contrasted mitochondrial epistasis-related genes and 
mitochondrial localization genes, building upon our prior research (Xu et al., 2022, 2024). The analysis yielded 275 cell-specific mitochondrial epistasis 
genes (MT-Inter) and 95 cell-specific mitochondrial localization genes (MT-Locate). The predictive potential and variable significance of these genes 
were appraised using gene expression data from four databases: ROSMAP, ADNI, TCGA, and CGGA. Model evaluation was conducted through seven 
metrics, including Area Under the Curve (AUC), Confusion Entropy (CE), Accuracy (ACC), Precision, Recall, Sensitivity, and Specificity. (A–D) In AD, the 
ROSMAP database’s mitochondrial localization genes, as determined by the Random Forest algorithm, showed the highest predictive efficiency 
(AUC = 0.8). The KNN algorithm, applied to mitochondrial epistasis-related genes in the ADNI database, demonstrated superior predictive performance 
(AUC = 0.82). (E–H) In GBM, the TCGA dataset’s Classification Tree model had an AUC just below 0.9 (TCGA-Locate AUC = 0.88, TCGA-Inter 
AUC = 0.84), with other models achieving AUCs over 0.95. Notably, the TCGA-Locate model achieved the highest AUC score of 0.99. In the CGGA 
dataset, the Random Forest-based CGGA-Inter model was the most effective, with an AUC of 0.77. These findings highlight the value of machine 
learning algorithms in identifying and predicting mitochondria-associated cell-specific markers, offering insights into the molecular foundations of AD 
and GBM and aiding in the development of targeted therapeutic strategies.
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development, disease progression, and tissue regeneration 
(Linnerbauer et al., 2020; Hu et al., 2023). These interactions, which 
occur via direct contact and secreted factors, significantly impact 
CNS homeostasis and pathogenesis. Understanding the cross-talk 
between astrocytes and microglia is also essential, as it contributes 
to GBM progression through cytokines and chemokines (Fan et al., 
2024). Insights into these cellular relationships could lead to new 
therapeutic strategies for GBM and other CNS diseases.

Our findings revealed significant enrichment of the APP (amyloid 
precursor protein) signaling pathway in both AD and GBM. In AD, 
APP processing generates Aβ, leading to plaque formation, neuronal 
damage, and inflammation, ultimately contributing to cognitive 
decline (Hardy and Selkoe, 2002). In GBM, APP has been implicated 

in promoting cell proliferation and invasion (Lee et  al., 2021). 
Mitochondria are central to these processes: in AD, Aβ interacts with 
mitochondria, causing dysfunction and oxidative stress, exacerbating 
neuronal injury (Atamna and Frey, 2007); in GBM, mitochondria 
regulate energy metabolism, apoptosis, and tumor cell invasiveness 
(Wu et al., 2022). Additionally, the shared involvement of the NRXN 
pathway in both diseases highlights its potential role. Neurexins, such 
as Neurexin-1β, stimulate the PI3K pathway in glioma cells, promoting 
growth (Venkatesh et al., 2015; Yun et al., 2023), and are implicated in 
synaptic dysfunction in AD (Zhang R. et al., 2023). This connection 
between NRXN1, mitochondrial pathways, and neurological function 
presents an avenue for understanding and treating these disorders 
(Nakamura and Kennedy, 2021; Levy et al., 2022).

