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Introduction: Individuals with higher cognitive reserve (CR) are thought to

be more resilient to the effects of age-related brain changes on cognitive

performance. A potential mechanism of CR is redundancy in brain network

functional connectivity (BFR), which refers to the amount of time the brain

spends in a redundant state, indicating the presence of multiple independent

pathways between brain regions. These can serve as back-up information

processing routes, providing resiliency in the presence of stress or disease. In this

study we aimed to investigate whether BFR modulates the association between

age-related brain changes and cognitive performance across a broad range of

cognitive domains.

Methods: An open-access neuroimaging and behavioral dataset (n = 301 healthy

participants, 18–89 years) was analyzed. Cortical gray matter (GM) volume,

cortical thickness and brain age, extracted from structural T1 images, served

as our measures of life-course related brain changes (BC). Cognitive scores

were extracted from principal component analysis performed on 13 cognitive

tests across multiple cognitive domains. Multivariate linear regression tested the

modulating effect of BFR on the relationship between age-related brain changes

and cognitive performance.

Results: PCA revealed three cognitive test components related to episodic,

semantic and executive functioning. Increased BFR predicted reduced

performance in episodic functioning when considering cortical thickness and

GM volume as measures of BC. BFR significantly modulated the relationship

between cortical thickness and episodic functioning. We found neither a

predictive nor modulating effect of BFR on semantic or executive performance,

nor a significant effect when defining BC via brain age.

Discussion: Our results suggest that BFR could serve as a metric of CR when

considering certain cognitive domains, specifically episodic functioning, and

defined dimensions of BC. These findings potentially indicate the presence of

multiple underlying mechanisms of CR.

KEYWORDS

cognitive reserve, brain functional redundancy, age-related brain changes, functional
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1 Introduction

The concept of “reserve” arose from findings of a discrepancy
between brain pathology and clinical symptomology (Crystal et al.,
1988; Katzman et al., 1988; Morris et al., 1996; Price and Morris,
1999; Mortimer et al., 2003) leading to the suggestion of a certain
factor that modulates the relationship between pathological or age-
related brain changes and clinical symptom severity or cognitive
performance. The cognitive reserve hypothesis—similarly to the
Scaffolding Theory of Aging and Cognition (STAC) (Reuter-Lorenz
and Park, 2014)—posits that people with a higher cognitive reserve,
which is accumulated across the lifespan (Richards and Deary,
2005), can withstand a greater burden of these brain changes
whilst showing similar clinical symptom severity or cognitive
performance as compared to those with a lower burden and a
lower cognitive reserve (Stern, 2002; Steffener and Stern, 2012).
Cognitive reserve, although frequently measured through proxies
such as educational and occupational attainment (Stern et al., 1994;
Richards and Sacker, 2003; Bennett et al., 2003; Staff et al., 2004;
Valenzuela and Sachdev, 2006), has been suggested to originate
from certain characteristics of the functional networks of the
brain that are linked to task performance, such as efficiency,
flexibility and compensatory ability (Stern et al., 2005; Stern,
2009; Reuter-Lorenz and Park, 2014; Cabeza et al., 2018; Stern
et al., 2019). This is supported by cross-sectional studies involving
performance of certain demanding cognitive tasks across young
and old participants (Zarahn et al., 2007; Holtzer et al., 2009).

Recent studies have sought to elucidate the mechanisms
of cognitive reserve (Stern et al., 2007; Steffener et al., 2011;
Speer and Soldan, 2014; Franzmeier et al., 2017; Solé-Padullés
et al., 2009; Anthony and Lin, 2017), applying graph theory
metrics to uncover various organizational properties of functional
brain networks as possible sources of cognitive reserve (Varangis
et al., 2019; Sadiq et al., 2021). “Redundancy” in brain
network functional connectivity describes the presence of multiple
independent pathways between brain regions that serve as “back-
up” information processing routes, creating a protective structure
which is resistant to cognitive decline as a result of pathological
or age-related brain changes. This implies that with a higher
redundancy, such brain changes have a smaller impact on cognitive
ability. Therefore, cognitive functioning can be preserved despite
accumulating damage.

Stern and colleagues (Stern et al., 2023) suggested that three
components are required for the investigation of cognitive reserve
in aging: (1) measures of age-related brain changes that impact
cognition; (2) measures of cognitive performance; (3) a metric
that modulates/mediates the relationship between 1 and 2, i.e.,
the proposed metric of cognitive reserve. Two commonly reported
aspects of age-related brain changes include age-related decreases
in gray matter (GM) cortical volume and decreases in cortical
thickness (Christova and Georgopoulos, 2023; Resnick et al., 2003;
de Chastelaine et al., 2023; Steffener, 2021; Storsve et al., 2014;
Fjell et al., 2009; Pfefferbaum et al., 2013; De Chastelaine et al.,
2019; McGinnis et al., 2011; Salat, 2004; Bethlehem et al., 2022;
Lemaitre et al., 2012). Furthermore, “brain age” may also serve
as a possible metric of age-related brain changes. Several authors
have developed deep learning models based on brain imaging data
from healthy individuals that are able to reliably and accurately

predict chronological age based upon brain-derived parameters
(Kaufmann et al., 2019; Bashyam et al., 2020; Han et al., 2021;
Leonardsen et al., 2021; Clausen et al., 2022; Hahn et al., 2022;
Dörfel et al., 2023). These models can then be used to predict the
“brain age” of participants, representing a potential biomarker of
brain aging (Cole et al., 2017; Seitz-Holland et al., 2024).

