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Background: While gait analysis is well-documented, turn performance—which

is a more complex task and involves multiple brain regions—has been less

explored. This study aims to assess the diagnostic potential of turn dynamics

as a novel tool for detecting cognitive decline.

Methods: We recruited 75 participants, including 26 neurotypical (NT) older

adults, 25 with amnestic mild cognitive impairment (aMCI), and 24 with mild

Alzheimer’s disease (AD). Participants completed a dual-task walk and turn

(DTWT) test using a dual Kinect setup while counting backwards by ones.

Key measures analyzed included spatial-temporal parameters of gait and

turn dynamics. Statistical analyses including analyses of variance and linear

regression were performed to identify key features as well as to assess their

correlation with cognitive performance.

Results: Gait speed and stride time significantly differentiated among groups

in DTWT conditions. More notably, turn dynamics, particularly segmental

peak speeds and step length, displayed stronger discriminatory power with

more significant p-values compared to gait features. Linear regression analysis

indicated that turn dynamics had stronger correlations with executive function

and working memory, suggesting a more pronounced relationship between

cognitive performance and turn features than gait variables.

Conclusion: In contrast to straight walk metrics, this study shows that DTWT

turn dynamics are more sensitive to detect cognitive impairment. Consequently,

incorporating turning movements into gait analysis techniques could enhance

diagnostic protocols in clinical settings, offering a valuable tool for monitoring

the progression of conditions associated with cognitive aging.
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1 Introduction

Alzheimer’s disease (AD), accounting for an estimated 60
to 80% of all dementia cases (Kapasi et al., 2017), imposes
significant social and healthcare costs around the world. Research
indicates that early-stage detection can potentially slow down the
advancement of dementia or mitigate its effects (Montero-Odasso
et al., 2017). Consequently, identifying mild cognitive impairment
(MCI), as a transitional phase between normal age-related cognitive
decline and dementia is crucial (Chen et al., 2022). Therefore,
a non-invasive and effective clinical marker capable of detecting
cognitive decline in the early stages is essential.

Motor function requires the coordination of the brain’s cortical,
subcortical, and cerebellar regions; any deficits in these areas
can impair motor performance (Yogev-Seligmann et al., 2008).
Research has demonstrated that motor deficits, which are prevalent
up to 12 years before a dementia diagnosis, can serve as a
valuable diagnostic tool for early cognitive decline (Montero-
Odasso et al., 2009a; Beauchet et al., 2013). Dual-task gait tests have
shown promising results which, follows from increased activity in
higher-level cortical regions, namely the pre-frontal cortex (PFC)
(Ramirez and Gutierrez, 2021; Ali et al., 2024). The competitive
demands for cognitive resources lead to the unveiling of hidden
motor deficits in patients with dementia (Montero-Odasso et al.,
2018). Moreover, small vessel disease affects motor function
neuroanatomical substrates, causing dementia-related movement
impairments. White matter loss in this condition can disrupt
brain connections, affecting cognitive and motor abilities (Sharma
et al., 2023). However, most gait analysis research for cognitive
impairment has focused on straightforward walking patterns with
cognitive activities potentially overlooking the additional demands
of complex maneuvers. For example, research indicated that
complex walking patterns may reveal subtle differences between
patients with MCI and neurotypical individuals (Wang et al.,
2024; Poosri et al., 2024; Seifallahi et al., 2024), one particularly
underexamined maneuver is turning.

Turning is a complex task, as it necessitates the central
nervous system to regulate body reorientation toward a new
direction, while sustaining the ongoing step cycle and postural
stability (Thigpen et al., 2000). While walking straight primarily
relies on maintaining balance and rhythmic gait, turning requires
precise spatial awareness, decision-making, planning, processing
environmental cues and coordinating movement (Hase and Stein,
1999; Lowry et al., 2012; Lee and Park, 2018). Studies suggest
that, the PFC is involved in deciding when and how to make a
turn, planning its trajectory, timing and sequencing. The PFC also
integrates visual, auditory, and proprioceptive information to guide
turning behavior (Herman et al., 2011; King et al., 2012; Tavares and
Tort, 2022). Additionally, the roles of the parietal cortex integrating
sensory information for spatial awareness and the hippocampus
supporting the spatial memory for navigation is crucial (Calton
and Taube, 2009; Eichenbaum, 2017). The presence of advanced
motor and cognitive processes increases the susceptibility of
turning to cognitive deficits (Lee et al., 2022). Studies have
shown that medial-lateral control, crucial for maintaining balance
during turns, is decreased in older adults. Additionally, older
individuals tend to take more steps and turn slower than younger
adults (Baird and Van Emmerik, 2009; Conradsson et al., 2018;

Khobkhun et al., 2021). Also, a reduced segmental angle and speed
were observed in older adults during a turn as a compensatory
mechanism (Khobkhun et al., 2021; Khobkhun et al., 2022a).
A decrease in postural control may be ascribed to impairments
in motor system functions; or the capacity to carry out cognitive
activities (Baird and Van Emmerik, 2009). For instance, research
suggests a correlation between attention and executive function in
older adults and their ability to maintain balance during a turn
(Tangen et al., 2014). Moreover, timed up and go (TUG) test, similar
to walking and turning, is showed to be linked to working memory
and visuospatial ability (Mirelman et al., 2014; Ansai et al., 2018).

Despite the recognized importance of turning movements,
research gaps persist in objectively quantifying turn dynamics in
patients with cognitive impairment. Addressing this, our study
analyzes walk and turn aspects of AD, MCI and, neurotypical
individuals to identify significant features that distinguish three
groups. Next, we analyze the correlation between key variables and
participants’ cognitive performance.

2 Materials and methods

2.1 Materials

This section details the materials and resources utilized to
conduct the study.