FIGURE 9

Correlational landscape of immune cell-gene expression in AD and GBM. We conducted an analysis of the intricate interactions between immune cells 
and the tumor microenvironment (TME) in the context of AD and GBM, as deduced from methylation data. We observed significant correlations 
between the expression of candidate genes and the abundance of various immune cell types. (A) In AD, the ROSMAP database showed positive 
correlations between genes SNN, LIMCH1, and MAPK10 with monocytes and eosinophils, while these genes were negatively correlated with B cells, 
natural killer (NK) cells, and CD4+ T cells. (B) The ADNI database revealed a positive correlation between ERBB3, LIMCH1, and SACS with NK-cells and 
CD8+ T-cells, while CYCS, SLC25A18, and MAPK10 exhibited negative associations with these cell types. In GBM, (D) the TCGA dataset indicated that 
ABAT, KCNJ10, and SLC25A18 were positively associated with monocytes and neutrophils, while they were negatively correlated with eosinophils. 
(E) The CGGA dataset demonstrated significant positive correlations for ADIPOR2, SASH1, and KCNJ10 with CD8+ T-cells, monocytes, and eosinophils, 
and a strong negative correlation with B-cells. (C,F) Further categorization of these genes into mitochondrial epistasis and mitochondrial localization 
genes revealed distinct correlation patterns. (C) In AD, mitochondrial epistasis genes showed significant positive correlations with NK cells and 
neutrophils, while mitochondrial localization genes were most strongly associated with neutrophils. (F) In GBM, both types of genes displayed strong 
associations with eosinophils, CD4+ T cells, and CD8+ T cells, with the highest positive correlations observed for NK cells and CD4+ T cells. These 
findings provide valuable insights into the complex interplay between immune cells and the TME in AD and GBM, highlighting the potential role of 
mitochondrial genes in modulating immune responses within these diseases.
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FIGURE 10

Survival analysis of 24 candidate genes associated with the risk of AD and GBM. (A,B) The survival curves for these genes revealed significant 
differentiation in disease risk, with a p-value threshold of less than 0.0001, indicating a profound impact on disease prognosis. The Cox regression 
analysis, accounting for multiple gene contributions, identified genes with significant associations (p < 0.05) in each dataset: (C) ROSMAP with 13 
genes, (D) ADNI with 3 genes, (E) TCGA with 8 genes, and (F) CGGA with 11 genes. Notable genes with the most substantial impact on disease risk 
include LIMCH1 from the TCGA dataset for GBM (Hazard Ratio [HR] = 0.46, p = 2.27 × 10–9) and SACS from the ROSMAP dataset for AD (HR = 12.87, 
p = 3.51 × 10–5). Additionally, GPC1 from the ADNI dataset showed a significant association with AD risk (HR = 0.30, p = 2.27 × 10–9), while CREB5 
from the CGGA dataset was notably associated with GBM risk (HR = 1.02, p = 6.91 × 10–8). The analysis also highlighted genes with opposing effects 
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Differential enrichment analysis revealed significant gene 
expression patterns in AD and GBM. Upregulated genes in both 
diseases were enriched in pathways related to mitosis, osteoblast 
morphogenesis, and transcriptional maintenance, indicating shared 
mechanisms of cell proliferation and structural remodeling (De La 
Torre, 2002; Dobson et al., 2020; Perluigi et al., 2024). Mitochondria 
are crucial in these processes, regulating energy production, oxidative 
stress, and apoptosis. Mitochondrial dysfunction in both AD and 
GBM has been linked to increased cell proliferation and altered 
differentiation. In GBM, these abnormalities increase ROS production, 
leading to DNA damage and tumorigenesis (Kim et al., 2006), while 
in AD, they exacerbate neuronal damage and synaptic loss (Chen 
W. et al., 2023). Downregulated genes in both diseases were linked to 
nuclear transcription, synaptic signaling, and calcium ion transport. 
Mitochondrial dysfunction affects calcium homeostasis, impacting 
neuronal function in AD and tumor cell viability in GBM (Chen 
W. et  al., 2023; An et  al., 2024; Kazanietz and Cooke, 2024; Lin 
H. et  al., 2024). These insights highlight the shared and distinct 
mechanisms underlying AD and GBM and suggest potential 
therapeutic targets.