There have been promising findings linking brain functional
redundancy (BFR) with cognitive reserve in aging. BFR has been
shown to mediate the relationship between chronological age
and performance on a color-word inhibition test as an aspect
of executive functioning (Sadiq et al., 2021). Furthermore, in
patients with small vessel disease, BFR was reported to mediate
the relationship between the presence of cerebral microbleeds and
memory function assessed using an auditory verbal learning test,
while other cognitive domains such as language ability or executive
functioning did not show this effect (Cui et al., 2024). Together,
these findings would suggest that BFR is a mechanism of cognitive
reserve.

It has been posited that the neurobiological substrate of
cognitive reserve is task and modality independent, supporting
cognitive function as a whole (Steffener et al., 2011; Stern et al.,
2018). However, whether BFR—as a mechanism of cognitive
reserve—modulates the relationship between age-related brain
changes and cognition across multiple cognitive domains remains
an open question. In this study, we aimed to investigate whether
BFR modulates the association between age-related brain changes
and cognitive performance across a broad range of cognitive
domains.

2 Materials and methods

2.1 Data description

An open-access neuroimaging and behavioral dataset (Spreng
et al., 2022) in younger- (n = 181; mean age 22.59 years, age
range 18–34 years, 57% female) and older-aged (n = 120; mean age
68.63 years, age range 60-89 years, 54% female) cognitively healthy
participants was utilized for this study (total beginning sample size
n = 301). An overview of the analysis pipeline can be seen in
Figure 1.

2.1.1 Neuroimaging data
The resting-state functional magnetic resonance imaging data

were analyzed (two sessions, lasting 20 minutes in total), as
well as the anatomical T1 image acquired for each participant.
The neuroimaging data were acquired across two different sites,
using multi-echo imaging sequences with TR = 3,000 ms,
TE = 13.7 ms/30 ms/47 ms, flip angle = 83 degrees, voxel
size = 3 mm isotropic, 204 volumes/session (1 participant had 206)
for site 1 and with TR = 3,000 ms, TE = 14 ms/29.96 ms/45.92 ms,
flip angle = 83 degrees, voxel size = 3.4 mm × 3.4 mm × 3 mm,
200 volumes/session for site 2. Voxelwise fMRI signal can be
estimated as a monoexponential decay based upon the formula
(t) = S0e−t/T2∗. S0 represents the signal intensity at the point of
radiofrequency excitation at time 0 and R2∗ = 1/T2∗, where T2∗

is the time constant of signal decay. These two effects – S0 and
R2∗ – are differentially affected by neural activity and sources of
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FIGURE 1

An overview of our analysis pipeline. We investigated three different definitions of age-related brain changes (BC). Brain age prediction (BC1) for
each subject was calculated based upon raw anatomical MR images. Cortical grey matter (GM) volume (BC2) and cortical thickness (BC3) estimates
were derived based upon the Freesurfer processing pipeline on raw anatomical MR images. Each fMRI session (n = 2) for each subject was
individually preprocessed, from which the regional GM timeseries based upon the Destrieux GM atlas defined in Freesurfer were extracted. These
regional timeseries were used to create dynamic functional connectivity (FC) matrices, from which the dynamic functional redundancy metric was
calculated across both sessions. Subjects with complete cognitive test scores (n = 13 test scores, n = 260 subjects) were entered into a PCA and the
scores from 3 components related to episodic, semantic and executive performance were extracted. These scores were used as outcome variables
in three multivariate linear regression models, one per BC.

noise (e.g., head motion); neural activity influences R2∗ but not S0,
whereas sources of noise alter S0 but not R2∗. Therefore, sources of
noise can be separated and effectively removed from fMRI signals
via multi-echo imaging (Power et al., 2018).

2.1.2 Behavioral data
Each participant performed an extensive test battery of various

cognitive, affective and self-report measures. For our analysis, we
used the following cognitive tests: Verbal Paired Associates (3
outcome variables were available for this test), Associative Recall,
NIH Cognition Auditory Verbal Learning, NIH Cognition Picture
Sequence Memory, Shipley Vocabulary, NIH Cognition Picture
Vocabulary, NIH Cognition Oral Reading Recognition, Trail
Making Task, NIH Cognition Flanker, NIH Cognition Dimensional
Change Card Sort, and NIH Cognition List Sort Working Memory
test.