2.1.1 Participants and clinical assessment
In this study, 26 neurotypical (NT) older adults, 25 patients

with amnestic-MCI (aMCI), and 24 patients with mild AD, over
65 years old participated. Patients with AD and aMCI were
recruited from national referral centers: Yaadmaan; institute for
Brain, Cognition and Memory Studies and the cognitive neurology
and neuropsychiatry division and the department of psychiatry,
Roozbeh hospital, Tehran University of Medical Sciences. Healthy
older adults were notified via advertisements in local communities.
This study was approved by the Research Ethics Committees of
Islamic Azad University Science and Research Branch (Approval
ID: IR.IAU.SRB.REC.1401.300); Informed consent was obtained
directly from each participant prior to the test, including aMCI and
NT individuals. For patients with AD, the consent was provided by
legal guardians. It is worth noting that the test was non-invasive
and safe for all participants. Figure 1 shows the flow diagram of the
study.

For all participants two neurologists expert in dementia and
cognitive disorders conducted a consistent clinical assessment
protocol. Patients diagnosed with AD were assessed using the
clinical diagnosis of AD criteria established by the Alzheimer’s
disease and related disorders association and the national
institute of neurological and communicative disorders and stroke
(ADRDA/NINCDS) (McKhann et al., 1984). NT older adults
and patients with aMCI were assessed with neuropsychological
examination and cognitive assessment tests. Data regarding
participants’ demographic information, clinical results related to
co-morbidities, and familial dementia histories were gathered.
Cognitive functions for all groups, were evaluated using
the mini-mental state examination (MMSE) and Montreal
cognitive assessment (MoCA) tests (Folstein et al., 1975;
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FIGURE 1

Study flow chart. AD, Alzheimer’s disease; NT, neurotypical; aMCI, amnestic mild cognitive impairment.

Nasreddine et al., 2005). MoCA is a screening tool designed
to assess various cognitive domains and is particularly effective in
identifying MCI and early stages of AD while, MMSE is commonly
employed to assess individuals with moderate to severe cognitive
impairments (Pinto et al., 2019). A higher cognitive ability is
indicated by a total score of 30 points for both tests. If an individual
has less than 12 years of education, one extra point will be added to
their initial MoCA score (Shirk et al., 2011). For assessing attention
and working memory the serial 7s test was utilized in which the
participants were asked to do a series of subtractions 7 from 100
(Manning, 1982; Bristow et al., 2016). For evaluating the executive
function, planning and visuospatial abilities the clock drawing test
(CDT) was administered in which individuals were asked to draw
the face of a clock, put in all the numbers, and set the hands to
10 after 11 using paper and a pencil (Sunderland et al., 1989). For
both tests the MoCA scoring (0–3) were utilized (Nasreddine et al.,
2005). Additionally, for the subset of participants diagnosed with
aMCI and AD the functional assessment staging tool (FAST) was

conducted (Sclan and Reisberg, 1992; Noroozian et al., 2022). FAST
is an assessment method developed to evaluate the impairment
of functional abilities in patients with AD at all stages of the
condition. FAST scale assigns a score that measures the gradual
decline of functional abilities across seven key levels. For our
research, we used clinical data obtained from participants’ regular
medical checkups, which took place within one week before their
involvement in the study.

The study excluded individuals with neurological disorders
including cerebral stroke; Parkinson’s disease; multiple sclerosis;
cerebral palsy; peripheral neuropathy; musculoskeletal problems
such as hip or knee prosthesis; lower limb or hip fractures;
severe osteoporosis or arthritis; muscle weakness; serious
cardiopulmonary problems; or other medical conditions that
could affect gait. Additionally, individuals with a history of falls
in the past six month; or ongoing drug or alcohol abuse; or those
taking any medications known to alter gait, were not considered.
The study specifically excluded patients with moderate to severe
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stages of AD (FAST > 5) and other types of dementia, as these
patients fell outside the study’s scope. In addition, participants
had to have the ability to walk a distance of 10 meters and make a
180-degree turn unassisted by any mobility aids. Individuals who
need glasses or hearing aids were expected to utilize them.

2.1.2 Sample size
The sample size was calculated using G∗Power 3.1 software,

based on statistical power at 80% and one-way α level of 0.05 using
the analysis of variance (ANOVA) test with the effect size of 0.4
based on the reference study’s gait speed feature of TUG test (de
Oliveira Silva et al., 2020). The choice was due to the similarities
in the populations being studied and the aspects of mobility being
assessed. At least 66 participants were required to acquire the total
sample. The estimated power of this study was above 0.818. To
enhance the robustness and compensate for potential missing data,
we recruited beyond this minimum.

2.1.3 Experiment’s setup
Motion data were recorded with two Microsoft Kinect v2 depth

sensors (Microsoft Corporation, Redmond, WA, USA, 2015). The
Kinect v2 can track up to 25 joints per person with a sample rate
of 30 frames per second. The operational range is from 0.5-meters
to 4.5-meters, with a field of view of 70 degrees horizontally and 60
degrees vertically and the depth resolution is 512 × 424 pixels.

In establishing the configuration for the dual Kinect setup, an
initial assessment evaluated angles ranging from 60 to 180 degrees.
The objective was to maximize the capturing area while ensuring
adequate coverage of turning movements. Our evaluation indicated
that angles within the 60 to 90 degrees range were optimal for
our needs. Subsequently, within this range, a series of trial-and-
error led to cameras positioned at 70 degrees relative to each other
and 1.18-meters above ground height, both directed toward the
designated capture area: a walkway with 5 m length and 0.6-meters
width. Within this span, a 3.5-meters segment fell directly within
both cameras field of view. Figure 2 illustrates the specifics of this
setup.

Calibration, recording, and motion tracking procedures were
executed using iPi Motion Capture software version 4.5.8.260
(iPi Soft, LLC, Moscow, Russia). To guarantee synchronized data
capture from the cameras they were connected to a shared wireless
network. Detailed information for these procedures is available in
Supplementary materials (see Supp1, eFigure1 and eFigure2).