Combining single-cell signature genes and machine learning 
algorithms, we  identified 24 cell-specific mitochondria-associated 
markers, which can be categorized into two groups based on their 
relationship with mitochondria: mitochondria epitope-associated 
(MT-Inter) and mitochondria-located genes (MT-Locate). The 
associations of these marker genes with immune cells were explored 
using methylation data. In AD, both classes of genes showed strong 
associations with neutrophil levels. Neutrophils migrate into the brain 
parenchyma and adhere to blood vessels in AD, releasing extracellular 
traps (NETs) that exacerbate neuroinflammation and tissue damage 
(Pietronigro et al., 2017; Dong et al., 2018; Aries and Hensley-McBain, 
2023). Mitochondria in neutrophils contribute to their development, 
chemotaxis, effector functions, and cell death, playing an essential role 
in disease progression (Dong et al., 2018; Peng et al., 2023). In the 
tumor microenvironment, neutrophils adapt to glucose limitation by 
utilizing oxidative mitochondrial metabolism, particularly fatty acid 
oxidation, to sustain reactive oxygen species (ROS) production and 
immune suppression (Rice et al., 2018). These findings underscore the 
crucial role of mitochondria in neutrophil biology and their potential 
as therapeutic targets.

In GBM, we found associations between the two gene classes and 
immune cells, including eosinophils, CD4+ T-cells, and CD8+ T-cells. 
Eosinophils, though traditionally linked to allergic responses, 
modulate the GBM tumor microenvironment, with increased 
eosinophil-associated cytokine levels correlating with better survival 
and enhanced T-cell infiltration (Herold-Mende et  al., 2023). 
Mitochondria are essential for eosinophil apoptosis and survival, 
modulated by glucocorticoids and nitric oxide (Ilmarinen et al., 2014). 
Mitochondrial dysfunction in CD8+ T-cells impairs their anti-tumor 
activity, affecting energy metabolism and increasing apoptosis (Yang 

et al., 2010; Zhang et al., 2022). Interestingly, a combination of high 
CD4+ and low CD8+ tumor-infiltrating lymphocytes (TILs) predicts 
poor prognosis in GBM, indicating a complex relationship between 
T-cell subtypes and outcomes (Waziri et al., 2008; Abarca-Rojano 
et al., 2009; Han et al., 2014; Lee et al., 2015; Surace et al., 2021; Du 
et  al., 2023; Kim et  al., 2023). Understanding these immune 
interactions and mitochondrial dynamics offers promising 
therapeutic targets.

From survival and differential analyses, we identified four key 
mitochondria-related genes: EFHD1, SASH1, FAM110B, and 
SLC25A18, which play critical roles in mitochondrial function, cellular 
metabolism, and signaling pathways. EFHD1, a mitochondrial 
calcium-binding protein, regulates calcium homeostasis and 
suppresses tumor metastasis via the Hippo/YAP pathway (Mun et al., 
2021; Meng et  al., 2023). It also influences calcium-dependent 
transcriptional co-activators or repressors, modulating ESR1 activity 
in the Transcriptional Regulation by the AP-2 (TFAP2) Family of 
Transcription Factors (R-HSA-8864260.2) pathway (Nassa et al., 2019). 
This interaction integrates TFAP2-and EFHD1-mediated signals to 
regulate hormone-related genes such as VEGFA, contributing to 
cellular growth and angiogenesis. Besides, EFHD2 is implicated in 
neurological disorders, including AD, and regulates macrophage 
function in GBM, presenting potential for immunotherapy (Vega, 
2016; Zhang et al., 2023a). SASH1, acting as a tumor suppressor and 
mitochondrial epistasis gene, regulates oxidative stress, cell adhesion, 
and migration (Martini et al., 2011; Yang et al., 2012, 2015; Cazzaro 
et al., 2023; Lundberg et al., 2023). It interacts with SFN (14–3-3σ) in 
the TP53 Regulates Transcription of Cell Cycle Genes (R-HSA-
6791312.5) pathway, enhancing TP53-mediated responses to DNA 
damage by stabilizing CDK inhibitors and enforcing G2/M checkpoint 
arrest. This interaction contributes to genomic stability by 
coordinating cell cycle arrest, DNA repair, and apoptosis pathways 
(Segal et al., 2023). FAM110B is associated with cell proliferation and 
cytoskeletal organization (Li et  al., 2024; Yan et  al., 2020). In the 
Deregulated CDK5 Triggers Multiple Neurodegenerative Pathways in 
Alzheimer’s Disease (R-HSA-8862803.4) pathway, it interacts with 
YWHAE (14–3-3ε), stabilizing the cytoskeleton and modulating stress 
responses (Cho et al., 2022). Together, they mitigate CDK5-induced 
neurodegeneration by regulating Tau hyperphosphorylation, oxidative 
stress, and neuronal apoptosis, making FAM110B and YWHAE 
potential therapeutic targets in Alzheimer’s disease. SLC25A18 is a 
mitochondrial carrier protein involved in glutamate transport, linking 
amino acid metabolism to the TCA cycle by importing L-glutamate 
into the mitochondrial matrix, where it is converted to 2-oxoglutarate 
(Yan et al., 2020; Wang et al., 2021; Wang S. et al., 2024; Watanabe 
et  al., 2021; Taylor et  al., 2022; Ren et  al., 2023). In the Malate–
Aspartate Shuttle (R-HSA-9856872.1) pathway, SLC25A18 supports 
energy production, biosynthesis, and mitochondrial homeostasis, 
integrating metabolite transport with oxidative phosphorylation to 
ensure metabolic flexibility and energy balance. These genes are 