2.2 Preprocessing

2.2.1 Anatomical data
The three metrics of age-related brain changes were calculated

from the anatomical image. The raw anatomical image for
each participant was fed into the Freesurfer image analysis
suite via which the cortical reconstruction and volumetric
segmentation of the anatomical image was performed. This
processing pipeline also generated a gray matter template based
upon the Destrieux atlas (Destrieux et al., 2010) that was

utilized with the fMRI data. The raw anatomical image was
also analyzed using the brainageR pipeline (v2.1),1 shown to
produce the highest accuracy and test-retest reliability in age
predictions compared to other software packages (Dörfel et al.,
2023). Each participant’s brain age was predicted by a model
previously trained to predict the age of 3377 healthy participants
(mean age = 40.6 years, SD = 21.4, age range 18–92 years) from
numerous publicly available datasets based upon their anatomical
data. Using normalized probability maps of cerebrospinal fluid,
white matter, and gray matter, the software constructs a vector
and analyses it through principal component analysis. Finally,
to estimate brain age with brainageR, a Gaussian progress
regression model is applied to the first 435 principal components
(Dörfel et al., 2023).

2.2.2 Functional data
Multi-echo fMRI data was preprocessed using AFNI,

individually for each of the two sessions. The first 4 volumes
were removed, and the images were then slice-time corrected.
Volume registration for motion correction was first estimated
on the images from the second echo and applied to all three
echo images. Seven participants with greater than 2.5 mm/degree
maximum displacement were excluded at this stage, leaving 294
participants remaining. The volume registered images were fed
into the tedana denoising algorithm (v24.0.2; Python 3.12; Kundu

1 https://osf.io/4ngr8
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et al., 2012, 2013; DuPre et al., 2021). Briefly, this pipeline uses
a temporal independent component analysis on the data from
all three echos to remove components in the blood-oxygenation-
level dependent (BOLD) signal that are unlikely to originate
from neural sources via neurovascular coupling (such as cardiac,
respiratory or motion-related components). As BOLD signals
follow a specific decay pattern across varying echo times (TE)
due to T2∗ relaxation, non-BOLD components deviate from this
expected behavior. Tedana evaluates these patterns using kappa
and rho metrics. A high kappa value suggests that the component
is likely a BOLD signal since it follows the T2∗-weighted decay,
whereas a high rho indicates noise. By applying a threshold based
on these values, tedana separates BOLD-like signals from noise,
thereby enhancing the signal-to-noise-ratio. The denoised data is
then reconstructed and the three echos are optimally combined
in a way that maximizes the signal-to-noise ratio across regions.
The skullstripped anatomical T1 was aligned to the denoised and
optimally combined functional data. The resulting transformation
matrix was applied to the GM regional mask from the Freesurfer
pipeline described above, providing a regional GM parcellation
template in alignment with the fMRI data. This template was
restricted to cortical regions only, and the mean BOLD timeseries
was extracted from each cortical GM region, resulting in 167
regional timeseries per participant per session.

2.3 Analysis

2.3.1 Anatomical data for the estimation of
age-related brain changes

Estimates of GM cortical volume and cortical thickness for each
participant were derived from the Freesurfer analysis pipeline. GM
cortical volume was normalized to the total intracranial volume for
each participant to correct for inter-participant variation in head
size (Jack et al., 1992; Bobinski et al., 1999; Juottonen et al., 1999).
The predicted brain age of each participant was extracted from the
results of the brainageR pipeline.

2.3.2 Functional data for the estimation of
dynamic brain functional redundancy
2.3.2.1 Creation of dynamic functional connectivity
matrices

Dynamic functional connectivity matrices were created for
each participant and for each session. A sliding window of 50
volumes with a step size of 1 volume was used, leading to 151
matrices per participant per session, with each matrix representing
the functional connectivity (defined by the Pearson’s correlation
coefficient) between all cortical GM region pairs at that window
of time. Our choice of 50 volumes per window was based
upon the BOLD signal frequency range commonly thought to be
driven predominantly by neural activity (0.01–0.1 Hz), with slower
frequencies below this range being driven by sources of noise. Given
our TR of 3 s, we therefore opted for a window size of 150 s
in order to capture the slowest frequencies of interest at around
0.01 Hz. Given the sensitivity of dynamic functional connectivity
analyses to window size, we also ran our full analysis pipeline with
a window size of 100 volumes to see whether our results were
dependent on window size (see Supplementary Tables S5–S7 for the
corresponding results).

2.3.2.2 Brain functional redundancy estimation across
time

BFR was calculated based upon the method described
previously (Ghanbari et al., 2020; Ghanbari et al., 2021, 2022, 2023).
Using the Brain Connectivity Toolbox (Rubinov et al., 2009), for
each participant and each session, the first dynamic functional
connectivity matrix was thresholded to a number of different
density values (5–95% in 5% steps) and then binarized, producing
19 matrices. The number of independent pathways between each
region pair was then calculated at each density threshold, starting at
5% and working up from there. When all region pairs were found
to have at least one pathway between them (i.e., the network is
“one-connected”), the search stopped, and the density value of this
one-connected state was noted. The search then began again, only
this time searching for the density at which the network is “two-
connected,” with all region pairs having at least two independent
pathways between them. If the density of the two-connected state
was the same as the density of the one-connected state, this time
window was labeled as redundant and assigned a value of 1, else
0. These steps were performed repetitively across all dynamic
functional connectivity matrices, producing a vector of zeros and
ones for each session. The two vectors were concatenated across
sessions and the proportion of time spent in a redundant state (i.e.,
a value of 1) was defined as the BFR metric for each participant.
Therefore, this metric defines BFR in terms of the amount of time
spent in a redundant state.