2.1.4 Walk-and-turn test
Dual-task walk and turn (DTWT) test: After receiving the

“start” command, cameras began recording and participants
walked the 5 m walkway, turned around, and returned at a self-
selected pace while counting backwards by ones starting from
100. The chosen arithmetic task is commonly used in dual-task
walk investigations and its effects have been confirmed in previous
studies (Montero-Odasso et al., 2009b; Cullen et al., 2018). We
chose counting by ones rather than a more difficult subtraction
(e.g., by sevens) to accommodate the broad range of educational
levels in our sample, ensuring the task remained feasible and
consistent for all participants.

Although the entire walkway is used for the DTWT test,
analysis focused on the 3.5-meter section captured by the cameras.

This helped with steady-state data capturing, as the initial and
final 1.5 meters are prone to gait disturbances due to starting and
stopping movements.

Prior to the assessment, participants were advised to avoid
wearing black clothing due to the Kinect sensor’s sensitivity to black
colors. To ensure accurate body movement capture, tight clothing
and closed-toe comfortable shoes were also required. Additionally,
the walkway was covered with mats to reduce floor reflections,
enhancing ground detection accuracy. Furthermore, the test area
was evaluated for participant safety, ensuring sufficient lighting and
a flat surface free of obstacles. All tests were conducted in the same
room and setup at Yaadmaan center.

2.2 Data analysis

2.2.1 Feature extraction
The task given to participants was segmented into two distinct

phases: the “walk” phase and the “turn” phase. Commonly,
healthy young and older adults employ a craniocaudal sequence
of movements to change direction while walking. This starts with
the rotation of head, followed by the trunk, and then the pelvis in
the yaw plane (Fuller et al., 2007; Khobkhun et al., 2021). However,
considering that patients with cognitive impairment may have
altered movement sequences, the initiation of the turn phase was
carefully marked as the point when the first body segment began
its turn and feet, head, and hip were taken as body segments. The
turn phase concluded once the last body segment completed its
turning motion. All other movements were categorized under the
walk phase.

For each body segment, the onset of the turn sequence was
identified when its yaw angle began to exceed the average yaw
angle fluctuation observed during the forward walk. In the context
of this study, average fluctuations refer to the typical, minor
variations in the yaw angle of a body segment (such as the
head or hip) observed during straight walking. The completion
of the turn for that body part was marked when its yaw angle
realigned with the average fluctuation seen during the return
walk. Each phase’s start and end points were also thoroughly
investigated frame by frame. The iPi Studio software tracked
human body movements and generated the skeleton data. The
Cartesian coordinates and Euler angles for the following joints were
extracted: head, hip, left foot, right foot, and the center of mass
(CoM). A total of 15 dependent variables were calculated from
the skeleton data.

Parameters of walk phase: stride length; stride time; gait
speed; double support time (DST); cadence; stride time variability
(STV); swing phase and stance phase were calculated using the
methodologies established in previous studies (Cullen et al., 2018;
see Supp1, eTable1 in Supplementary materials). The mean values
of the walk phase parameters were reported for the forward
and return trips, to mitigate potential variability which may be
introduced by environmental factors.

A total of seven parameters were derived for turn phase: turning
time is defined as the duration between the onset and the end of
the turning sequence; step length was calculated as the average
anterior-posterior distance between consecutive heel strikes during
the turn phase; Peak head and hip speeds were calculated as
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FIGURE 2

Experiment’s setup.

the maximum angular speeds of head and hip segments in the
yaw direction (Khobkhun et al., 2021); peak segmental angle
represents the maximum angular difference between the head and
hip segments during a turn (Khobkhun et al., 2021); sway-AP and
sway-ML were calculated as the difference between maximum and
minimum values of the anterior-posterior (AP) and the medio-
lateral (ML) directions of the CoM signal. Figure 3 walk and turn
phases’ parameters.

2.2.2 Statistical analysis
To describe the population, Chi-square test–for nominal

variables–and the Kruskal–Wallis and one-way ANOVA tests were
utilized for group comparisons, followed by the Tukey HSD and
Mann–Whitney U tests for pairwise comparisons.

The distribution of gait features was evaluated using the
Shapiro–Wilk test; the Levene’s test was used to check the
homogeneity of variance. Several features were identified to be
non-normally distributed thus, they underwent Box-Cox power
transformation method. For primary analysis, one-way ANOVA
test with a Bonferroni correction was undertaken. To identify
feature differences among groups while mitigating the influence of
confounders, we performed an analysis of covariance (ANCOVA)
to control for covariates. Based on the previous research, in
this study the potential covariates were considered as sex,
age, years of education, and body mass index (BMI) (Bruce-
Keller et al., 2012; Gomes Gde et al., 2015; Montero-Odasso

et al., 2017; Jayakody et al., 2018; Pieruccini-Faria et al., 2021;
Bovonsunthonchai et al., 2022). Subsequently, a Tukey honestly
significant difference (HSD) test was employed as a post hoc
analysis for features that appeared significant. To achieve accurate
and stable calculations the confidence intervals (CI) of η2 (eta
squared) as a measure for effect size were employed to ensure the
precision and stability of estimations. For calculating the CI of
η2, we employed stratified bootstrapping to maintain the natural
distribution of data using 1,000 iterations to estimate the 95%
CI for eta squared. This method involved resampling individual
group data with replacement, followed by recalculating eta squared
for each iteration. The CIs were then derived from the 2.5th and
97.5th percentiles of the bootstrapped eta squared distributions.
The η2 values were reported based on Cohen’s effect size guideline
(Cohen, 2019).