on disease risk between AD and GBM, such as CYCS, FAM110B, GOLM1, and SLC25A18. These genes may increase the risk of one disease while 
decreasing the risk of the other, suggesting distinct pathophysiological roles. Conversely, EFHD1, LIMCH1, MAOB, COX6B1, SASH1, and SNN 
demonstrated consistent contributions to risk across both diseases, indicating a shared molecular mechanism that could be targeted for therapeutic 
intervention. The integrated analysis underscores the complexity of gene expression patterns associated with AD and GBM risk and provides a 
foundation for further investigation into the molecular determinants of disease prognosis and treatment response.
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FIGURE 11

Correlation analysis and modeling of candidate genes with different cancer functional states in high-grade gliomas (HGG). (A–D) Heatmap showing 
the correlation between the normalized candidate genes and the different characteristics of different tumors. The analysis revealed significant positive 
correlations between the genes EFHD1 and SLC25A18 with cellular processes, particularly the cell cycle, with correlation coefficients (Cor) of 0.368 
and 0.385, respectively (P < =0.001). Additionally, SASH1 and FAM110B were found to be closely associated with tumor stemness, with Cor of 0.328 
and 0.427, respectively (P < =0.001). (E–H) Generalized linear models were used to further evaluate these associations, with cell cycle and stemness as 
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potential targets for therapeutic interventions in both 
neurodegeneration and cancer. The detailed pathway regulatory 
relationships are shown in Supplementary Figure S14.

Lineage analysis showed distinct expression patterns for these 
genes. In AD, EFHD1, SASH1, and SLC25A18 were significantly 
elevated in oligodendrocytes, OPCs, and astrocytes at late 
pseudotemporal stages. In GBM, these genes were associated with 
tumor cells and oligodendrocytes at different stages. 
Oligodendrocytes, critical for CNS myelination, depend on 
mitochondrial function for energy production and lipid synthesis. 
Dysfunction in these cells, influenced by factors such as β-amyloid 
and neurofibrillary tangles, contributes to neuroinflammation, 
oxidative stress, and apoptosis in AD, whereas in GBM, 
oligodendrocytes enhance tumor cell migration and therapy 
resistance (Cai and Xiao, 2016; Rinholm et al., 2016; Butt et al., 2019; 
Kawashima et al., 2019; Meyer and Rinholm, 2021; Chen P. et al., 
2023; Hide and Komohara, 2020). Targeting oligodendrocytes and 
OPCs may offer therapeutic opportunities in both AD and GBM.