2.3.3 Behavioral data for the estimation of
cognitive performance

The scores for 260 participants with complete data for the 13
cognitive test outcome variables were z-scored and entered into
a principal component analysis using the in-built stats package
within R Statistical Software (v4.1.2) (R Core Team, 2021). The
variance that each component accounted for in the original data
was assessed, as well as the coefficients of each component to
look for any pattern regarding original categories of cognitive
tests by the dataset authors—episodic, semantic and executive. The
optimal number of principal components to utilize for further
analysis was calculated using the find_curve_elbow function using
the pathviewr package (Baliga et al., 2021) within R Statistical
Software (v4.1.2) (R Core Team, 2021). This function calculates
the elbow point by drawing a line between the first observation
and the final observation. It then calculates the distance between
each observation and that line, and the elbow of the curve is the
observation that maximizes this distance. The scores of each of
the chosen principal components were then entered as outcome
variables in the multivariate linear regression models described
below.

2.4 Statistical approach

Three multivariate linear regression models were created using
the in-built stats package within R Statistical Software (v4.1.2)
(R Core Team, 2021). Each model tested the predictive value
of each of the three definitions of age-related brain changes—
cortical GM volume, cortical thickness and brain age on cognitive
performance. Critically, each model included BFR as a further
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predictor, as well as an interaction term between the age-related
brain change and BFR, to test the modulating effect of BFR on the
relationship between each age-related brain change and cognitive
performance. Cognitive performance was defined by the scores
of the chosen principal components as described above. Control
variables included in the models were sex and scanning site.
Chronological age was included as a further control variable in the
brain age model, due to findings of a chronological age-based bias
in brain age predictions (Beheshti et al., 2019; Lange and Cole, 2020;
Zhang et al., 2023). As an example, the R formula for the brain age
model was as follows:

mlm < - lm(cbind(PC1, PC2, PC3) ∼ redundancy + brainage
+ redundancy∗brainage + site + sex + age, data = ageing_data)

Chronological age was not included as a control variable in
the original cortical thickness and cortical GM volume models
due to our expectation that chronological age and redundancy
will covary with one another and lead to a masking of effects
of interest in model results. For completeness, however, we have
included chronological age as a further control variable in the
cortical thickness and cortical GM volume models and reported
these results in Supplementary Tables S3, S4.

3 Results

3.1 Principal component analysis

The results of the principal component analysis are provided
in Table 1. As shown in Figure 2, the three principal components
(PCs) were retained based on the identified elbow point. The first
three PCs cumulatively explained 67% of the total variance in the
dataset.

Principal component 1 (PC1) was labeled as episodic memory,
as it was primarily influenced by cognitive tests measuring episodic
recall (PC loadings on each cognitive test can be found in
Table 1). The strongest loadings were from Verbal Paired Associates
with Immediate Recall, Delayed Recall and Delayed Free Recall,
Associative Recall, NIH Cognition Auditory Verbal Learning, and
NIH Cognition Picture Sequence Memory. It accounted for 41.7%
of the total explained variance, making it the most significant
contributor.

Principal component 2 (PC2), accounting for 16.3% of the
variance and largely driven by Shipley Vocabulary, NIH Cognition
Picture Vocabulary and NIH Cognition Oral Reading Recognition,
was designated as semantic memory.

Principal component 3 (PC3) explained 9.0% of the variance.
The highest coefficients were observed for the NIH Cognition
Flanker, NIH Cognition Dimensional Change Card Sort and NIH
Cognition List Sort Working Memory, suggesting that it reflects
performance in executive functioning.

3.2 Multivariate linear regression models

Results of all models can be seen in detail in Tables 2–4. Below
we have summarized the main findings from each model, i.e., for
each definition of age-related brain change.

3.2.1 Model 1: age-related brain changes as
defined by cortical thickness

As an aspect of age-related brain change, cortical thickness
was significantly predicted by the first principal component
representing episodic memory function (β = 14.39, SE = 1.09,
t = 13.221, p < 0.001). BFR was a significant predictor of
episodic functioning, displaying a negative association (β = −0.03,
SE = 0.008, t = −3.40, p < 0.001), suggesting that higher BFR
is related to worse episodic performance. Figure 3 displays the
relationship between BFR and episodic functioning within two
subgroups of age-related brain change: “low” vs. “high” cortical
thickness. Participants with a cortical thickness value greater than
or equal to the mean value were assigned to the “high” group,
and those with a value less than the mean were assigned to the
“low” group. Across both subgroups, a common generally negative
association between BFR and episodic functioning can be seen.
Therefore, we assume that the directions of association as reported
at the population level are not attributable to Simpson’s paradox
(Cabeza et al., 2018).