To investigate whether cognitive functions were associated
with gait and turn features under the DTWT test, we conducted
univariate linear regression analyses using the ordinary least
squares (OLS) method. Each significant gait or turn feature served
as the dependent variable in the regression. We then created two
models to capture different aspects of cognitive function. Model
1 utilized CDT scores as predictor, treated as an ordinal variable.
CDT provides an assessment of planning, visuospatial ability, and
aspects of executive function, which are relevant for gait and turn
performance (Yogev-Seligmann et al., 2008). Model 1 considers
age and years of education as covariates. Model 2 examines the
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FIGURE 3

Walk phase (one gait cycle illustrated) and turn phase parameters.

association between gait and turn features and serial 7s scores with
the same covariates as Model 1. The Serial 7s test heavily involves
working memory and attention processes that may influence
DTWT test (Salzman et al., 2025). The key distinction between
Model 1 and Model 2 is the primary cognitive measure used as
the predictor. Both models control for the same covariates (age and
education) to account for potential demographic influences on gait
and cognition. For each model the regression coefficients, p-values,
and Shapley additive explanations (SHAP) values, illustrating the
relative importance of each predictor in influencing gait and turn
parameters, were reported. SHAP value quantifies how much each
predictor contributes, either positively or negatively, to the target
variable compared to the prediction’s baseline. All analyses were
conducted using Python version 3.11.5, the SciPy version 1.11.1,
(Virtanen et al., 2020) and Scikit-Learn version 1.3.0, (Pedregosa
et al., 2011).

3 Results

3.1 Participants’ characteristics

Table 1 summarizes the demographics for each group. There
were no significant differences in sex distribution with 53% female
or BMI (p-value = 0.56) across the three groups. However, age
and years of education showed significant disparities. The NT

group was younger on average (69.3 ± 4.4) compared to the aMCI
(73.8 ± 5.5) and AD (74 ± 5.3) with p-value = 0.04. Additionally,
participants in the NT group had more years of education
(15.3 ± 4.9) than those with AD (10.5 ± 5.6) with p-value < 0.001.
As a result, years of education and age were considered as covariates
in this study. As expected, MoCA and MMSE scores differed
significantly among the three groups (p < 0.001), reflecting their
distinct levels of cognitive function. Although smoking showed
a significant difference between groups (p = 0.04), it was not
included in the ANCOVA test because, we opted to limit the model
complexity by including only those covariates that are most directly
linked to cognitive function and gait performance.

3.2 DTWT parameters comparison
analysis

The results of DTWT test, shown in Table 2, also revealed
disparities in gait and turn dynamics in the ANOVA and ANCOVA
tests with years of education and age and covariates. The CI
lower bound of eta squared is reported as η2; the choice of
reporting the lower bound of CI was due to the variability observed
in the CIs so the lower bound of these intervals was reported
as a conservative estimate of effect size. This cautious strategy
ensures that our conclusions are robust against potential sampling
variability and helps prevent the overestimation of effect sizes.
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TABLE 1 Participants’ characteristics.

Variable Cognitive statues Test results

NT (n = 26)
Mean ± SD

aMCI (n = 25)
Mean ± SD

AD (n = 24)
Mean ± SD

(p-value) Post hoc

Female, n %b 11 (42.3) 14 (56) 15 (62.5) 0.43 –

Age in yearsa 69.3 ± 4.4 73.8 ± 5.5 74 ± 5.3 0.04* NT > AD

Years of educationa 15.3 ± 4.9 12.4 ± 3.5 10.5 ± 5.6 < 0.001* NT > AD

MMSE (0–30)a 28.5 ± 1.1 25.5 ± 2.6 18.6 ± 4.5 < 0.001* NT > AD aMCI > AD
aMCI < NT

MoCA (0–30)a 25.6 ± 1.3 21.9 ± 2.6 13.6 ± 4.2 < 0.001* NT > AD aMCI > AD
aMCI < NT

CDT (0–3)c 2.6 ± 0.6 2.0 ± 0.8 1.7 ± 1.0 < 0.001* NT > AD

Serial 7s test (0–3)c 2.6 ± 0.4 2.2 ± 0.9 1.2 ± 1.0 < 0.001* NT > AD aMCI > AD

Height (m)a 1.6 ± 0.0 1.5 ± 0.7 1.5 ± 0.1 0.29 –

Body weight (Kg)a 75.1 ± 11.3 69.1 ± 11.5 69.5 ± 13.3 0.12 –

BMI (
Kg
m2 )a 29 ± 4.1 27.7 ± 4.1 28.1 ± 4.1 0.56 –

Hypertension, n %b 14 (53) 14 (56) 13 (54) 0.98 –

Hyperlipemia, n %b 6 (23) 6 (24) 8 (33) 0.66 –

Diabetes, n %b 5 (21) 9 (36) 5 (20) 0.32 –

Smoking, n %b 6 (23) 5 (20) 0 (0) 0.04* NT > AD

CAD, n %b 5 (19) 6 (24) 5 (20) 0.91 –

Depression, n %b 6 (23) 7 (28) 4 (16) 0.63 –

AD, Alzheimer’s disease; aMCI, amnestic mild cognitive impairment; BMI, body mass index; CAD, coronary arterial disease; CDT, clock drawing test; MMSE, mini-mental state examination;
MoCA, Montreal cognitive assessment; NT, neurotypical; SD, standard deviation. aOne-way ANOVA test, Post hoc: Tukey HSD. bChi squared test, Post hoc: Pairwise comparisons. cKruskal–
Wallis test, Post hoc: Mann–Whitney U. *p-value < 0.05.

Significant reduction in stride length was detected as cognitive
impairment increased; and the difference remained significant
after conducting the ANCOVA test (p-value = 0.02), however,
the p-value increased notably. Stride time also varied significantly
among groups (η2 = 0.11, p-value < 0.001) with AD group
having longer stride time compared to other groups. STV was
observed to be higher in the group with AD compared to other
groups. In addition, this difference was accompanied by a moderate
effect size (η2 = 0.1, p-value < 0.001), showing an increase in
gait irregularity but this feature appears to be more affected by
covariates. The differences in gait speed were notable, as indicated
by the effect size and p-value (η2 = 0.29, p-value < 0.001). Also,
gait speed was the only parameter in the walk phase able to
distinguish all groups. Results showed AD group had less cadence
than others. DST increases correlated with cognitive impairment,
however, after correcting for variables these differences were
not significant. No variations were seen in swing and stance
phases.