The identification of mitochondrial disease-specific markers 
(EFHD1, SASH1, FAM110B, and SLC25A18) highlights shared 
mechanisms, such as oxidative phosphorylation, calcium signaling, 
and immune responses, that can serve as therapeutic targets in both 
AD and GBM. These markers enable patient stratification based on 
mitochondrial dysfunction, paving the way for personalized 
treatments addressing neurodegenerative and oncogenic processes. 
For instance, modulating oxidative stress and mitochondrial 
metabolism could simultaneously enhance neuronal survival in AD 
and suppress metabolic adaptation in GBM. Additionally, combination 
therapies targeting shared pathways, such as calcium homeostasis and 
energy metabolism, offer the potential for synergistic effects. These 
findings underscore the translational value of mitochondrial 
biomarkers and the need for further experimental validation to refine 
their therapeutic application.

The classification of GBM based on IDH mutation status is critical 
for both diagnosis and treatment planning, as patients with 
IDH-mutant GBM generally exhibit a significantly better prognosis 
compared to those with IDH wild-type tumors (Han et al., 2020). In 
our study, we  identified four key marker genes (EFHD1, SASH1, 
FAM110B, and SLC25A18) and evaluated their differential expression 
across IDH subtypes using the CGGA dataset. The results revealed 
significant expression differences between IDH-mutant and 
IDH-wildtype GBM, highlighting their potential as biomarkers for 
stratifying gliomas by IDH status and severity. Among the markers, 
FAM110B displayed the most pronounced differential expression. It 
was significantly overexpressed in IDH-mutant gliomas across all 
grades of severity, suggesting its strong association with the 
IDH-mutant phenotype. This consistent overexpression underscores 
its potential role in the molecular mechanisms driving the relatively 
favorable prognosis of IDH-mutant gliomas. SLC25A18, another key 
marker, showed the highest expression levels in lower-grade gliomas 

(WHO grade II) with IDH mutation and in IDH-mutant, 1p19q 
co-deleted (LGG) subtypes. This expression pattern aligns with the 
less aggressive clinical behavior typically observed in these glioma 
subtypes and highlights SLC25A18’s potential involvement in the 
metabolic adaptations associated with IDH mutations 
(Supplementary Figure S15). These findings emphasize the relevance 
of IDH status in interpreting the functional roles of these markers and 
their correlation with glioma severity. Further functional studies are 
warranted to elucidate how these markers contribute to the distinct 
biological pathways and clinical outcomes observed in IDH-mutant 
gliomas. Additionally, their differential expression profiles may 
provide insights into IDH-specific therapeutic targets, offering 
opportunities for more personalized approaches in glioma treatment.

To elucidate gene interactions, we  established a single-cell 
co-expression network and identified FTH1, HS6ST3, and TUBB2B as 
hub genes across multiple cell types. HS6ST3 is involved in the 
biosynthesis of heparan sulfate (HS), a glycosaminoglycan that 
regulates mitochondrial function under stress conditions (Lehri-
Boufala et al., 2015). This suggests an indirect link between HS6ST3 
and mitochondrial processes, and it has been identified as a hub gene 
in the GBM protein–protein interaction network (Xie et al., 2018). 
HS6ST3 may impact mitochondrial regulation in both AD and GBM 
(El Hayek et al., 2023). TUBB2B, encoding tubulin beta 2B, is linked 
to cortical malformations and microtubule dysfunction, common in 
neurodegenerative diseases like AD (Sferra et al., 2020; Soliman et al., 
2022). Although associated with AD pathology, TUBB2B has no direct 
evidence linking it to GBM, requiring further investigation.