Furthermore, a significant interaction between cortical
thickness and BFR was found for episodic functioning (β = −0.15,
SE = 0.06, t = −2.32, p = 0.02). This indicates a diminishing
positive effect of cortical thickness on episodic performance as
BFR increases (as displayed in Figure 4). Among the covariates,
site (β = −0.74, SE = 0.29, t = −2.60, p = 0.009) and sex (β = 1.02,
SE = 0.22, t = 4.71, p < 0.001) were also significant predictors.
When chronological age was included as a confound variable in
the model, this negative association as well as the interaction effect
were no longer significant (see Supplementary Table S3).

As displayed in Table 1, for the second principal component
(semantic functioning), neither cortical thickness nor BFR
significantly predicted performance. There was also no significant
interaction, implying that the relationship between cortical
thickness and semantic memory is not moderated by BFR. Site was
the only significant predictor in this model (β = −0.93, SE = 0.24,
t = −3.90, p < 0.001), indicating variability across different study
sites.

The third principal component (executive functioning) showed
a significant association with cortical thickness (β = 1.28, SE = 0.64,
t = 1.99, p = 0.047), with greater cortical thickness predicting better
executive performance. However, there was neither a significant
predictive effect of BFR nor a significant interaction between
cortical thickness and BFR considering executive functioning. Both
site (β = 0.68, SE = 0.17, t = 4.02, p < 0.001) and sex (β = −0.40,
SE = 0.13, t = −3.16, p = 0.002) were significant predictors.

3.2.2 Model 2: age-related brain changes as
defined by GM volume

As a second aspect of age-related brain changes, GM volume
exhibited a highly significant positive predictive effect on episodic
functioning (β = 59.65, SE = 4.64, t = 12.87, p <0.001), suggesting
an association between greater GM volume and better episodic
performance. Further, a significant negative relationship between
BFR and episodic functioning was observed (β = −0.02, SE = 0.008,
t = −2.80, p = 0.006) with higher BFR predicting worse episodic
performance. Figure 5 displays the relationship between BFR and
episodic functioning within two subgroups of age-related brain
change: “low” vs. “high” cortical GM volume (defined the same
way as described above in section 3.2.1). Across both subgroups, a
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TABLE 1 Principal component coefficients for the first 4 components.

Cognitive test PC1 PC2 PC3 PC4

Verbal paired associates: immediate recall 0.35989061 0.13192479 −0.30376220 0.10317762

Verbal paired associates: delayed recall 0.36753425 0.09831439 −0.26120144 0.09096365

Verbal paired associates: delayed free recall 0.33431330 0.12858128 −0.20591347 0.05286513

Associative recall 0.35242289 0.19333197 −0.15231261 0.10282689

NIH cognition auditory verbal learning 0.35194963 0.04299362 −0.00666587 −0.06897918

NIH cognition picture sequence memory 0.32650484 0.04835810 −0.01211713 −0.11366875

Shipley vocabulary −0.12093573 0.57294058 0.08532941 0.12511439

NIH cognition picture vocabulary −0.19122803 0.53119811 0.03502500 0.10400854

NIH cognition oral reading recognition −0.09166479 0.48648241 0.23441390 0.01586972

Trail making task −0.10749235 −0.09828088 −0.15573646 0.86860715

NIH cognition flanker 0.23465552 −0.09736644 0.58560890 0.30712623

NIH cognition dimensional change card sort 0.28286650 −0.14194585 0.49455045 0.17018009

NIH cognition list sort working memory 0.25045712 0.16866332 0.31381856 −0.21340988

The bold values indicate highlight results with p < 0.05.

FIGURE 2

Scree plot showing the percentage of explained variance across the principal components derived from the 13 cognitive test scores across 260
subjects. Based upon the defined elbow point at component 3, scores from the first 3 components were used for statistical analysis. This figure was
created using the factoextra package (Kassambara and Mundt, 2020) within R Statistical Software (v4.1.2) (R Core Team, 2021).

negative association between BFR and episodic functioning can be
seen. When chronological age was included as a confound variable
in the model, this negative association was no longer significant
(see Supplementary Table S4). As shown in Table 2, there was
no significant interaction effect between GM volume and BFR in
predicting episodic functioning, indicating that BFR does not have
a moderating effect. Moreover, considering the covariates, sex was
a significant predictor (β = 0.51, SE = 0.22, t = 2.33, p = 0.02).

However, for semantic functioning, neither GM volume nor
BFR significantly predicted performance. As displayed in Table 2,
there was also no moderating effect of BFR. The covariate site was a
significant predictor in this model (β = −0.95, SE = 0.24, t = −4.03,
p < 0.001).

With greater GM volume predicting better executive
performance, GM volume was significantly associated with

the third principal component (β = 5.62, SE = 2.70, t = 2.08,
p = 0.04). BFR had no predictive or moderating effect. Both site
(β = 0.70, SE = 0.17, t = 4.17, p < 0.001) and sex (β = −0.45,
SE = 0.13, t = −3.55, p < 0.001) were significant predictors for
executive functioning.