Considering the turn phase, turning time was significantly
different, with NT participants taking less time to finish a
turn compared to aMCI and AD after the ANCOVA test (p-
value = 0.006). Noticeable reductions in the length of steps during
a turn were seen (η2 = 0.21, p-value < 0.001). aMCI and AD
groups had significantly lower peak head and hip speeds than
NT people, with considerable effect sizes. After adjusting for
confounders, both variables remained significant, suggesting they
may discriminate groups. Even after controlling for confounders,
individuals with aMCI and AD had a lower peak segmental angle

during turns than NT participants (p-value < 0.001). Sway-AP also
differed significantly across groups, with decreased sway observed
as cognitive impairment increased. However, no differences were
observed in the sway-ML measurements among the groups. It is
worth noting that turn phase features were able to stay significant
even after considering the effect of covariates in the analysis.

3.3 Association between cognitive
performance and walk and turn features

Table 3 indicates the results for two univariate linear
regression models after adjusting for years of education and
age. Model 1 investigates the correlation between walk and turn
parameters and the CDT scores in order to assess the relation
between DTWT features and spatial awareness and planning.
While model 2 evaluates the association between these same
characteristics and serial 7’s scores which evaluates different
cognitive domains such as working memory and attention through
repeated subtraction tasks. Regarding walking Phase only stride
length demonstrated a significantly positive relationship for both
models (Coeff_model1 = 0.23 and Coeff_model2 = 0.32). Features
like stride time, gait speed, and cadence have demonstrated higher
coefficients and level of significance in Model 2 suggesting that
participants with stronger working memory could more effectively
manage the motor demands of walking while performing a
cognitive task. STV did not demonstrate significant relation with
cognitive scores.
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TABLE 2 DTWT parameters comparison analysis.

Variable Cognitive status Test results

NT (n = 26)
Mean ± SD

aMCI
(n = 25)

Mean ± SD

AD (n = 24)
Mean ± SD

η2 (adj.
p-value)b

ANOVA

(adj. p-value)c

ANCOVA
Post hoc

Walk phase

Stride length (m)a 1.1 (0.6) 1.0 (0.9) 0.9 (0.8) 0.13 (p < 0.001)* (P = 0.02)* NT > AD
aMCI < NT

Stride time (s) 1.2 ± 0.1 1.3 ± 0.1 1.4 ± 0.1 0.11 (p < 0.001)* (p = 0.003)* NT < AD
aMCI < AD

STV (%)a 6.4 (9.7) 7.0 (14.7) 12.4 (24.9) 0.1 (p < 0.001)* (p = 0.02)* aMCI > AD
NT < aMCI

Gait speed (m/s) 1.0 ± 0.1 0.7 ± 0.1 0.6 ± 0.1 0.29 (p < 0.001)* (p < 0.001)* NT > AD
aMCI > AD
aMCI < NT

Cadence (Step/min) 95.2 ± 8.2 93.6 ± 11.6 82. ± 9.1 0.1 (p < 0.001)* (p = 0.009)* NT > AD
aMCI > AD

DST (s) 0.1 ± 0.04 0.2 ± 0.04 0.2 ± 0.05 0.04 (p = 0.02)* (P = 0.5) –

Swing phase (%)a 0.3 (0.3) 0.3 (0.1) 0.3 (0.1) (p = 0.06) – –

Stance phase (%)a 0.6 (0.1) 0.6 (0.1) 0.6 (0.06) (p = 0.6) – –

Turn phase

Turning time (s)a 1.9 (1.5) 2.0 (2.1) 2.9 (2.8) 0.13 (p < 0.001)* (p = 0.006)* NT < AD
aMCI < AD

Step length (m)a 0.3 (0.3) 0.1 (0.4) 0.1 (0.3) 0.21 (p < 0.001)* (p < 0.001)* NT > AD
aMCI > AD

Peak head speed (◦/s) 453.6 ± 104.6 345.1 ± 154.2 237.3 ± 65.3 0.26 (p < 0.001)* (p < 0.001)* NT > AD
aMCI > AD
MCI < NT

Peak hip speed (◦/s)a 441.9 (367.7) 320.9 (640.6) 238.6 (213) 0.31 (p < 0.001)* (p < 0.001)* NT > AD
aMCI > AD
MCI < NT

Peak segmental angle (◦) 41.4 ± 11.3 30.3 ± 11.8 24.7 ± 11.5 0.13 (p < 0.001)* (p < 0.001)* NT > AD
aMCI < NT

Sway-AP (m) 0.5 ± 0.2 0.4 ± 0.1 0.3 ± 0.1 0.11 (p < 0.001)* (p = 0.006)* NT > AD
aMCI > AD

Sway-ML (m)a 0.1 (0.2) 0.1 (0.3) 0.1 (0.2) (p = 0.8) – –

AD, Alzheimer’s disease; aMCI, amnestic mild cognitive impairment; ANOVA, analysis of variance; ANCOVA, analysis of covariance; AP, anterior-posterior; DST, double support time;
ML, medio-lateral; NT, neurotypical; SD, standard deviation; STV, stride time variability. aMedian (Min-Max range)—Normalized. bOne-way ANOVA with Bonferroni correction, Post
hoc: Tukey HSD. cANCOVA with Bonferroni correction—years of education and age were included as covariates. *p-value < 0.05.