Co-expression module analysis revealed significant associations 
of hub genes with oligodendrocytes, followed by astrocytes and 
inhibitory neurons, indicating contributions to both diseases. 
Astrocytes are crucial in AD and GBM; in AD, they contribute to 
neuroinflammation, oxidative stress, and Aβ clearance (Bi et al., 2022), 
while in GBM, they support tumor growth and invasion, making them 
potential therapeutic targets (Brandao et al., 2019). Live imaging has 
shown limited mitochondrial dynamics in mature astrocytes in vivo 
compared to cultured cells, suggesting tightly regulated mitochondrial 
activity (Bergami and Motori, 2020). Astrocyte-oligodendrocyte 
interactions are critical for CNS remyelination, blood–brain barrier 
(BBB) integrity, and synaptogenesis (Hu et al., 2023; Molina-Gonzalez 
et  al., 2023) Understanding these interactions could inform 
therapeutic strategies for CNS diseases. The AD-, GBM-specific and 
common biological pathways identified in our pipeline are 
summarized in Figure 13.

Previous studies have demonstrated that mitochondrial 
dysfunction in Parkinson’s disease (PD), Huntington’s disease (HD), 
and amyotrophic lateral sclerosis (ALS) primarily affects pathways 
related to oxidative phosphorylation, mitochondrial dynamics, and 
calcium signaling (Green and Reed, 1998; Henrich et al., 2023). For 
example, MT-ND1, MT-ND2, MT-ND4, and MT-ND5, which are 
components of the mitochondrial electron transport chain, have been 

dependent variables and the remaining 14 gene characteristics as independent variables. This approach allowed us to explore the intricate relationships 
between gene expression and the complex biological processes in HGG. The modeling results demonstrated significant associations between EFHD1 
and SLC25A18 with the cell cycle, with a determination coefficient (R2) of 0.79. Likewise, SASH1 and FAM110B showed a substantial association with 
tumor stemness, with an R2 value of 0.522. These findings provide valuable insights into the molecular interplay within HGG and underscore the 
potential of these candidate genes as indicators of the disease’s functional states.

FIGURE 11 (Continued)
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FIGURE 12

Identification of the crucial modules related to candidate genes by hdWGCNA. Gene co-expression networks were established at the single-cell level 
for both diseases, revealing the interaction patterns among the candidate genes. The analysis provides a comprehensive view of the molecular 

(Continued)
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shown to be downregulated in both PD and ALS, reflecting impaired 
mitochondrial energy metabolism (Johri and Beal, 2012). In contrast, 
our study on AD and GBM highlights a distinct enrichment of 
mitochondrial pathways related to energy metabolism and ATP 
synthesis, particularly in GBM, where mitochondrial dysfunction is 
associated with tumor progression and cell survival. In AD, we observed 
significant enrichment in pathways linked to synaptic transmission and 
neuronal signaling, which are not as prominently affected in PD or ALS 
(Kori et al., 2016). Moreover, immune-related mitochondrial pathways 
involving microglia activation were shared across AD and GBM, which 
is consistent with findings in ALS and HD, where neuroinflammation 
plays a central role in disease pathogenesis (Chen K. et  al., 2023). 

However, the specific involvement of APP, TREM2, and CD74 in 
microglial activation was particularly pronounced in AD and GBM, 
suggesting a more disease-specific activation of the immune system in 
these two conditions. In contrast, PD and ALS exhibit different immune 
activation profiles, with a more prominent role of astrocytes and other 
glial cells (Philips and Rothstein, 2014).

While our study highlights potential mitochondrial links between 
AD and GBM, several limitations must be acknowledged. The current 
findings, based on bioinformatics analyses of multi-omics datasets, 
lack experimental validation and precise mechanistic insights. Future 
research should integrate genomic, proteomic, and metabolomic 
studies, alongside cell-based and in vivo models, to validate the roles 