3.2.3 Model 3: age-related brain changes as
defined by brain age

Brain age, as our third aspect of age-related brain changes,
did not significantly predict episodic functioning, as displayed
in Table 3. Similarly, BFR showed no predictive or moderating
effect on the first principal component. Again both, site (β = 0.81,
SE = 0.16, t = 5.10, p< 0.001) and sex (β = 0.06, SE = 0.02, t = −3.79,
p < 0.001), were significant predictors. Additionally, chronological
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TABLE 2 Results of multivariate linear regression model across subjects with cortical thickness as age-related brain change.

Predictor PC1: Episodic PC2: Semantic PC3: Executive

β SE t p β SE t p β SE t p

Cortical thickness 14.39 1.09 13.221 <0.001 −0.87 0.90 −0.964 0.33 1.28 0.64 1.99 0.047

BFR −0.03 0.008 −3.40 <0.001 0.01 0.006 1.81 0.07 0.008 0.005 1.95 0.052

Cortical thickness*BFR −0.15 0.06 −2.32 0.02 0.006 0.05 0.126 0.899 0.009 0.04 0.25 0.80

Site −0.74 0.29 −2.60 0.009 −0.93 0.24 −3.90 <0.001 0.68 0.17 4.02 <0.001

Sex 1.02 0.22 4.71 <0.001 −0.10 0.18 −0.56 0.58 −0.40 0.13 −3.16 0.002

Fit

Res. SE 1.71 1.43 1.01

R2 0.47 0.06 0.15

Adj. R2 0.46 0.04 0.13

F 44.69 3.34 8.71

p <0.001 0.006 <0.001

The bold values indicate highlight results with p < 0.05.

TABLE 3 Results of multivariate linear regression model across subjects with GM volume as age-related brain change.

Predictor PC1: Episodic PC2: Semantic PC3: Executive

β SE t p β SE t p β SE t p

GM volume 59.65 4.64 12.87 <0.001 −7.28 3.79 −1.92 0.06 5.62 2.70 2.08 0.04

BFR −0.02 0.008 −2.799 0.006 0.01 0.007 1.86 0.06 0.008 0.005 1.69 0.09

GM volume*BFR −0.30 0.32 −0.94 0.35 0.19 0.27 0.71 0.47 −0.08 0.19 −0.42 0.67

Site −0.46 0.29 −1.60 0.11 −0.95 0.24 −4.03 <0.001 0.70 0.17 4.17 <0.001

Sex 0.51 0.22 2.33 0.02 −0.04 0.18 −0.22 0.82 −0.45 0.13 −3.55 <0.001

Fit

Res. SE 1.73 1.42 1.01

R2 0.46 0.07 0.15

Adj. R2 0.45 0.06 0.13

F 42.67 4.02 8.72

p <0.001 0.002 <0.001

The bold values indicate highlight results with p < 0.05.

age had a significant negative effect on episodic performance in this
model (β = −0.06, SE = 0.02, t = −3.79, p < 0.001).

Neither brain age nor BFR had a predictive effect on
semantic performance, and there was no significant interaction
between brain age and BFR. Site remained the only significant
predictor among the covariates for the second principal component
(β = −1.003, SE = 0.24, t = −4.25, p < 0.001).

For executive function, there was no predictive effect of brain
age or BFR. Further, BFR did not show a moderating effect.
However, both site (β = 0.75, SE = 0.17, t = 4.37, p < 0.001) and
sex (β = −0.43, SE = 0.13, t = −3.40, p < 0.001) were significant
predictors, while chronological age did not have a significant
impact on the executive performance.

4 Discussion

This study aimed to investigate whether the time spent in
a redundant state within functional brain networks, referred to

as brain functional redundancy (BFR), serves as a mechanism
of cognitive reserve providing an explanation for a person’s
resiliency to age-related brain changes in terms of their cognitive
abilities across multiple cognitive domains. We utilized three
definitions of age-related brain changes and investigated whether
BFR modulates the relationship between these brain changes
and cognitive performance across three domains—executive,
semantic, and episodic—in a cross-sectional cohort of participants
across the lifespan.

Increased BFR was predictive of reduced performance in
episodic functioning in both the cortical thickness and GM volume
models. This could be interpreted to indicate a compensatory
mechanism in the face of age-related brain changes. One could
argue that a reduced performance with increasing BFR cannot
be indicative of a compensatory process, however, it may also
be possible that BFR acts to keep the cognitive domain “afloat,”
i.e., maintain a certain level of functioning, even if this level
of functioning is not necessarily optimal. A similar observation
has been previously reported (Zarahn et al., 2007), where older
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participants were found to recruit additional brain regions
beyond certain “primary” activated regions during execution of a
demanding cognitive task as compared with younger participants.
Interestingly, recruitment of these additional brain regions was not
only related to atrophy in the primary regions (Steffener et al.,
2009) but was also associated with reduced task performance. It
seemed that the activation of these additional regions served as a
compensatory mechanism, with the goal of maintaining function
in the face of age-related brain atrophy—with maintenance rather
than improvement of function being key here.