Features in turn phase for both models suggest stronger
significance and more association with cognitive tests. Turning
time is the only feature which has a negative relation with serial
7s with a 0.37 coefficient value, indicating that better working
memory facilitated quicker turns under dual-task conditions. For
peak segmental angle and step length, the differences between
models are not notable in comparison to other features. In addition,
similar to walk phase, all features especially peak head and hip speed
demonstrate more significant relation with serial 7s test according
to the p-values and F statistics. Sway-AP shows significantly
positive association in working memory.

Figure 4 illustrates the SHAP summary plots for features
that had a significant relationship with predictor variables in
both models, based on the univariate linear regression analysis
results. SHAP plots excel at revealing how individual DTWT
features influence model predictions, providing insights into both

the overall importance and their specific impact on individual
predictions. The horizontal axis represents the SHAP values and
the vertical axis is the list of gait features ordered based on their
impact on the model. Positive SHAP values suggests that the higher
cognitive performance tends to push the predicted feature to higher
values (red color code). In contrast, negative SHAP values indicate
that higher cognitive performance leads to lower outcomes (blue
color code).

According to model 1, step length and peak segmental angle
have the most impact on the model and they also display positive
SHAP values, suggesting that higher CDT scores are associated
with longer steps and larger angles. Peak segmental angle shows
that higher cognitive function (CDT scores) is associated with
greater range of motion in body segments indicating that stronger
visuospatial and planning abilities result in smoother turn. Peak
head speed and stride length show red colored dots saturated on
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TABLE 3 Linear regression analysis results.

Variable Coeff. R2adj. P-value F-statistics Coeff. (95% CI)

Walk phase

Stride length (m) Model 1: 0.23
Model 2: 0.32

Model 1: 0.32
Model 2: 0.25

Model 1: 0.03*
Model 2: 0.005*

Model 1: 12.5
Model 2: 12.8

Model 1: [0.02, 0.45]
Model 2: [0.09, 0.54]

Stride time (s) Model 1: −0.14
Model 2: −0.38

Model 1: 0.04
Model 2: 0.14

Model 1: 0.25
Model 2: 0.002*

Model 1: 2.06
Model 2: 7.45

Model 1: [−0.41, 0.1]
Model 2: [−0.62, −0.14]

STV (%) Model 1: 0.04
Model 2: −0.15

Model 1: 0.02
Model 2: 0.03

Model 1: 0.72
Model 2: 0.23

Model 1: 1.52
Model 2: 1.98

Model 1: [−0.21, 0.3]
Model 2: [−0.4, 0.1]

Gait speed (m/s) Model 1: 0.18
Model 2: 0.39

Model 1: 0.21
Model 2: 0.24

Model 1: 0.11
Model 2: 0.001*

Model 1: 7.7
Model 2: 12.9

Model 1: [−0.04, 0.41]
Model 2: [0.16, 0.62]

Cadence (Step/min) Model 1: 0.13
Model 2: 0.38

Model 1: 0.03
Model 2: 0.13

Model 1: 0.32
Model 2: 0.002*

Model 1: 1.60
Model 2: 6.71

Model 1: [−0.12, 0.39]
Model 2: [0.14, 0.62]

Turn phase

Turning time (s) Model 1: −0.2
Model 2: −0.37

Model 1: 0.14
Model 2: 0.19

Model 1: 0.09
Model 2: 0.009*

Model 1: 5.25
Model 2: 6.95

Model 1: [−0.4, 0.03]
Model 2: [−0.55, −0.08]

Step length (m) Model 1: 0.33
Model 2: 0.36

Model 1: 0.21
Model 2: 0.23

Model 1: 0.005*
Model 2: 0.002*

Model 1: 7.84
Model 2: 8.51

Model 1: [0.10, 0.52]
Model 2: [0.13, 0.59]

Peak head speed (◦/s) Model 1: 0.28
Model 2: 0.42

Model 1: 0.11
Model 2: 0.19

Model 1: 0.02*
Model 2: 0.001*

Model 1: 4.20
Model 2: 7.04

Model 1: [0.03, 0.52]
Model 2: [0.18, 0.66]

Peak hip speed (◦/s) Model 1: 0.23
Model 2: 0.43

Model 1: 0.14
Model 2: 0.24

Model 1: 0.056
Model 2: < 0.001*

Model 1: 5.03
Model 2: 8.94

Model 1: [−0.00, 0.42]
Model 2: [0.21, 0.65]

Peak segmental angle (◦) Model 1: 0.32
Model 2: 0.29

Model 1: 0.11
Model 2: 0.1

Model 1: 0.01*
Model 2: 0.022*

Model 1: 4.16
Model 2: 3.72

Model 1: [0.08, 0.55]
Model 2: [0.05, 0.54]

Sway-AP (m) Model 1: 0.08
Model 2: 0.31

Model 1: 0.04
Model 2: 0.11

Model 1: 0.49
Model 2: 0.014*

Model 1: 2.25
Model 2: 4.22

Model 1: [−0.11, 0.37]
Model 2: [0.05, 0.55]

CDT, clock drawing test; Model 1, linear regression model with CDT score as predictor; Model 2, linear regression model with serial 7s score as predictor. Both models were adjusted for years
of education and age. *p ≤ 0.05.

FIGURE 4

SHAP summary plots. AP, anterior-posterior, Model 1, linear regression model with CDT test as predictor; Model 2, linear regression model with serial
7s test as predictor.

positive SHAP values, implying that higher CDT scores generally
enhance these features values. This aligns with the notion that
better cognitive function can be linked to faster walking and body
segment speeds. In model 2, more features have a significant
relationship with the predictor variable than in model 1, and larger
SHAP values were observed for these features. In this plot, peak
head and hip and stride time have the most correlation with serial
7s test; also, peak segmental angle has descended to the bottom
of the list. Features like stride time and turning time have blue
dots saturated on the left side of SHAP value axis which indicate
that higher serial 7s scores result in lower values for these features.
This confirms the assumption that serial 7’s scores as a metric for
working memory tends to positively influence the speed of gait and

turn parameters. On the contrary other features have higher feature
values concentrated on the right side of the x-axis suggesting that
patients with better serial 7s scores walk and turn faster with longer
stride length and segmental angles. Additionally, the SHAP values
appear to be more spread out around the zero point in model
2 which might suggest that serial 7’s scores are more strongly
correlated with physical mobility than CDT scores in DTWT test.