crosstalk within cell types associated with these diseases. By aggregating hub genes from each cell’s modules, their prevalence across cell types was 
quantified. (A–C) The most recurrent hub genes identified were FTH1, which was prevalent in Astrocytes, Oligodendrocytes, and OPCs. HS6ST3 was 
found in excitatory neurons, inhibitory neurons, and oligodendrocyte precursor cells. These genes are considered central in the gene co-expression 
network, indicating their potential role in key cellular processes. (D–F) In GBM, the gene TUBB2B emerged as the most frequently occurring hub gene, 
present in Astrocytes, Neoplastic Cells, Myeloid cells, and Oligodendrocytes. This highlights its potential as a central player in the disease’s cellular 
dynamics. Among the identified hub genes, a subset was implicated in mitochondrial function: (1) Mitochondrial epistasis genes, including HS6ST3, 
DOCK10, DPP10, NRG3, and NRXN1, are suggested to regulate mitochondrial activity, which is critical for cellular energy metabolism and other 
functions. (2) Mitochondrial localization genes, HSP90AA1 and PRNP, are involved in the precise targeting and localization of proteins within the 
mitochondria, essential for maintaining cellular health. These findings provide valuable insights into the molecular mechanisms underlying the cellular 
heterogeneity in AD and GBM. The identification of crucial hub genes and their involvement in mitochondrial functions suggests their potential as 
central players in the pathogenesis of these diseases. These insights may contribute to the development of targeted therapeutic strategies.

FIGURE 12 (Continued)

FIGURE 13

Overview of disease-specific and shared biological pathways in Alzheimer’s disease and glioblastoma. This figure summarizes the key biological 
pathways identified through our analytical pipeline for AD, GBM, and their shared mechanisms. The pathways are categorized across five analytical 
dimensions: cell type annotations, cell–cell communication, gene expression profiles, immune cell components, and single-cell co-expression 
networks. In AD, pathways include mitochondrial morphogenesis in oligodendrocytes, APP/NCAM signaling in astrocytes and inhibitory neurons, and 
immune-related nuclear functions. In GBM, critical processes involve mitochondrial ATP synthesis in neoplastic cells, astrocytes, and oligodendrocytes, 
as well as mitotic and protein localization pathways. Shared pathways encompass oxidative phosphorylation, calcium signaling, and immune 
responses, with notable roles for NRXN, APP, and small GTPase signaling. The figure highlights disease-specific and overlapping mechanisms, 
providing a comprehensive overview of the biological context for potential therapeutic targets.
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of key markers (EFHD1, SASH1, FAM110B, and SLC25A18) in 
mitochondrial dysfunction. Additionally, further investigation into 
the differential roles of these genes across IDH subtypes—such as 
FAM110B in IDH-mutant gliomas—and their therapeutic potential 
is needed. The interaction between clinical factors (e.g., IDH status 
and MGMT methylation) and our prognostic model also requires 
clarification through analysis of annotated clinical samples. 
Validation in larger, multi-ethnic cohorts and longitudinal datasets 
tracking mitochondrial changes across disease stages will enhance 
generalizability and identify critical therapeutic windows. Addressing 
these limitations will advance our understanding of mitochondrial 
dysfunction in AD and GBM, guiding the development of 
targeted therapies.

5 Conclusion

In summary, our research leverages single-cell data and applies a suite 
of 10 machine learning algorithms to discern mitochondria-related cell-
specific markers, thereby contributing to the field’s understanding of AD 
and GBM. By integrating gene expression and methylation data, we have 
meticulously validated these markers and charted the expression patterns 
of mitochondrial features common to both diseases across various cell 
types. The identification of EFHD1, SASH1, FAM110B, and SLC25A18 as 
significant cross-disease markers sheds light on the shared and divergent 
mitochondrial mechanisms at play in AD and GBM. Our findings suggest 
a potential role for oligodendrocytes and their interactions with astrocytes 
in the pathogenesis of both diseases, with a particular focus on the APP 
signaling pathway. This insight provides a fresh perspective on the cellular 
dynamics that may underlie these conditions. Furthermore, the discovery 
of key hub genes, including HS6ST3 and TUBB2B, within cellular 
subpopulations, and their association with a cell-specific co-expression 
network associated with these mitochondrial markers, suggests a complex 
interplay of genetic factors that could influence disease progression and 
response to treatment. Our work strives to add complexity to the 
mitochondrial narrative in AD and GBM, with the ultimate aim of 
enhancing clinical relevance and therapeutic potential.
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