We identified a modulating effect of BFR on the relationship
between cortical thickness and episodic functioning. For every unit
increase in BFR, there was a reduced effect of cortical thickness
on episodic functioning. This finding would be in line with BFR
as a metric of cognitive reserve: with increased functional brain
resiliency driven by increased BFR, changes in cortical thickness
have less of an impact on episodic functioning. Participants
with higher BFR, developed as a compensation strategy in the
face of age-related brain changes marked by decreased cortical
thickness, may be more resilient to subsequent changes in episodic
functioning.

Noteworthy, however, is the fact that this modulating effect
was no longer significant when using a longer window size (100
volumes as opposed to the original choice of 50 volumes) for
the creation of the dynamic functional connectivity matrices on
which the BFR metric was calculated (see Supplementary Table S5).
As BFR is a metric reflecting dynamics across time, a window
size of 100 volumes with a TR of 3 seconds might not be able
to adequately capture changes in redundancy, possibly leading to
more inaccurate estimates of BFR. We would argue that a window
size of 50 volumes is a more logical choice, with a shorter timespan
to better capture temporal dynamics whilst also being long enough
to capture slow BOLD frequencies of interest. This modulating
effect, as well as the predictive value of BFR on episodic functioning
in both cortical thickness and cortical GM volume models, was no
longer significant following the inclusion of chronological age as a
confounder in the regression models. It is difficult to say whether
the significant effects were predominantly driven by chronological
age or whether BFR plays a true modulating role on the effect of
cortical thickness on episodic functioning that we can no longer
“uncover” when including chronological age as a covariate.

When defining age-related brain changes based upon cortical
GM volume or brain age, this modulating effect was no longer
present. Measures of cortical thickness and cortical GM volume
both identify morphometric changes, but with only partially
overlapping regions. Discrepancies between the two measures
have been found to be due to regional variations in surface
area, curvature and gray/white matter intensity contrast (Kong
et al., 2015). How the modulating effect of BFR depends on these
morphometric differences warrants further investigation. Brain age
shows promise as a biomarker for ageng. However, a number of
open questions remain regarding this metric and requires further
optimization due to its high susceptibility to low image quality
and motion (Hanson et al., 2024), which unfortunately commonly
occurs in older-aged participants. The bias that occurs in the
predicted brain age based upon the chronological age of the
participant is also not a problem that has been solved: the best
practice is to currently either use a regression approach or include
chronological age as a covariate in order to correct for this bias, but

this has also been shown to have its own limitations (Butler et al.,
2021). We included brain age as a potentially interesting metric of
age-related brain changes but suggest to interpret these findings
with caution.

Interestingly these effects were also only observed within the
episodic domain; there were no predictive effects of BFR on
semantic or executive functioning, nor were there any modulating
effects of BFR on the associations between age-related brain
changes and semantic or executive functioning. Decline in episodic
memory can be seen as one of the early cognitive changes across
the adult lifespan, with an accelerating deterioration occurring
in older age. Many studies have observed different activation
patterns in additional compensatory networks in response to this
episodic memory decline (Nyberg et al., 2012; Tromp et al.,
2015). According to our findings, BFR could potentially be a
metric of cognitive reserve in aging specifically regarding episodic
functioning. This would argue against the idea that cognitive
reserve may be supported by a mechanism that generalizes across
multiple cognitive domains, but rather there might be multiple
underlying mechanisms of cognitive reserve in aging that support
different aspects of cognition in the face of age-related brain
changes.

4.1 Strengths and limitations

The participants were in the resting state with eyes closed
during fMRI data acquisition. Although the dynamic functional
organization of the brain observed during the resting state closely
parallels that observed during the task state, there are still some
significant functional organizational changes that occur during the
task state that contribute to task performance (Cole et al., 2021).
Whether the domain specificity of BFR as a metric of cognitive
reserve is different across rest or task states is an interesting and
open question. At this point it is also worth further noting that
the sample consisted of healthy participants, which may have
resulted in too little variance to effectively demonstrate domain-
general cognitive reserve. The findings of BFR as a mediator of the
relationship between chronological age and executive functioning
in Sadiq et al. was based upon fMRI data during the resting state.
However these authors used a different metric of BFR based upon
the static functional connectome than the one utilized here (Sadiq
et al., 2021). There is considerable variation across studies in the
operationalization of redundancy, as well as the definition of age-
related brain changes, with limitations attributable to each. Here
we chose to utilize a metric based upon the dynamic nature of
brain functional connectivity, coming with it the limitation of
subjective methodological choices such as the window size used
for the creation of the dynamic functional connectivity matrices.
The dependency of our results on window size and the exclusion
of chronological age as a confound variable represents a limitation
of this method and it would be worth investigating whether
this modulating role exists when using alternative metrics of
redundancy not dependent on such methodological choices.