4 Discussion

This study investigated the gait and turn features of NT older
adults and patients with cognitive impairment using a novel test
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design and dual Kinect sensor set up. To our knowledge this is
the first study to analyze walk and turn dynamics in patients with
cognitive impairment. Our results revealed that turn features were
notably different among groups even after considering the effects of
covariates and they also appeared to be more strongly connected to
cognitive function than gait-related measures.

4.1 Significance of gait and turn metrics

DTWT test results were in line with previous studies showing
the effect of an additional cognitive task on gait performance
(Ramirez and Gutierrez, 2021). Gait speed and stride time were
the most significant factors in distinguishing the AD, aMCI, and
NT groups, with a notable effect size. This is consistent with the
findings of review studies which marked the dual-task walking
speed as a deterministic gait characteristic influencing individuals
with cognitive impairment (Koppelmans et al., 2022; Cepukaityte
et al., 2024). Research indicates that gait speed is associated
with reduced hippocampal volume, thinner temporal gyrus, and
alterations in PFC activation (Callisaya et al., 2013; Koppelmans
et al., 2022). Among patients with AD, our study revealed a
greater STV which has an association with higher cortical brain
control, suggesting that cognitive decline may lead to increased
STV (Pieruccini-Faria et al., 2021).

Regarding turn performance, in healthy older adults limited
range of motion due to balance issues were reported which could
serve as a compensatory mechanism to enhance stability (Baird
and Van Emmerik, 2009; Khobkhun et al., 2022b). However,
our findings revealed a more pronounced issues in patients with
cognitive decline in the presence of a cognitive load. Turning
requires reorienting the body’s CoM, coordinating segmental
rotations and adjusting step placement and demands more
balance and coordination. Turning also, engages a wider range of
brain regions compared to straight walking, semi-automatic once
initiated and primarily involves subcortical structures, especially
because of the need to rapidly coordinate movements while
processing spatial information (Miri et al., 2024). Executive
functions, such as planning, attention, and sequencing, are crucial
during turning as individuals must plan and execute the turn
without losing balance (Mirelman et al., 2017; Stuart et al., 2018).
In addition to balance and coordination issues, navigation relies on
distinct neural pathways, particularly the medial temporal lobes,
including the hippocampus and entorhinal cortex, are essential
for processing visuospatial information which is vital when
navigating a turn (Shadmehr and Krakauer, 2008; Takakusaki,
2017). Moreover, turning involves in proprioception and the
integration of sensory information to update body orientation in
space and determining the trajectory, especially when avoiding
obstacles which would necessitates the involvement of parietal lobe
(Cohen and Andersen, 2002; Koppelmans et al., 2022). Deficits in
these regions, leads to impairments in both spatial navigation and
turning performance. For instance, longer turning time in DTWT
test observed in patients with cognitive impairment is align with
the recent study’s discovery attributing this to the reduced volume
of the hippocampus (Wang et al., 2024). Moreover, patients with
aMCI and AD had shorter step length and lower body segment
speeds compared to the NT group.

Based on the observations we hypothesize that the results may
be attributed to the dysfunction in the allocentric-to-egocentric
transitions during spatial processing. Allocentric navigation
involves understanding one’s position relative to the environment,
represented as a map, which is crucial for navigation and path
integration. The medial temporal lobe, particularly the entorhinal
cortex and hippocampus, are recognized as the primary brain
regions involved in allocentric processes (Cepukaityte et al.,
2024; Chrastil, 2025). Whereas egocentric navigation relies on
medial parietal regions, namely the retrosplenial cortex, to
maintain awareness of one’s position in relation to immediate
surroundings, often necessitating rapid adjustments and motor
responses (Epstein et al., 2017; Cepukaityte et al., 2024). This
process depends on the ability to determine the spatial relationships
between different body parts and external objects, which is
directly reinforced by proprioceptive feedback. The brain regions
mentioned earlier, vital for spatial navigation, are affected in the
early stages of AD due to the deposition of amyloid and tau
pathology found in the initial Braak pathological staging (Braak
and Braak, 1991; Levine et al., 2020; Cepukaityte et al., 2024).
While first perceived as a purely motoric action, making a turn
requires the perception and integration of information on the
orientation of body segments in relation to each other and the
environment in order to navigate on a predetermined course. Given
that certain early aspects of AD pathology are also involved in
the navigation circuitry, the deficits in turning can be elucidated.
In addition, white matter atrophy could disrupt the connectivity
between cognitive and motor regions and basal ganglia dysfunction
could complicate motor control due to its role in regulating
voluntary motor movements and procedural learning (Koppelmans
et al., 2022; Xiong et al., 2022).

Along with the preexisting problems and additional spatial
processing, the presence of a cognitive load will lead to the adoption
of more cautious strategies while making a turn. For instance, a
decreased peak segmental angle indicates that individuals with AD
have an en-bloc turn similar to those with Parkinson’s disease. Prior
research has shown comparable findings in older adults during a
turn as a tactic to simplify the turning process and compensate
the decrease in stability and balance (Baird and Van Emmerik,
2009; Khobkhun et al., 2021; Khobkhun et al., 2022a). Meanwhile,
research that employed the dual-task test in a straight line revealed
those with cognitive impairment had altered brain activation in
the PFC and increased functional connectivity, leading to worse
gait performance (Weng et al., 2023). Thus, the en-bloc pattern of
reorientation in persons with AD upon the DTWT test is more
pronounced due to their pre-existing deficits in brain regions
associated with spatial navigation and decreased activity of the PFC
resulting from the cognitive load. The further approach to preserve
balance during a turn observed in individuals with AD is the
decrease of sway-AP. In essence, the AD group had to relocate their
CoM to the terminal point of the pathway in order to effectively
execute a turn, which also led to a decrease in turn speed.

These biomechanical and cognitive changes in turning
performance have important real-world implications, particularly
regarding fall risk. Indeed, deficits in turn performance, especially
during cognitively demanding tasks, are often associated with
an increased risk of falls in older adults (Almajid et al., 2020).
Given that turn performance is a critical component of mobility,
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the observed difficulties in executing turns among cognitively
impaired individuals could be an early indicator of fall risk.
While our study did not directly assess fall occurrences, the
changes in step length, turning time, and sway are consistent
with those reported in fall-prone populations (Cheng et al., 2014;
Gulley et al., 2020).

4.2 Association between cognitive
performance and walk and turn features

Previous research examining the relation between cognitive
performance and gait characteristics largely employed the trail
making test to assess executive function and the digit span forward
test to evaluate working memory (Doi et al., 2017; Weng et al., 2023;
Poosri et al., 2024). However, to investigate the interplay between
cognitive capacity and motor function, the CDT and serial 7s tests
were selected test because, the act of walking and turning while
simultaneous counting backwards is a complex procedure that
demands the participation of several cognitive domains, including
planning, visuospatial ability, and attention (Mirelman et al., 2014),
which are assessed by the CDT. Typically employed as a cognitive
task in the dual-task test, the serial 7s test assesses not only working
memory but also attention and the capacity to update and recall
information during calculations (Schneider, 1983). This cognitive
process is similar to the needed mental updating during turning.

As for gait features, gait speed and stride time are found
to be associated with working memory. This is consistent with
prior research suggesting that working memory and gait speed are
predominantly mediated by the same regions of the brain and the
simultaneous cognitive processing in these regions may lead to a
limitation in brain resources that impacts the walking ability of
individuals with MCI (Montero-Odasso et al., 2009a). Meanwhile,
stride length is significantly linked to the CDT test suggesting
that this characteristic requires planning and visuospatial abilities
(MacAulay et al., 2015), particularly in our scenario where there
is a limited path and the length of the steps must be planned. We
propose a hypothesis that the step length during a turn is connected
with the CDT test in a similar way.

Our findings suggest a notable association between body
segmental angle and CDT test. Executing a turn is a sequential
procedure that begins with turning the head first, followed by the
chest and hips (Khobkhun et al., 2022b). This could be similar
to sequential steps while performing a CDT test explaining the
positive relationship with segmental angle and CDT scores which
indicates decline in performing a sequential activity in individuals
with cognitive impairment. Supporting previous research, in our
results peak head speed, peak hip speed, and turning time exhibit
a correlation with working memory, same as gait speed, which
emphasized on the correlations between processing speed and
prefrontal lobe function (Mancini et al., 2016; Doi et al., 2017).
Turning and counting backwards would restrict the cognitive
resources available in PFC, making counting and keeping balance
a struggle resulting in reduced speed.

Overall, the results have illuminated the complex interplay
between cognitive functions and motor tasks, particularly turning,
which requires higher-order cortical engagement. Utilizing the

CDT and serial 7s tests, our analysis underscores the pivotal
roles of planning, visuospatial abilities, and working memory
in managing turning tasks with additional cognitive loads. Our
findings reveal that turning, as opposed to straight walking,
demands more extensive use of PFC resources, as turn-related
parameters—such as segmental angles, peak speeds, and step
length—demonstrated stronger correlations with cognitive test
scores than did traditional gait measures. This suggests a more
substantial cognitive demand for turning, which could serve as
a sensitive indicator of early cognitive decline far more than
linear gait metrics.

4.3 Strengths and limitations of the study

This study had several strength and limitation. The performed
test was non-invasive because no sensor or device was attached
to the participants. Also, common devices for gait analysis are
often expensive and unavailable for some clinical centers thus, we
used affordable and clinically valid Kinect sensors (Springer and
Seligmann, 2016). However, single Kinects could be inaccurate
at capturing lower limb joints and curved movements, hence
experts recommend the dual Kinect system, as employed in
this study (Kotsifaki et al., 2018). Additionally, the simple
cognitive task effectively evaluated patients with lower levels of
education.

Gait and turn assessment require musculoskeletal health and
no serious medical issues in older adults, making it unavailable to
all. Our investigation did not detect significance in gait features like
symmetry, which have been found in earlier research, potentially
due to the limited field of view of the Kinect cameras not providing
enough walking distance to identify the difference among groups.
Also, due to resource constraints, this study enrolled a moderate
sample size of 75 participants, which was calculated beforehand to
ensure sufficient power, however, it fell short of the larger sizes. It is
worth noting that age and education levels differed between groups.
To address these differences and their effects on independent
variables, we applied the ANCOVA test with age and years of
education as covariates, ensuring that our main comparisons were
not confounded by these demographic factors which is a method
applied by similar studies (Montero-Odasso et al., 2017; Pieruccini-
Faria et al., 2021; Bovonsunthonchai et al., 2022).

To validate and expand these findings, future research should
aim for incorporating larger sample sizes and extended pathways.
Longitudinal could enhance the prognostic efficiency of turn
dynamics for detecting cognitive impairment. Moreover, exploring
whether deficits in turning dynamics, as seen in patients with aMCI
and AD, are predictive of fall incidents, could provide a potential
screening tool for identifying those at risk.

5 Conclusion

This study explored the diagnostic potential of the walk-and-
turn test with emphasize on turn variables. Our results suggest that,
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in addition to routine gait parameters, turn dynamics could serve
as newer, more sensitive markers for the early detection of cognitive
decline in older adults.
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