Most previous work has been conducted on cross-sectional
cohorts, a limitation of the current work, seeing as a longitudinal
design would be much better suited to the identification of
mechanisms that drive resiliency to brain changes that occur
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TABLE 4 Results of multivariate linear regression model across subjects with brain age as age-related brain change.

Predictor PC1: Episodic PC2: Semantic PC3: Executive

β SE t p β SE t p β SE t p

Brain age −0.02 0.016 −1.41 0.16 −0.02 0.02 −1.26 0.21 −0.01 0.01 −0.52 0.60

BFR −0.004 0.006 −0.67 0.503 0.004 0.01 0.55 0.58 0.01 0.01 1.61 0.11

Brain age*BFR −0.00003 −0.0002 −0.13 0.89 0.0001 0.0002 0.47 0.64 0.0001 0.0002 0.62 0.54

Site 0.81 0.16 5.1 <0.001 −1.003 0.24 −4.25 <0.001 0.75 0.17 4.37 <0.001

Sex −0.06 0.02 −3.79 <0.001 −0.10 0.17 −0.56 0.57 −0.43 0.13 −3.40 <0.001

Age −0.06 0.02 −3.79 <0.001 0.04 0.02 2.17 0.03 −0.001 0.01 −0.12 0.91

Fit

Res. SE 1.27 1.38 1.002

R2 0.71 0.12 0.16

Adj. R2 0.70 0.10 0.14

F 102.9 6.004 8.03

p <0.001 <0.001 <0.001

The bold values indicate highlight results with p < 0.05.

FIGURE 3

Scatterplot showing the association between brain functional redundancy and episodic functioning across groups of participants with “low” versus
“high” cortical thickness. Participants with a cortical thickness value greater than or equal to the mean value were assigned to the “high” group, and
those with a value less than the mean were assigned to the “low” group.

with aging (Pettigrew and Soldan, 2019). Furthermore, the
predetermined selection of cognitive tests included only a small
number of cognitive domains. It is questionable how much variance
they accounted for, representing another limitation of the present
study.

While our results provide valuable insights, the inclusion
of more diverse participant groups could further enhance
the generalizability of our findings. An interesting area for
future research is the influence of geographical factors, e.g.,
differences between rural or urban living, on aging and cognitive

reserve. Urban environments often offer greater access to
educational opportunities, diverse social networks, and cognitive
stimulation, which are known to contribute significantly to building
cognitive reserve. Conversely, rural settings, despite challenges
such as limited access to healthcare and cognitive engagement
opportunities, may provide cognitive resilience through closer,
stronger social ties and lower levels of environmental stressors
like noise and pollution (Cassarino and Setti, 2015). Studies have
found that urban residents often perform better on a broad
range of cognitive tasks, for example those measuring memory
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FIGURE 4

Scatterplot showing the association between cortical thickness and episodic functioning across subjects. Subjects were split according to low or
high brain functional redundancy (BFR). A threshold of 30% was chosen to derive the two groups to achieve an approximately equal number of
subjects in each group (Low n = 128; High n = 132). A linear fit for each group displays a steeper slope for the low redundancy group compared with
the high redundancy group; subjects with high BFR show a lower impact of changes in cortical thickness on episodic functioning as compared with
subjects with low BFR.

FIGURE 5

Scatterplot showing the association between brain functional redundancy and episodic functioning across groups of participants with “low” versus
“high” cortical GM volume. Participants with a cortical GM volume value greater than or equal to the mean value were assigned to the “high” group,
and those with a value less than the mean were assigned to the “low” group.

skills, than their rural counterparts, likely due to differences in
educational attainment and occupational complexity (Linnell et al.,
2013; Jokela, 2014; Cassarino et al., 2018; Saenz et al., 2018,
2022; Lawrence et al., 2023; Steinberg et al., 2023). However,
an overstimulating urban environment may negatively affect

attention control (Cassarino and Setti, 2015). Additionally, the
predominance of white participants in the dataset used highlights
another limitation of the current study. While research has
explored sex or gender differences in specific contributors to
cognitive reserve (Letenneur et al., 2000; Beinhoff et al., 2009;
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Sundermann et al., 2016; Malpetti et al., 2017; Santabárbara et al.,
2019), there is a lack of studies examining these differences
within cognitive reserve itself (Subramaniapillai et al., 2021). For
instance, men tend to exhibit a larger absolute GM volume,
while women have thicker cortices and greater GM volumes
when adjusting for skull size (Arenaza-Urquijo et al., 2024).
Differences in glucose metabolism functional network activation
patterns may also play a role (Subramaniapillai et al., 2021;
Arenaza-Urquijo et al., 2024). Future research could provide a
more comprehensive understanding of cognitive reserve in aging
across diverse populations—particularly in the context of evolving
societies, fluid gender norms, and increasing urbanization.

5 Conclusion

BFR could potentially serve as a metric of cognitive reserve
in aging that supports the maintenance of episodic functioning
in the face of age-related changes in cortical thickness. Future
research should look to systematically investigate the effect that
methodological differences across previous studies have on the
interpretation of BFR as a cognitive domain-specific or domain-
general metric of cognitive reserve in aging.
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